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In this note we consider a generalization of the Chebyshev approximation 
problem on a closed interval [oz,~]. Let R be the real line and let w be a function 
mapping [cl,/31 x R x R into the extended real line. Let F be an approximating 
function, with parameter A taken from a parameter space _P. Given f E C [or,p], 
the generalized Chebyshev problem is to find a parameter A* E P mi~irnizi~~ 

where the error curve E is given by 

EM 4 = NK/W, WA, ~11 
and 

Such an approximant F(A*, .) is called a best approximation to f(x) with 
respect to w on [~,/3]. In this note we consider the characterization and com- 
putation of best approximations. 

1. DEFINITIONS AND PRELIMINARIES. 

To be able to treat the approximation problem, we must put some restric- 
tions on w and F. We assume in this note that w is a continuous mapping into 
the extended real line, i.e., for every yO E [a,fiJ x R x R, limw(y) = w(y& 

Y;tYO 

whether w(vO) is finite or not. It should be noted that there exist cases (such as 
the case of onesided approximation) of both practical and theoretical im- 
portance which do not satisfy this requirement. To obtain an alternating 
theory and to ensure that the error gets larger as the approximant moves away 
from the function, it is necessary to have monotonicity conditions on w. 

DEFINITION. A continuous mapping w of [cY,/?] x R x R into the extended 
real line is called an ordering fzmction if for x and a fixed, w(x, a, b) is a mono- 
tonic function of b (strictly monotonic when it is finite) and 

sgn (w(x, a, b)) = sgn (a - b)* 
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Examples. In the case of ordinary Chebyshev approximation we have 

w(x,a,b)=a-b. (1) 

A slight generalization of this involves a positive continuous weighting 
function s, 

w(x, a, b) = s(x) (a -b). 

Moursund [3, 41 has considered “generalized weight functions” 

w(x, a, b) = u(x, b - a) 

where for fixed first argument X, u(x,y) is strictly monotonic in y and 
wWd% = w(v). 

An ordering function of particular interest is the r-biased weight function 

w,(x,a,b)=b-a b>a 
= r(b - a) bc a. 

The limit of r-biased weight functions is the onesided weight function 

w(x,a,b)=b-a baa 
=--co b< a. 

The onesided weight function is not an ordering function, but from the fact 
that it is a limit of ordering functions we can deduce much. 

Let 4 be an order function ([9], 149). A different generalization of the 
Chebyshev criterion consists in choosing 

4.~ ~2, b> = $(a) - d@>. 
By use of such an ordering function, we can convert the problem of Chebyshev 
approximation by 4(F) of a function g taking values in (inf+, sup $) into the 
problem of approximation with respect to w by F of a function f = +-i(g), 
thus avoiding the necessity of developing a separate theory for approximation 
by the approximating function 4(F). 

2. CHARACTERIZATION OF BEST APPROXIMATIONS 

In this section we show that if an alternating theory exists for Fin ordinary 
Chebyshev approximation, then an alternating theory exists also for F in 
generalized Chebyshev approximation with an ordering function W. 

DEFINITION. A sequence (x0,. . .,xn}, a < x0 < . . . < x, < /3, is said to be an 
alternant of a function g, if for i = 0, 1, . . ., IZ, 

Ig(xi>l = l/g/l 
d%> = (-lYg(xo>. 

g is then said to alternate y1 times on [a,/3]. 
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An approximating function F is said to have degree p(A) at A, if a necessary 
and sufficient condition for F(A, .) to be a best Chebyshev approximation to 
fin the ordinary sense (l), is that f - F(A, .) alternates p(A) times. We say 
for short that F(A, .) is of degree p(A). It is well known that every element 
of the family 

F(A, x) = 5 ak 2 
k=O 

of nth degree polynomials is of degree n + 1 in the above sense, and there 
exists a degree for rational families ([7], 301-302; [S], 78) as well. Rice ([6 
324-327) has obtained necessary and sufficient conditions for F to have a 
degree at every parameter-point A in the parameter space P, that is, necessary 
and sufficient conditions for an alternating theory. 

DEFINITION. F has property 2 of degree m at A, if the fact that 
$‘(A, .) - F(B, .) has m zeros implies F(A, .> = P;( 

DEFINITION. F has property LT? of degree n at A, if for any integer m < n, 
any sequence (x1, ~. ., x,~} with 

cr=xo< Xl< . ..< x,+1 =/3, 

any sign cr’, and any real c with 

0< E< min(xj+, -Xj:j=O,...,m), 

there exists a B E P, such that 

I/F(A, .) - F(B, .)ii < E, 

sgn (F(A, x) - F(B, x)) = o CC<X<X,--E 
= u(-l)j Xj+E<XXXj+l-E 

= 0(-l)” &+E<x,<p. 

In case m = 0, the above sign condition reduces to 

sgn (F(A, .> - F(B, .)> = CJ. 

We now require that for all A E P, the degree of property JXI at A equals the 
degree of property Z and A; by Rice’s result ([6], 324327) we can then say 
that F has that degree at A. 

DEFINITION. A zero x of a continuous function g on [cc,/?] is called a double 
zero, if x is an interior point of [a,p] and g does not change sign at x. 

LEMMA 1. Let F have degree n at A. Then if F(A, . ) - F(B, . > has n zeros, 
counting doubZe zeros twice, F(A, .) E F(B, .>. 
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The proof is similar to the corresponding proof for varisolvent E’, given in 
([7]> 299). We show that if E(A, ,) - F(B, .) has y2 zeros, counting double 
zeros twice, then there exists a C such that E(A, .) - E(C, .) has y1 simple 
zeros. 

LEMMA 2. Let F have degree n at A, e(A) < co, and let E(A, .) alternate in 
sign on the sequence (x,,,. .., x,}; then fou F(B, .) + F(A, .), min{E(A,xi): 
i=O ,..., n}< max(JE(B,xJj: i=O ,..., n}. 

Proof. Suppose the inequality fails for some B and assume, without loss of 
generality, that E(A,x,J > 0. We have 

FM xo> G W, xo) 
W, 4 2 W, XI> 
F(A, x3 < F(B, ~2) 

. . . . . 

and it is seen that F(A, .) - F(B, .) must have n zeros, counting double zeros 
twice, on (x0,x,). But by Lemma 1, this can only happen if F(A, .) = F(B, .), 
which proves the lemma. 

Two consequences of the lemma are that n alternations of E(A, .) are 
sufficient for F(A, .) to be best tof, and that an approximation F(A, .) whose 
error E(A, .) has n alternations is a unique best approximation. One can 
prove that n alternations are also necessary, as we show in the following 
theorem. First we need a continuity result. 

LEMMA 3. Let f and g be continuous functions such that w is continuous at all 
points WW,&N, a f x < /3. For a given E > 0 there exists a 6 > 0 such that 
ifh is a continuous function for which j]g - hjj < 6, then 

Ilw(.,f,h> - w(.,f,d/l< 6. 

Proof. If the lemma is false, there exists an E< 0, a sequence (hk} with 
[(g - hkl[ < l/k, and a sequence (xk) with 

yk = 1 W(xk,f bk), hk(Xk)) - W(xkCk,f @k), g&k))! > E. 

As (xk} is bounded, it has a limit point x0; assume, without loss of generality, 
that xk -+ x0. In this case, the sequences 

((xk, f (Xk), hk@k))) and (cxk, f(xk), dxk))) 

both converge to (x0, f (xo),g(xo)). By the continuity of w at this point it 
follows that Yk must tend to zero, which contradicts choice of (~~1. 
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THEOREM 1. Let F have degree n at A, and let w be an ~rde~ing~un~t~o~~ If 
e(A) < c/3, a necessary and sujicient condition for P(A, .> to be best is that 
E(A, “) have n alternations. 

Proof. Sufficiency has already been established by Lemma 2; we now 
necessity. Suppose that E(A, .) alternates exactly lp2 < p(A) times. There exists 
points x1: . . ., x,,, such that 

E(A,x,)=O ,...,m i=l 

and E(A, *) does not alternate once on any one of the intervals Ii = EXi,Xi+l3, 
k=O, ..*, m, XQ = e, xmt1 - - /3. Assume, without loss of generahty, that E(A, .) 
attains e(A) on IO; then E(A, .) attains (-l)ie(A) on Ii, and hence does not 
attain (-I)‘+’ e(A) on Ii. Let us set 

q = e(A) - max {(-I)“’ E(A, x): x G Ii, i = 0,. . .) ml; 

we have then q > 0. Define 

Ji = (XI 1 E(A, x)1 3 e(A) - y/2, x E Ii). 

By the choice of Ji, we have sgnE(A,x) = (-l)i for x E Ji. Let 

6 = inf (f(x) - F(A, x)1 : x E iil Ji 
I 

Using Lemma 3, choose e1 > 0 such that /P(A, .) - I?‘(& .)]I < or implies 
[lw(.,f,F(A, .)) - w(.,AF(B, .)[I< q/2. Choose E such that E< (xj-yI for 
j=l 9 ee.9 m and any y E Ji, i= 1, . . . . m, and E < max (E,, 6). Now choose 
F(B, .) as in the definition of property ~2, with u = -1 e By the choice of cr, 8 
and E, we have F(B, X) strictly between F(A, x) and f (x) for x E Jfi, hence for 
such x, 

I w@, f@), W, 4>I < I w(x, f(.4, FM 4) I + 77/Z < 44 - T/Z + $2 = 44. 

Thus we have Iw(. , f, F(B, .))I < e(A), proving the theorem. 

Since a best approximation $‘(A*, .) must alternate p(A) times, it follows 
from Lemma 2 that a best approximation is unique. 

3. THE REMEZALGORITHM 

For approximating functions F of practical interest there exists a maximum 
degree. We denote this degree by n for the remainder of this note. A function 
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f for which the best approximation is of degree IZ, and whose error curve of 
the best approximation has exactly n + 1 relative maxima and minima (which 
serve as an alternant of length n) is called normal. Sufficient conditions for a 
function to be normal in rational or exponential approximation have been 
obtained by Meinardus and Schwedt ([2], 315-320). Related results for 
rational approximation were obtained by Loeb ([IO], 44). Experience suggests 
that most functions are normal. If the functionf is normal, a simple variant 
of the Remez algorithm may be used to determine the best approximation. 
We assume henceforth thatfis normal. 

Many variants of the Remez algorithm have been described in the literature. 
For example, Remez-type algorithms for linear and unisolvent approximating 
functions, respectively, have been described by Rice ([8], 176-177) and 
Novodvorskii and Pinsker [5]. Both Kahan [I] and Meinardus and Schwedt 
[2] have described algorithms for general approximating functions. We briefly 
describe a variant of the second algorithm of Remez for the approximation 
problem of this note. 

The Remez algorithm is an iterative procedure for determining an alternant 
+o*, *. -3 x,*> of the error curve E(A*, .) of the best approximation F(A*, .), 
and hence determining the best approximation. We start with a sequence 
Boo, -. *, x,‘} as an estimate of an alternant of the best approximation. The 
kth iteration consists of two stages. In the first stage we solve the system 

E(Ak&‘) = (-l)i,k i=O , . . .,n (2) 

for the unknowns Ak and Ak. The solution, if it exists, is unique; for suppose 
{A,X), {.&PC) to be two distinct solutions. If h = p, we must have 

F(A, xf-1) = F(B, xf-‘), i=O 3 * * -3 n, 

and hence, F(A, .) = F(B, .). If A # p, F(A, .) - F(B, .) alternates in sign on 
x0, . . ., x,,, and so has yt zeros, contrary to hypothesis. We discuss the solution 
stage later in more detail. 

Set x5;-;’ = CI, xi;! = j3. Stage (ii) consists of finding a point Xi’ on the interval 
[xfI;,Xk-l 1+1], at which (-l)‘E(Ak, .)Ak attains its maximum, i= 0, . . . . n. The 
usual case is where ~2 is unique, E(Ak, .) is differentiable, and E’(Ak, .) 
vanishes only at interior points xik, For this case, we can obtain the maxima 
bokt * * -, x,“} by solving the equations 

(Xi” - CC)(Xi” - p) E’(Aky Xt) = 0 i=O,...,n, (3) 

with the constraint 

CX<XOk< . . . < xnk f p. 

We then start the (k -t I)th iteration, with the points (xok,. . ., xnk>. 
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We now consider the convergence of the algorithm. In the case F is unai- 
solvent of degree YE and w is an ordering function such that for any x E [a,/?“, 
w(x,f(x), .) is a 1 - 1 mapping of the real line into itself, it can be shown 
the arguments of Novodvorskii and Pinsker [.5] that the ap~ro~rna~~s 
(F(Ak, .)> of the algorithm converge uniformly to the best approximation, no 
matter what starting sequence {x~~, . . ., x,O) is chosen. Moursund [4] has given 
a proof of this for a generalized weight function and a linear unisolvent family. 
In more general cases, the only results known are local convergence results, 
which guarantee convergence only if the initial. sequence is sufficiently close 
to the alternant. We extend an unpublished theorem of Kahan [I] from the 
ordinary case of Chebyshev approximation to the case of this paper. The 
following notation is useful in developing the result. 

x= (x03 * . .> xi?), A=(a,,...,u,) 

SXi = Xi - Xi*, 6Ui = Ui - Ui* 6X=X-X” 

E,’ = E,(A*, xi*), Eji = ,??,(A*, xi*), E!$(A*, xi*), . ~ < 

THEOREM 2. Under the following hypotheses, the inJLEnite sequence (xok, . I -, xnk>, 
k=O, 1,2, ..~, of the Remez algorithm, converges quadratically to the altering 
of the best approximation, if the starting points are su$%ciently close. 

(i) The best approximation to f is of degree n. 
(ii) The best approximation has a unique alternant {x0*, . . S9 x,*> of length 

n-k 1. 
(iii) The parameter space P of F is an open subset of real n-space. 
(iv) The left-hand sides of equations (2) and (3) can be expanded in Taylor 

series in 8xik, 6ajk, and &I* about the solution X*, A*, h* to the approximation 
problem. (X* is the alternant of the best approximation, and ]A*/ is tiie error of 
the best approximation.) 

(v) The matrix 
&(A xl>. . . -%(A, xl> -1 

. . . . . . . . . 
&(A, x,) . . . &(A, x,) (-l)n+’ 

is nonsingular at the solution X”, A*. 
(vi) If xi is an interior point, E& # 0, and ifxi is an endpoint, E,” # 0. 
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Proof. We outline Kahan’s proof which needs no changes. Expanding the 
left-hand-side of (2), we obtain, 

(-l)i SXk = E,’ 6.x-’ + 2 Eji sa,k + ~E~#xk-‘)2 
j 

+ SX~-’ C Eij Sajk + 3 1 2 Ej,,, Sajk Sa,,,li + . . . 
j .i 111 

Now consider the term ExiS$‘. If E,’ # 0, xi* must be an endpoint. If 
(SAL-‘,SXk-‘) is sufficiently small, we have Ex(Ak-‘,xt-‘) # 0 also, in which 
case (3) ensures that xl-’ is the same endpoint and 6x!-’ = 0. Hence, all the 
terms Exi 6x;-’ vanish. We rearrange the expansion to get 

2 (Eji + . . *) Sa,L - (-l)i Shk = --+(SX$-‘)~ (Ej., + . . .). (5) 
j 

The first-order terms of the left-hand-side may be considered as the left-hand- 
side of a set of linear equations in unknowns SAk and SXk, with matrix (4). 
As the matrix is nonsingular, (SAk, SXk) must be 0(SXk-1)2 for SAk, 6X small. 

We now expand the left-hand-side of (3), obtaining 

(xi” - a) (xi” - /I)[E,~ + E& Sx,L + j$ Eij Sa,L + . . .] = 0. 

If Sx,L # 0 then, as before, Exi = 0 and 

6x: = - 
( 

i Eij Sajk + . . . Ejx = 0(SXk-1)2, 
j=l II 

giving quadratic convergence and proving the theorem. 

We now consider the hypotheses of the theorem in more detail. With hypo- 
theses (i) and (ii) we are simply assuming that the function f is normal. 
Hypotheses (iv) and (vi) are essential to most quadratic convergence proofs. 
We consider hypothesis (v) in more detail. Suppose that hypothesis (iii) holds, 
and that for any distinct points x0, . . ., x,,, the matrix 

[ 

F&4, Xl). * f Fil(A, Xl> 

. . . . . . 1 (6) 
Fl;(A ?I> . . ~nF,(A %z> 

is nonsingular at a parameter-point where the approximant has degree n. 
It follows that @,(A, . ), . . ., F&4, . )} is a Chebyshev system on [a, /3], and by a 
standard argument ([8], 65), the matrix 

FlM x0>. . . FXA, x0> -s1 

. . . . . . . . . 

I 

(7) 
F&4x,,> . . . F,,(A, x,) (-l>““s, 
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is nonsingular for distinct x0 < . . . < X, and for si > 0, i = 1) . . ., n. Now 

where the prime denotes differentiation with respect to b of ~(x,a,b). In the 
case wi = W’(Xi,f(Xi),F(~,~i))> 0, we can divide the ith TOW of (4) by wj, 
i=o, . ..) n, obtaining a matrix of the form (7) with si = I/w,. This matrix is 
nonsingular, and hence, if the hypotheses on w’ and the matrix (6) are satisfied, 
(4) is nonsingular. In the case where F(A, .) is a hnear unisolvent function, 

the matrix (6) is a generalized Vandermonde matrix, and is nonsingular for al% 
distinct xr, ~. ., x,,. 

Let us consider Newton’s method applied to (2). Define 

Yik(A, A) = E(A, xf-‘) - (-1y h i = 0,. . .) n. 

With parameters A, h as estimates of the solution (we choose as initial estimates 
AR-l, hk-“), new parameters A + AA, h + Ah are obtained by solving the linear 
system 

i ~j(A,X:-l)AUj-(-l)iAh=-u,"(A,X) i=O,*..,n. @I 
.i=l 

We can solve the system rik(A, A) = 0 by iteration However, we could try only 
one iteration of solving. If we expand the left hand side of($), we obtain 

i 
j=l i 

Eji+E:j6xi+i Ejm6a,+... Aa, - (-l)‘Ah, 
?n=l 

and from (5) we see that the right-hand side is 

% (Ej’ + Eij 6xi + . . .) &z, - (-l)i 6X - +(6x;-‘)” (E;, + . . .). 
j-1 

This gives 
AAk - 6Ak = O(SXk-I)*, Ah - 6X = O(6Xk-‘)2. 

The argument of the last paragraph of the proof of Theorem 2 may be used to 
obtain 6xk = 0(8X:-‘)*. This shows that if we do only one iteration of 
Newton’s method in stage (ii) of our algorithm, we still have quadratic con- 
vergence. Such a conclusion was obtained by Meinardus and Schwedt [Zj in 
the ordinary case. 
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