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The equations for axisymmetric self-gravitating rotating fluid have been
studied extensively since Poincaré. The model derives its primary interest from
celestial mechanics, where it can be used to study the geometry of stars and
planets. Existence of a solution for both the compressible and the incom-
pressible cases is known. The smoothness of the boundary of the fluid is studied,
and, in particular, it is proved that the rotating fluid has at most a finite number
of rings.

INTRODUCTION

In this paper we consider the equilibrium figure of an axisymmetric self-
gravitating fluid rotating about the z-axis. The fluid is either compressible or
or incompressible; in both cases it is subject to either an angular velocity law or
an angular momentum law. The existence of an equilibrium figure was estab-
lished by Auchmuty and Beals [2] (for the compressible case) and by Auchmuty
[1] (for the incompressible case). Here our purpose is to study the shape of the
boundary of the fluid. This problem, of great interest in analyzing the structure
of the stars and planets, has received considerable attention since the work of
Poincaré [22, 23] (see [7, 16, 24]).

The main purpose of this paper is to prove that the fluid consists of at most
a finite number of rings (i.e., torus-shaped regions) about the axis of rotation.
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Another problem of motion of incompressible fluid without gravity was
studied by Fraenkel and Berger [10]. In this model the vorticity is prescribed; it
is positive in the liquid, and it vanishes outside the liquid. Our methods apply
also to this model and show that the number of vortex rings is finite.

1. Tue MobDEL

We are interested in a steady fluid in R3 rotating around the z-axis, which is
axisymmetric with respect to the z-axis as well as with respect to the plane 2 = 0.
Auchmuty and Beals [2] have considered the case when the fluid is compressible
and self-gravitating with given total mass M and with given law of either

(2) angular velocity £(r), or
(b) angular momentum per unit mass, j(m).

Here we use cylindrical coordinates (7, 8, 2).
We introduce the functions

Jr) = fo " sQ(s) ds, (1.1)
L(m) = j*(m),

(1.2)
mir)=[ o) ds,

where x will henceforth denote a point in R? and 7(x) is the r-coordinate of x.
In case (a), the total energy of the fluid is

B = [ A5 [ [ B2 R aeay— [ Joyets) (1

Rsix__y’

and in case (b) the total energy is

n) = [ aveas—3 [ [ KD aeay 45 [ O Lne) o
3 1.4

where A(r) is a given function. Recall that one is interested in a density p(x)
satisfying

p(x) = p(r, 2),  plr, 2) = p(r, —3), 1.5)

p measurable, p =0, f pdx =M.
Rﬁ
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The functions 4, J, L are subject to the following conditions:

4w =s[ T4, where fe €0, 00), £ 0,57 >0,

(1.6)
imf) — o, uml® — o,
JO) >0, Jleo) <o, JeC0,00), J(r)=0
r(J(o) — J(r)) -0  if 7— o0; (1.7)
L0) =0, L) >0, LeCio, co). (1.8)

By a general physical principle, the equilibrium figure of the fluid has density
which minimizes the total energy. The following results are proved in [2].

TueoreM 1.1. If (1.6), (1.7) hold then there exists a function p,(x) which
minimizes E,(p) is the class of functions p(x) given by (1.5). Further, p, is Hélder
continuous and has compact support.

TueoreM 1.2. If (1.6), (1.8) hold then there exists a function py(x) which
minimizes E,(p) in the class of functions p(x) given by (1.5). Further, p, is Holder
continuous and has compact support.

In condition (1.6), the last restriction may be replaced by

11mf4(/3) =K>0

provided M (in (1.4)) is taken to be <M, , for some M, depending on K (see [2]).
As shown in [2], the solution p; of the minimization problem satisfies, for
some real number A, ,

Efp;)— A =0 a.e., where p; > 0,

Efp) —2: =0  ae;
that is,
A6~ 10— [ 2Dty =\ aeito@ >0,
(1.9)
=N a.e. if pyx) =0,
where

Jir) = J(r),

| (1.10)
) = =] sLm () ds

580/35/1-8
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In a recent paper Auchmuty [1] studied the analogous problem for incom-
pressible fluid, that is, the fluid is rotating about the z-axis and is symmetric
with respect to the z-axis and the plane 2 = 0. Here the total energy of the fluid
is given by

B =—5], Rsf—ﬁj‘)—_”%dx &—[ I @

in case (a), and by

E(p) = —» e P x4 5 [, Bl Lm ) & (112)

in case (b). The function p varies in the class:

p(x) = plr, %), plr, 2) = p(r, —3), (1.13)

p measurable, 0<p<l], pdx = M.
RrR3

The assumption on J, L are somewhat different here than above, namely,

JO) =0, J(o)<oo, JeCY0,00), J(r)=0, (1.14)
L0)=0, LeCy0, ), L(r)=0. (1.15)

The following results are proved in [1].

TreoreM 1.3. If (1.6), (1.14) hold then there exists a function p, which
minimizes E\(p) in the class (1.13). Further, there is a bounded set G, C R® such that

pr=1laeinG,, p,=0ae inR\G,. (1.16)

Taeorem 1.4. If (1.6), (1.15) hold then there exists a function p, which
minimizes Ey(p) in the class (1.13). Further, there is a bounded set G, C R® such that

po=1ae inGy,, p,=0ae in R\G,. (1.17)
It is also shown in [1] that, for some real numbers 2, ,

a.e. in G,

a.e. in R3\G;

Ep)—X =0
0

/AN



SHAPE AXISYMMETRIC ROTATING FLUID 113
that is,

| B pos sen,
Jir) Jmalx_yldy>)\l ae. in G;,

B (1.18)
<X  ae in RAG,.
We introduce the potential functions
u = ]z(r)+f ”“(y) rdy (1.19)
and
7 _]l(r)+f |x_y] +X (1.20)

for the solutions p; and 3, asserted in Theorems 1.1, 1.2 and 1.3, 1.4, respectively.
Then (1.9) gives

A(p) =u; if p; >0,
0 > ui if Pi = 0.
It follows that

pi = y(u5), (1.21)
where y(«) is the monotone increasing function defined by

y(u) = (A w) if u>0,

(1.22)
=0 if u<0.
Introduce the elliptic operator in two independent variables
¢ 19 o2

Applying the Laplacian 4 = Y ¢%/ox; (in R®) to both sides of (1.19) we get
du; + y(u) = LJ; . (1.24)
Similarly the function &; satisfies
di;, 415, = Z];, (1.25)

where I; is the indicator function of the set G; (1.25) can also be written in
the form

Aﬁi + I{ﬁ,>o) = g]z . (1-26)



114 CAFFARELLI AND FRIEDMAN

In this paper we shall study the boundary of the sets {p; > 0}, {5; = 1}. We
find it useful to work with the potential functions %, , #; rather than with the
density. The boundary of the above sets (i.e., the sets occupied by the fluid) is
called the free boundary.

The free boundary problem

Au + dut = 0 in a bounded domain 2 C R? (A >0), u = pon R,

arises in plasma and was studied in [4, 13, 25, 26]. In this case one can show
(see [15]) that the set {u > 0} is connected. Another problem of type (1.24) or
(1.26) arises in the theory of vortex rings; see [9] and the references given
therein. In this case the solution u satisfies

Lu + r2f(u) = 0 in Re, (1.27)

where f(u) = 0 if ¥ <0, f'(u) > 0 if ¥ > 0, and generally f(0-+) > 0 (i.e.,
f(u) is discontinuous at u == Q). We shall study this problem in Section 7.
We finally mention that a free boundary problem of the type

du + y(u) = fin R? (1.28)

arises in the Thomas—Fermi atomic model [3, 6, 17]; here, however, y(u) is a
monotone decreasing function (instead of monotone increasing). This difference
is important, for in this (decreasing) case one can apply the maximum principle
to (1.28).

2. DESCRIPTION OF THE RESULTS

In Sections 3 and 4 we study the solution #; (given by (1.19)) and the corre-
sponding free boundary. In Section 3 we study some general properties of u; .
It is proved that u; = u/(r, 2), that is, %, is independent of 6, and further

ur, —2) = u(r, 2), % ufr,2) <0 ifz>0. (2.1)

We also establish some properties of the free boundary. In Section 4 it is proved
that the region occupied by the fluid p, consists of a finite number of rings
provided J(r) is analytic. The same result for p, is established without any
analyticity assumptions.

The incompressible case is studied in Sections 5 and 6. In Section 5 we study
general properties of #; and establish the analog of (2.1). Unlike the solution »;
which has continuous second derivatives, the solution #; is only known to have
a bounded Laplacian.
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In Section 6 we prove that the number of rings of the rotating fluid corre-
sponding to #, is finite in any r-interval where #J > 0.

In Section 7 we deal with the problem of vortex rings studied by Fraenkel
and Berger [10] and show that the number of vortex rings is finite.

In Section 8 we briefly discuss the regularity of the boundary of the rings
in the incompressible case near the line 2 = 0.

3. THE COMPRESSIBLE CASE: GENERAL PROPERTIES
We shall assume that

& J(r) is Holder continuous (exponent ) in any interval

0<r<ry, r<owm, (3.1)
and that
LeCy0, 0) N C¥0,8,)  for some §; > 0, (32)
L(0) = L'(0) = L"(0) = 0. '
It is easily computed that
Jor) = L(m,(r))ir?,
d
L mr) =2 [ plr, %) da,
so that
27, Lim (r
2140) = 22 L) [ plr, 2) d — 2 HAT). (3.3)
Since p is Holder continuous and since
l mp(r) - ma(s)l < c I r—s [7
(3.4
my(r) < Cr?  (C constant),
the conditions in (3.2) imply that, for some 8 > 0,
& J, is Holder continuous (exponent 8) in [0, o). (3.5)

If
f(s)/s? ~ constant as s — 0
then y(u) ~ constant - #? as u [ 0, where ¢ = 1/(p — 1). (Note that (1.6)
implies that p > %, so that ¢ < 3.) (In the physical problem usually p < £, so
that ¢ > $.)

580/35/1-9
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In this section we shall assume:

y(%) is a monotone increasing function of u,
y(u) = 0if u <0, (3.6)

y(u) is Holder continuous (exponent 8) in any bounded interval in R1.

THeoREM 3.1.  The solution u; (i = 1, 2) satisfies the following properties:
() w e C*5(R%);
(i) u, does not depend on 0, that is, u{x) = u,r, 2) if x = (r, 8, 2);
(i)  wur, —2) = ur, 2);
(iv) #ifr; 0) = 0, #4(0, 2) = 0, 47, 0) = 0 (r = 0, z > 0);
(V) uy(r,2) <0ifz>0;
(Vi) (1, 0) < Oifr = 0.
Proof. It suffices to prove the theorem for », . Set u = u;, p = p; (p, is
defined in Theorem 1.1). Assertion (i) follows from (1.24) and the Schauder

estimates.
Denote by 7, the orthogonal mapping (7, 8, 2) — (r, § 4+ @, 2) and set

(Bo)) = fRSlTp(_y)Tdy- (3.7

Then, by substituting y — 7.,

BoYr) = | B [ PN g,

R3|wa_yl— Rsl’rmx_fwy!

Since | 7,8 — 7,y | = | x — ¥ |, p(r,¥) = p(¥), we conclude that (Bp)(r,x) =
(Bp)(»). Recalling (1.19), assertion (ii) follows.

The proof of (iii) is similar to the proof of (ii); here we replace 7, by the
mapping r: (7, 6, ) — (r, 0, —=2).

From (iii) it follows that #,(r,0) =0, r > 0; hence also u,(r, 0) = 0.
From (ii) and the fact that « € C*+# it follows that u, is continuous up tor = 0
and #,(0, 2) = 0. Thus (iv) is established.

We next have (see [1, 2])

o(r, ) if 2, 20, (3.8)

Indeed, a symmetric rearrangement of p(r, 2) with respect to z (see [11]) does
not change the integrals

jm Alp(x)) v, fm Jr) p() dx
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but it strictly decreases the convolution

J‘ f p(x) p(y) P(y) dx dy,

R® ! X =
unless p already coincides a.e. with its symmetric rearrangement p*. Thus

E\(p*) < Ex(p)

and equality holds if and only if p* = p a.e. Since p minimizes the functional E; ,
it follows that indeed p* = p a.e. Since, finally, the minimal density is con-
tinuous (by [2]), p* = p. This gives (3.8).
From relation (1.21) and (3.8) we deduce that %, <{ 0 in the open set
Qr = {x; u(x) > 0, 2 > 0}. (3.9)
Hence also
u, < 0in o+, (3.10)
In the open set

- = {x; u(x) <\ 0,z >0}
y(u) = 0 and, by differentiating (1.24) with respect to 2,
#, =0in 2.

Since also u#, << 0 on 02~ (by (3.10) and the fact that u,(r, 0) = 0), the maximum
principle gives: #, < 0in 2~
‘We have thus proved that #, < 0if 2 > 0. Hence

du, = —y'(W)u, >0inz = 0,

where the derivatives are taken in the distribution sense. Applying the strong

maximum principle in the set ¥ > O we obtain assertion (v). Applying the

boundary version of the strong maximum principle we obtain assertion (vi).
From Theorem 3.1 it follows that the set occupied by mass p; has the form

Qi ={(r,2); —4lr) <z <4u(r)} (=12,

where ,(r) = 0; if ;(r) = 0 on a set I, then there is no mass in the strip {r € I,
ze R,

The set where ,(r) > O consists of a countable number of open disjoint
intervals A .
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From Theorem 3.1(v) it readily follows that there are no vertical segments on
the cross sections of the boundary of the fluid, i.e., () is continuous at the points
where it vanishes.

DEerFINITION. The set
Q,, ={r2sred;, —dlr) <z <yr)} (3.11)

is called a ring with base A; .
Note that yi(r) vanishes at the endpoints of A,; except possibly at an endpoint
which coincides with r = 0.

THEOREM 3.2. Let Q, be a ring (for u;) with base A = (a, b). Then :(r) is
analyticin a < r < b.

Proof. By Theorem 3.1,
uiz(r’ ‘/’1(’)) G 0’

and u e C?*8, Now apply the implicit function theorem to deduce that i(r)
belongs to C?8(a, b). To prove analyticity we use the hodograph mapping (as in
[13, 14])

Y = Xy, Yo = %2, ¥ = ur, 2).
Since u;, # 0 we can solve 2 = w(y). Sety’ = (y,, ¥,) and define

¢ =w(y)ify; >0,
"Y', ¥s) = w(y's —s).
Then
‘%‘ =7 ‘/’vs = My, ON Y3 = 0.

Further, ¢ and 9 satisfy, for y, > 0, the nonlinear elliptic system

Fp) = ZLJr)—v(ys) =0+ 200,
Fn) = —ZL]J{r) + v(—s),

where
o= -5 -3 @) G-

We can now use standard elliptic theory to show that the derivatives

Dy, 1
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exist, are continuous, and are bounded by
C,C™(m — 2)! forall m > 1.
Thus 3,  are analytic in y’. Since the free boundary z = y(r) is given by

z = w(¥1,¥2,0),
the analyticity of yi(r) follows.

DeFINITION. A point R > 0 is called a point of accumulation of rings (of u,)
if there exists a sequence of rings .QA”, such that A; — R if ;' — 0, that is,

dist(R, A7) =0  if j'—0.

Tueorem 3.3. If L Ji(R) = 0 then R is not a point of accumulation of rings
of u;.

Proof. Indeed, suppose R is a point of accumulation of rings for, say, . = u; .
Then u(r, 0) oscillates an infinite number of times as 7 tends to R from one side.
It follows that

4(R,0) =0,  u,(R,0)=0. (3.12)

Since also p(u(R, 0)) = (0} =0, u,(R,0) < 0, (1.24) gives L J(R) <0, a
contradiction.

We shall now discuss briefly the behavior of rings near the r-axis. A more
definitive description will be given in Theorems 4.2 and 4.4.

Let £2, be a ring for u (4 = u; or u = u,) with A = (g, b). If

u,(b,0) # 0 (3.13)

then, by the implicit function theorem, we can represent 982, in a neighborhood
of (b, 0) in the form

r=¢(2) (—6 < z < §; 0 small), (3.14)

where ¢ € C**2 and ¢'(0) = 0 (since #,(b, 0) = 0). Clearly %,(b, 0) < 0 so that
there is no mass in some interval b <7 < b 4 ¢, (¢, > 0). By the proof of
Theorem 3.2, ¢(2) is analytic in 2 near 2 = 0.

Suppose next that

u,(b,0) = 0, u,.(b, 0) # 0. (3.15)
Then
v = u4,(b,0) > 0.
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Setting p = —u,,(5, 0) (0 > 0) we can write
2u(r, 2) = v(r — b)? — p2* 4 O(((r — b)? + 22)1H872),
Hence 082, in a neighborhood of (&, 0) is given by
zziﬁﬂr—b%%mwabﬁm) (3.16)

and there is a ring £,- with A" = (b, b,) adjacent to 2, on the right, whose
boundary is also given by (3.16).
Suppose next that

u,(b,0) = 0, u,,(b, 0) = 0. (3.17)
Since also u,,(r, 0) = 0, we have |
2u(r, 3) = —pa® + O(((r — b)* + 2%)+#72).
"Thus £, is contained in a cusp-like region near (b, 0):

2] <Clr—b82  (C > 0). (3.18)

4. FINITE NUMBER OF RINGS FOR u;

In this section we impose additional restrictions on [ and y(x):
J(r)is analyticinr, r 2= 0, (4.1)

y(u) < Cutif 0 <u <1, where C > 0,4 > 1. (4.2)

THEOREM 4.1. Under the additional conditions (4.1), (4.2), the number of
rings for u, is finite.

Proof. If the assertion is not true then there is a number R > 0 which is a
point of accumulation of rings. Setting

d=dx) = ((r—RE+ 22 if x=(r6,z2),
we shall prove by induction that # = u, satisfies
Yux) = Cp d™  (d < dy, Gy, = N*); (4.3)

the constants 8,, , C5  will be determined in the inductive proof, and d,,, N are
positive constants independent of .
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We proceed to describe the passage from m to m 4 1. We have
Au— J) = —yw).
Using (4.3), we can apply Lemma 3.1 of [6] to conclude that
u— ] = Pp+0On, (“4)
where P,, is a polynomial of degree [8,,] + 2 and Q,, satisfies
| Q)] < CCy Brd®*?,  C independent of m. 4.5)
Here B,, is required to be any positive noninteger such that
B — [Br] = ¢, ¢ > 0 independent of m. (4.6)

Since u# and | depend only on 7, 2, the same must be true of P, , i.e., P, =
P, (r, 2). Hence, by (4.4), also Q,, = Q.,.(7, 2).

The function #{r, 0) oscillates an infinite number of times as r — R from one
side. Since also

u(r, 0) = J(r) + Pu(r, 0) -+ Qn(r, 0),

it follows (by (4.5)) that each Taylor coefficient of (r — R)* (with 2 <C [B,,] + 2)
must vanish. Hence

ur,0) = 0nlr,0) + LB Jom),

where £ = [B,,] + 3 and R lies in the interval with endpoints R, 7.
The analyticity of J implies that for all £ >> 1,

)
|]k|(r) <G i |r—R| <d,,

where Cj is a positive constant. Taking N > C, we obtain
u(r,0) < CCy B | T — R |Pn*2, 4.7
Recalling that u,(r, 2) < 0 if # > 0 and using (4.2), we obtain
Hulr, 2)) < (CCy B |7 — RIPEY, (4.8)
Thus the inductive estimate for m - 1 follows with
Copyy = (CC,Bm)’s

Bmis = 4(Bm +2) — 0, 4.9)
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where 8,, € (0, 1) is chosen so that

Bt — [Bm] = ¢

Having established (4.3) for all m with Cy_, B,, satisfying (4.9), we can now apply
a unique continuation argument used in {6, Lemma 4.1] in order to deduce that

wu(r,2) =0 if (r—RPE+ 22 <d,,

where d, is sufficiently small; this contradicts the assumption that R is a point of
accumulation of rings,

THEOREM 4.2. Assume that (4.1), (4.2) hold and let 2, be a ring with base
(a, b) for u, . Then 0S2, is given in a neighborhood of (b, 0) by

2= 4ub— 121 + O(r—b|®)) (5> 0), (4.10)

where v is a positive number and k is a positive integer.

Proof. 'The proof of Theorem 4.1 (with R = b) shows that there exists an m
for which the Taylor expansion of J(r) — P,(r,0) about r = b must have a
nonvanishing first term of order <C[8,,] + 2. But then

u(r,0) = (b — r)e + O(| b — r |*+) 4.11)
for someQ << y < 1, ¢ 5 0, where £ is a positive integer. Writing

u(r, 2) = u(r, 0) + 2%(u.,(r, 0) + O(| 2 ¥))
and noting that
uzz(r’ 0) = uzz(b! 0) + O(I r—b |B)’

we obtain the expansion
u(r,z) =c(b—rY+ O(|b—r ") — uz*(1 4+ O(| 2 |¥) + O(|r — b |#)), (4.12)

where u = —u,,(b, 0) > 0. It follows that ¢ > O and the set {# = 0;r < b}
in a neighborhood of (b, 0) is given by (4.10).

Remark. The expansion (4.12) is valid in an entire neighborhood of (b, 0).
If & is odd then #(r,0) < 0if b << 7 << b + € for some ¢ sufficiently small, so
that there is no mass in the strip & <7 << b + e. If £ is even then u(r,0) > 0
if b < r < b - ¢, so that (b, 0) lies also on the boundary of another ring £2,, with
some base A" = (b, b,).
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We shall now generalize Theorems 4.1, 4.2 to the case of %, .

THEOREM 4.3. Assume that (4.2) holds. Then the number of rings for u, is finite.

Proof. We proceed as in the proof of Theorem 4.1. Assuming (4.3) (for
% = u,), we consider

Au — Jo) = —Aw)

and deduce (by Lemma 3.1 of [6]) the expansion

u—Jp=Pp+0On (4.13)

with P, , O, as in (4.4).
Using (4.3) and relation (1.2), we have

mR) — m(r) = [ [ Ao, ) s

R
<cC f (s, 0)) ds < CCy dPnt.
Writing

Jir) = TR + [ HE s [ Lo (RYom ) — m (R
+3 [ Lmts) — m@y S

and expanding 1/s® in powers of r — R, we find that

[Bml+2
Jr) = Y a(R—r) + O(R —ryr*).

i=0
Substituting this into (4.13) we obtain an expansion

{Bml+2
u(r,0) = Bz] c(R—ry + O((R — r)B "‘+2). (4.14)

i=0

If all the ¢; vanish then we obtain estimate (4.8). If this holds for all m, then
the proof of Theorem 4.1 shows that () = 0 in a neighborhood of (R, 0). But
then R cannot be a point of accumulation of rings. Thus there must exist an
expansion of form (4.14) with some ¢; 5% 0. This again implies that R is not
a point of accumulation of rings.

The above proof shows that expansion (4.14) with some ¢; 7 0 is valid for
some n. Thus:
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THEOREM 4.4. Assume that (4.2) holds. Then the assertion of Theorem 4.2

is valid for any ring 2, for u, .

Remark. 'Theorems 4.2, 4.4 extend to the left endpoint r = a of &2, , even in

case @ = Q.

We conclude this section with an example where the set {u > 0} is not

topologically a ball.

ExamMpLE. Suppose

J(r) = const = J{o0) if r > 2R,
0 Jir) << J{oo)—8 if 0<r <R,
Jr)—8 < Jir) < J(o) if R<<r <2R,

where R >0, 8 > 0.

(4.15)

THEOREM 4.5. If M is sufficiently small then the solution p = p, satisfies

p(r,2) =0 if r <R
Proof. Suppose

M, = x)dx > 0;
0 J;(w)<R p( )

(4.16)

we shall derive a contradiction. Let R* be such that p =0 if r > R*,

Define a new density function g such that
f=p if R<r<R*
and

pdx = M,.

f * *
R <r<R +1

We can distribute § in the set R* < r << R* 4 1 so that

[ LA < i A
Then

E() — E < —8M,
{(3) — Exlp) S fﬂa e

The last term on the right-hand side is bounded by

K = M, sup —‘Q)—dy.

r{x)<R g3 [ x =yl

(%) p(y) dy dx.

4.17)
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Now,
[ py) ey
J | —y| B < fw—xmp(y) @+ ly—zl<1 | X — | 4
1 1/2 1/2
<Mi(f | =rd) (Jroe)

Since p(y) < C, we obtain K < CM,M*72; here C is constant independent of M.
It follows that

E(p) — Ey(p) < —8M, + CM,M'2 <0 if M2 <3$C.

This contradicts the minimality of p.

5. THE INcOMPRESSIBLE CASE: GENERAL PROPERTIES

- We now consider the solution #; of (1.26); 4%, is defined by (1.20), where G,
is defined in Theorems 1.3, 1.4. We assume that conditions (3.1), (3.2) are
satisfied. Let R, be a positive number such that G, C {(r, 1): 0 <r < R; — 1}.

TueoreM 5.1.  The solution @; (i = 1, 2) satisfies the following properties:
(1) da; e L=(R?), so that 4; € W»?(R®) for any p < 00;
(i) @, does not depend on 0, i.e., i(x) = d(r, 3);
(iil) dr, —2) = 47, 2);
(iv) 4;(r,0) =0, %,(0,2) =0(r =0,z = 0);

(v) forany 8, > 0, dy(r, 2) < —Czif 0 <7 < R, 0 < » < &, where
C = C(5,) > 0. .

Proof. 'The proof of (i)-(iv) is similar to the proof of (i)—(iv) in Theorem 3.1.
Next, with u = 4,
7

du, = — 2-Josg > 0

in the distribution sense. Hence, by the strong maximum principle (see [18]),
u, < 0if 2 < 0. Since also #,(r, 0) = 0, u, takes its maximum in the set where
z2>00nz2=0.

Comparing », with a suitable barrier-type function which vanishes on x = 0
we find that, for some §; > 0, u, < —Czif 0 <r < R, 0 < 2 < §), where
C is a sufficiently small positive constant.

From Theorem 5.1 it follows that the set .Ql- , where @, > 0, is given by

—Jir) < z < fr);
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the function if; is > 0. We next define the concept of a ring as in Section 3.
Note that in the open sets {# > 0}, {# < 0}, # belongs to C>+&,

THEOREM 5.2. Let 9, be a ring (for i;) with base A = (a, b). Then i(r) is
analytic in a <r < b.

Proof. The proof is similar to the proof of Theorem 3.2. The only difference
is that now we begin with # in C'** (for any 0 << « < 1) instead of u in C+#,
Hence we write for ¢, 7 a system of elliptic equations in divergence weak form,
namely,

G) = (LJr) — Hs) s
G(n) = (L Jdr) — A—¥s)) ns>

where
: L+ 22
6e) = 3 [+ (=75 )

By the Schauder estimates for such equations (C't* estimates) we can deduce
(working with finite differences) that i, n belong to C*# up to y; = 0. We can
now proceed as in the proof of Theorem 3.2.

The function ,(r) is readily seen to be continuous at the points 7 = a,7 = b.

THEOREM 5.3. If £]J(r) = 1 for all r in some neighborhood of R, then R is
not a point of accumulation of rings of ;.

Proof. Otherwise there is a sequence of points7,, — Rsuch that #(r, , 0) >0,
(7 s 0, gp(rn , 0) < 0. Since also #,,,(r, , 0) < 0, we conclude from (1.25)
that & J(r,) < 1. Taking n — oo we get a contradiction.

6. FINITE NUMBER OF RINGS FOR i,
In this section we shall prove the following result.

TueoreM 6.1. If ZLJ(R) = 0 for some R = 0, then R is not a point of
accumulation of rings for i .

Denote by B,(r,, 2,) the disk with center (ry, z,) and radius p, and set
B.(ry) = B.(r,,0).

LeMMA 6.2. For any ¢, > O there exist positive constants y, , y, , C such that
Jor any disk B (ry , z,) with p < ¢,

urg s 3) = X@ fL u(z, r) dr dz

p(To» 2o}

— f f Gy(r, 2, 14, 20) Lulr, ) dr dz, (6.1)
Bplrg.zo)
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where v (1o, %), G(r, 2,74, %) are functions satisfying

< ¥t 20) < 72»

6.2
(r =1l + (2 — %) ©2
p* ’

0 < Gr,2,7,a9y) < C|log

Proof. Introduce coordinates

r—r 2 —3
£ = ao’ "7=—‘;l‘—0‘ O <a<r—¢)

and set 4(£, 1) = u(r, 2). Then

. O a0q 0% 2
..? ggg—f—raf—l— = a’%u.

I

Denote by G,(£, n) the Green’s function for £ in the unit disk with pole at
(0, 0). Then

#0,0) = — f f o Ge " dSg, — f f Gol(é, m) Pii d¢ dy. (6.3)

£24nt=1 0t

By the construction of G, ,
1
Gué,n) = — ™ log(€2 + )12 + I'u(€, 1), (6.4)

where I', is bounded (independently of 4) and varies continuously with a. We
also have (for instance, by the maximum principle)

oG,
4 - <é  (4>06>0), (6.5)
&n
where 4, , &, are independent of a.
We can write (6.3) in the form
7 r—r 2 — 3
u(rO’zO)__ uav Ga( aO » a O)dSrz

(r—7)%+(2—2,)=a?

)

(r—rg) +(2—2,)2<a?

G, ( r —a o 3 —a 3 ) Pu(r, z)dr dz. (6.6)

Using (6.5) we find that

7 G(r—ro z—zo):dia(r,z)

b
ov,, a a
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where
o K< Pr,2) < ¢, (¢, > 0,¢; > 0). (6.7)

Integrating both sides of (6.6) with respect to a, 0 <C @ < p, and using (6.7) and
(6.4), the assertion of the lemma follows.
We set

u=1dy, $(r) =)
and denote by £2, a ring for %, with base A, that is, if A = (a, b),
Oy =A{(r, 2); —(r) <z <(r),a <7 < b}
and (r) > 0if a < r < b, Y(a) = (b) = 0. The number
hy = max (r)

is called the height of £2, . We denote by | A | the length of A and by | £, | the
area of Q, .
We shall denote by C, ¢ generic positive constants independent of A.

LemMa 6.3. For any ring Q,
B < CIA, (6.8)
|2 < CIAPR (6.9)
Proof. Suppose b, = )(F), 7€ A. Then

o)

—u(7, 0) = u(7, h) — u(F, 0) = f u,(F, 2) dz

0
ha

g—Cf zdz = ——(2;—11,\2

0
since u, <{ —C=. Thus
he < % u(F, 0). (6.10)

On X we have
Loud = —— 14 2] >~ (> 0)
since u,, < 0. Also u(a, 0) = u(b, 0) = 0. The function

w(r) = —%(r——a)z—i—%(b—a)z
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satisfies

_dr—a)

" —c if a<r<b,

1
; (rw‘r)r = —C

and w(b) = 0, w(a) > 0. Comparing it with #(r, 0), r €A, we conclude that
w(r) = u(r, 0); in particular,

u(7, 0) < w(7, 0) <%(b——a)2 =%|,\12.

Substituting this into (6.10), we obtain inequality (6.8). Assertion (6.9) follows
immediately from (6.8).

Lemma 6.4. For any ring 2, ,
ulr,2) < CX¥  if (r,2)ef,, z2=0. (6.11)

Proof. Indeed, if r € A,

{r) G(r)
—u(r, 0) = f ur, 2)dz < —C f z dz.
1] 0
C 2,
< — 5 ¥(r)

and Y(r) < C| |, by (68).
In Lemmas 6.3, 6.4 we have not made use of the condition & J(R) > 0.
In the next lemma we shall use this condition.

LemMma 6.5. Suppose L J(R) = 0 and let 2, be a ring with dist(R, A} << 8.
If 8 is sufficiently small then

|2, =c|A]P (¢ >0). (6.12)
Proof. We suppose that
| <elAP (6.13)

where ¢ is sufficiently small, and proceed to derive a contradiction. Let r, be the
midpoint of A and let

§, = frexun > 121,

Sy = XS, .
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Then

sk < [umar <<

where | S; | denotes the measure of S, , i.e.,

[ Sy < 8e|Al. (6.14)
If r € S, then y(r) < | A |/8 and, therefore,
z z C
ur,z) = [ wn dl < — [ CLdl— —= (22 = ()

@(r) W{r)

N (6.15)
< —ClAE  if |—2—|<z< [AL

Since | S| > | A| (1 — 8e), if € is sufficiently small then we conclude that
- [ Al
< — 4 yp =5 .
ku ci e (e>0,p =15 (6.16)
On the other hand, by (6.11), (6.13) we have

H ut < Ce| A8 (6.17)
Bplry)
Applying Lemma 6.2 with 2, = 0 and using (6.16), (6.17), we obtain

ulry , 0) < —cmz._”B G,%Lu  (c>0),

where B, == B,(r,), provided e is sufficiently small. Since u(r,.,0) > 0, it
follows that

f G,%u < —c| A2 (6.18)
BD

Now
Pu=—-14+%F]=—-CinB,NnQ,,

= %] = —nin B\2,,
where 5 — 0 if § — 0. Using (6.2) we conclude that

— pr G, Lu < CJ'L,,nQ,\ log _—__(r _| 30; = dr dz

A2
+n”3010g(7:,—,0)12—ﬁd'dzz Jit Je-
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J1 is increased if we replace B, N £2, by a disk B’ with center (r, , 0) and radius
p’ = ¢ | A| €1/2 having the same area as B, N 2, . Introducing in this disk polar

coordinates (R, §), where
r —ry = R cos 9, 2 =R'sind

and then substituting ¢ = R’/| A, we find that

2el/2

L;gC|AFL tllogt|dt < C|X[2eA,

Similarly we find that
Je < ClA M.
Hence

ff<gzm;p—aaﬂ+nnAm
By

thus contradicting (6.18) if 8 and ¢ are sufficiently small.
Set

2=,
A

and suppose:

R > 0; R is a point of accumulation of rings.

(6.19)

(6.20)

For definiteness we assume that a sequence of rings which accumulate at R

lies to the right of the liner = R.

Lemma 6.6.  Assume that & J(R) > O and that (6.20) holds. Then the density

of 2 N {r > R} at (R, 0) cannot be equal to zero, that is,
. 1 R+o
lim sup — f Y(r)dr > 0.
00 PT YR
Proof. Suppose (6.21) is not true, that is,
R+o
[ errdr=o)  as plo0.

We shall derive a contradiction.
Choose p small, and such that

w(R + p,0) <O

580/35/1-10

(6.21)

(6.22)

(6.23)
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and consider the sets
Si={re®R+p)dr) = apl  So— (R R+ p\S;
for any small ¢, > 0. Then the measure | S; | of S, satisfies
cp | 511 = o(p?). (6.24)
For any r € S, , §(r) << op and consequently (since u, < —C%)
u(r, 2) < —Cp? if ep <z <y,

where ¢, , ¢, are any positive numbers; ¢, is taken so that ¢, <C ¢;/2. Since,

by (6.24),
| Sp | = p — ofp) (p — 0),

we deduce that, for some ¢ > 0,

f fap,sm w- < —cpt forany re (R +E R+ %} (6.25)

Condition (6.23) implies that if R <7 << R+ p and (r,0) € 2, then A C
(R, R + p). Hence, by Lemma 6.4,

u(r, 0) < Cp? if R<r<R+op.

Using also (6.22) we obtain

Il

D/s(T)

< Cp? f:“ $r) dr = O(pY). (6.26)

Next, arguing as in the proof of Lemma 6.5 (cf. the proof of (6.19)) we obtain
the estimate

— ffB G, s Lu < o(p?). (6.27)

os8(0)

Using Lemma 6.2 and (6.25)-(6.27) we conclude that

Wr,0) <0 if R+%<r<R+—23f. (6.28)
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Now, the function u(r, 0) cannot be negative for all R <r << R+ p/3.
Hence there exists a number 7, such that

R<r1<R+§, u(ry,0) =0, u(r,0) <0 ifr1<r<R+§.

Set p, = r; — R and apply result (6.28) with p replaced by 2p, (noting that
w(R + 2p,;,0) < 0). It follows that u(r;,0) <0, a contradiction. Thus
assumption (6.22) is false, and the proof of the lemma 1s complete.

LemMa 6.7. Assume that £ J(R) > 0 and (6.20) holds. Then there exist a

sequence of rings 2, with base A, = (R + a, , R + b,) and a positive constant ¢
such that a, | 0ifn t oo and

[ A | > cay, .

Proof. Otherwise, for any ¢ > 0 and for any ring 2, with A = (R + g,
'R+ 5),5 < 8 (8 = 3(c)) we have

lA] < ea.
By Lemma 6.3,

Y(r) < CiA] < Cea < Cer (red)

and thus
R+tp C B _
[ e <geat i p<p (p =)

This contradicts assertion (6.21) of Lemma 6.6.

LEMMA 6.8. Let the assumptions of Lemma 6.7 hold. Set p, = | A, |/4 and
denote by r,, the midpoint of A, . Then

uz>= —C|A, |2in B, (r,). (6.29)
Proof. Clearly, for 7/, r near R,
Lu+Cr —rP =0 (as a function of 7)

if C is large. Hence, by Lemma 6.2 (recalling that G, > 0),

. 2 (,'_1 ’ I c_z 2
e+ % | L,,<,f,z'> u<ur,®) <% [ fang»” + Gt (630)
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where ¢, , c, are positive constants. We now suppose that
wr, 7)) < =24 | A, 7 where ((F — r,)> + &)0/2% <p,, (6.31)

and derive a contradiction if 4 is sufficiently large.
By (6.30)

Y AL P4
. f L ot S AN A s large. (6.32)

Also, again by (6.30),

C
0<ur,0) < [ f oot COp) (6.33)
n 20, ns

Using the estimate # << C | A, [*in By, (7, , 0) and (6.32), we obtain

¢ A
2 < — )\, 2
(2pn) ffsz"(r,,.o) 2 [l

if A is sufficiently large. Substituting this into (6.33), we conclude that 0 <
u(r, ,0) < 0, a contradiction.

Lemma 6.9. If ZLJ(R) = O then (6.20) cannot hold.

Proof. We suppose that (6.20) is satisfied and derive a contradiction. From
Lemmas 6.4, 6.8 we obtain

lu] < CIA Pin B, (r,)  (pn = [ A0 |/4)- (6.34)
For any }p, <t < p,, set
By=Bfr), M, ={(na) e <(r—r)t+ 2 <)
for some small &, (so that r >> const > 0 if (7, 2) € M,).

Denote by I'(r, 2) the fundamental solution of the adjoint #* of & with
pole at(r,,, 0). Then

1 1
I'™(r, z) = Ogm—*-N (p=1lr—ral)

where N* is a bounded function, and D*N* is bounded by

o )

Do (log ml—gz—)ﬁ)
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By standard potential theory, since % ] is Hélder continuous,

| [[ par-2f|<c, (6.35)
M,
where C is independent of #, ¢. Note also that
LHY, = (£*TM),, = 0.
Integrating Green’s identity

. 2 (0
Pu- Tl —uPIh = £ (G5 Th —ue Th+ 2 T2)

o (0u ., 0
+5g(6;’"zz““a—zfu)

over M, , we obtain
_ f f Pu- L N [ m— m X r;; cos(r, v)] +0(1), (6.36)

where v is the outward normal to éB, .
We shall now integrate with respect to ¢, 1p, < ¢t < p,, . First

28 t=op
fn/z 2B, %F:z - UaBt uF;‘z] N fp

[ owrm,, 6.37
o, t=py/2 onl 2 LB, zz ( )
Since

| D™ | < CJ¥ on 8B,

and since, by (6.34), u = O(¢?) on 9B;, we find that the right-hand side of
(6.37) is bounded by Cp,, . Since also

’ LBt F i + I, cos(r, v)] < C,

we obtain from (6.36),

J. dt ,?u I}, is bounded.

Recalling (6.35), we conclude that

J. /2 at ff ,n(u>o)

<cC. (6.38)
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Since
1

P4
IMr, ) = ﬁm(l

+0(1), p=lr—r,},
we find that

R+8, l[l(r) ,
f (G s e

for any n; hence

ST O N
L TRE Y < (6.39)

We proceed to derive a contradiction. Let
S;:{rEAn’¢(T)>A\’\nI}r | Sn | = meas S,
where A is sufficiently large. Then

1S;|A1AH|<L¢(r>dr=1s2a,,|<em12

by Lemma 6.3. Hence

Sl <IN (6:40)
Let
S, ={red;$(r) > €| A1} | Sn | = meas S}, ,
where ¢, is positive and sufficiently small. By Lemmas 6.5 and 6.3,
1A [ ) dr S ISLIC M+ ol da
Consequently, if ¢, is sufficiently small,
ISal=clXl, >0 (6.41)

From (6.40), (6.41) it follows that the inequality
€l A | SH(r) < A1Aa |

holds on a subset S, of A, with measure | S, | > 0], [ 6 > 0. We also have,
by Lemma 6.7:

ifreS,thenr — R < C|A,].
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On the set S, ,

9) ¢
TR0 ~ A

Since meas S,, = @ | A, |, it follows that the integral in (6.39) diverges to co; a
contradiction.

Lemma 6.9 establishes Theorem 6.1 in case R > 0. It remains to prove the
corresponding result for R = 0. Thus we suppose that

(c > 0).

R = 0 is a point of accumulation of rings, (6.42)

and proceed to derive a contradiction.
We shall need the analog of Lemma 6.2 for the Laplace operator in R3 (see [5]),

1 N
u0) = 157 j f LRu - j j | 4u-Ga (for any R > 0), (6.43)
where Bjp is the ball 72 4 22 << R?,

1 /1 1 Y
Gr=;(,— &)~ T ®—p) (forsomey>0)

and p = (r + 2%)'/2 Take a point R such that #(R, 0) <C 0. Then, by Lemmas
6.3, 6.4,

Yr)< CR if 0<7 <R, (6.44)
ur,2) <CR? if 0<r <R (6.45)

We claim that there exist positive constants ¢, , & independent of R such that
the set of 7 € (0, R) for which §(r) = ¢ R has measure > 6R.  (6.46)

Indeed, otherwise we can use (6.44), (6.45) and the inequality v, << —Cz to

deduce that

R e—
also, if £ J(0) > 0 and if (6.46) is not true,

— J.J‘ BRAu - Gp < eR2

with € — 0 if R — 0. Using these inequalities in (6.43), we obtain #(0) < 0,
which contradicts (6.42).
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With (6.44)-(6.46) at hand, we can use the argument of singular integrals

with I, , where
1

G

is the fundamental solution of the Laplace operator in R%. We now integrate
Green’s identity for «, I',, in a shell # << p < R and then further integrate with
respect to ¢,

R]2 <t <R,
where R’ is chosen so that #(R’, 0) < 0. Using the inequality
< CR?

on the inner boundary of the shell and proceeding as in the proof of Lemma 6.9,
we arrive at the conclusion (after choosing R’ | 0) that

)
f T & < C (6.47)

Now, assumption (6.42) implies that there exists a sequence of R, such that
R, | 0 and #(R,, 0) < 0. Since (6.44)6.46) hold for all R, (with the same C,
o, 0), we have

R
oy oy WRa
In= [, gy & > (7) B oo = >0

This, however, is impossible, since (6.47) implies that I — 0 if R — 0.

The function Z J(r) cannot be nonnegative for all r 2> 0 since J(o0) must be
finite. However, if one is looking for a local minimum of E(p), the condition
J(o0) << 00 is not a necessary condition for existence; then the condition
ZLJ(r) = 0 for all » >0 may be satisfied. An important special case is that where
the angular velocity £(r) is a small positive constant w. In this case J(r) = r%w/2
and &£ J(r) = 3w > 0.

THEOREM 6.10. *If po(r, 2) is a local minimum for E,(p) and py(r, ) is monotone
decreasing in 2, and if LJ(r) = 0 for allr > 0, then the number of rings is finite.

Indeed, the proof is the same as for Theorem 6.1.
Poincare [23; pp. 17-25] has constructed for the case £(r) = w examples of a
local minimum with any given finite number of rings. His proof is somewhat

formal.

Remark. Theorem 6.1 extends also to 5, , i.e., if one a priori knows that
ZLJ(R) > 0 then R is not a point of accumulation of rings. Unfortunatly,
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one cannot give a simple sufficient condition which ensures that &£ J,(R) > 0
for a given R (unless one already has some information on 5,). If r, = inf{s;
Pa(s) = 0}, then one can easily compute that 2 [,(r) = 0. Thus, the inner core
(i.e., 7 = r,) is never a point of accumulation of rings.

7. INcOMPRESSIBLE FLUID wWiTH GIVEN POSITIVE VORTICITY
The methods of this paper apply to more general equations
Au + y(u,r) = f(r),

where A is an elliptic operator in R® and y(u, ) is monotone increasing in «,
with possible discontinuity at # = 0. An important example arises in the case of
incompressible axisymmetric fluid without gravity, when the vorticity curl q
(q the velocity) has positive magnitude in the fluid and vanishes outside the fluid.

Existence theorems have been established by Fraenkel and Berger [10], and
construction of specific solutions was carried out by Hill [12], Fraenkel [8, 9],
and Norbury [20, 21].

As shown by Fraenkel and Berger [10], one formulation of the minimization
problem leads to the equation

Lu + Mf(u) = 0, .1
where u = u(r, 2), A > 0,
f@® =0 if ¢+<0,

=0 if >0,

and f(t) may be discontinuous at ¢t = 0. In the liquid # > 0, and outside the
liquid # << 0. The function u(r, 2) satisfies

u,(r, 2) < 0if 2 > 0, u(r, —2) = u(r, 2).

In this problem rings are usually called vortex rings. It is proved in [10] that if
J(¢t) is Lipschitz continuous at ¢ = 0 then the number of vortex rings is finite.
We shall now eliminate this assumption on f:

THEOREM 7.1.  The number of vortex rings is finite.

Proof. If f(#) is continuous at £ = 0 then the proof is the same as in Theorem
3.3. I f(2) is discontinuous at ¢ = Q then the proof of Theorem 3.3 shows that
R = 0 is not a point of accumulation of vortex rings (since 7*)f — 0 if r — 0).
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Finally, if f(t) is discontinuous then the proof of Theorem 6.1 shows that R > 0
is not a point of accumulation of vortex rings.

8. THE REGULARITY OF THE BOUNDARY NEAR 2 = (

We return to the setting of Sections 5 and 6, and discuss the regularity of the
boundary of a ring £, (A = (4, b)) in the incompressible case, near z = 0.

Consider such a ring for #, and suppose (b, 0) is not a boundary point of
another ring. Then, for a disk B,(b) with center (4, 0) and radius p sufficiently
small we have

Ly = £ Jin B,(b)\2,,
u, < 0in B,(b)\2,,
and #; = 0in 022, . Assume that
ZLJ] = 0in B(b)\2, . (8.1)
Then the maximum principle gives

(b, 0) # 0.

Hence, by the implicit function theorem, €2, can be represented in a neighbor-
hood of (b, 0) in the form :

r = p(2), p € C1* for any o << 1. (8.2)
The same considerations cannot be applied to a ring 2, for 4, , since
ZJ, <0in B,(b)\2,,

as seen immediately from (3.3).
Consider next the situation of two rings £, and .Q,\O with a common boundary
point (R, 0), i.e., A = (a4, R) and A, = (R, by), where g, << R < b,. We shall
. show that
082, and 082, cannot both be smooth (say C%*) in a

neighborhood of (R, 0). (8.3)

Proof. Any small disk B, (R) with center (R, 0) and radius 7, is divided by
082y, 092, into four regions G;(1 <j < 4).InG;,

gﬁz = flJ ’ ﬁj Smooth,
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and % = 0 on the two arcs of dG; which meet at (R, 0). Since %; € C*# for any
0 < B < 1, the angle formed by these two arcs must be <C /2. This is true for
each G;; therefore each of these angles must actually be equal to /2. But then
#; is in C'* in each G;, and hence also in C*(B, (R)). Setu = #; .

Suppose for simplicity that 2, forms an angle 7/4 with the positive r-axis.
Let I" denote the fundamental solution of with singularity at (R, 0). We apply
Green’s formula in B, (R)\B(R) with the functions # and I',,. Noting that
u = 0, Vu = 0 at (R, 0) we have that

u(r, 2) = O((r — R)* 4 2%).

Hence, taking ¢ — 0 we deduce (cf. proof of Lemma 6.9) that

f %u-T,, is bounded for 0 < p < &, (8.4)
G,(R) 2
where G,(R) = B, (R)\B,(R).

Note next that

(G e

I'(r,2) =
and that the right-hand side is positive if | | < [» — R | and negative if | z | >
|r — R|. Also, u = —1 + f (f = £];) in “approximately’’ the region where
|z} <|r—Rj, and u = f in “approximately’’ the region where |z | >
|  — R |. Putting these facts together, one easily derives a contradiction to (8.4).
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