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A gauge field is given by a connection on a principal bundle P + M. We consider 
the semiclassical behavior of a family of Schrijdinger operators associated with a 
gauge field, in the limit as ti --+ 0. We relate the spectral theory of such operators to 
behavior of the Hamiltonian flow on the natural phase space associated to a gauge 
held, examining in particular situations where this flow exhibits chaotic behavior. 
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0. INTRODUCTION 

In this paper we refine our study [24] of the spectral behavior in the 
limit as ti + 0 of (nonrelativistic) SchrGdinger operators associated with 
external gauge fields. We then exploit our asymptotic analysis in several 
ways, obtaining in particular information on the spectral theory of 
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Schrodinger operators in cases where the corresponding classical dynamics 
exhibit chaotic behavior. 

We introduce here the concepts we will be working with. A gauge field 
on a manifold M is given by a principal G-bundle P + M together with a 
connection on P. We will suppose G and M are compact, and that M is 
endowed with a Riemannian metric, and G with a bi-invariant Riemannian 
metric. Then a connection on P corresponds to a G-invariant metric on P; 
the horizontal space at p E P coincides with the orthogonal complement 
with respect to such a metric of the tangent space to the fiber through p, 
which is a G-orbit. 

If G has a representation 7~~. on a vector space I’,,, there is an associated 
vector bundle El + M, and we have a natural isomorphism 

C”(M, E,)z {uEC”(P, V,):u(p.g)=n,(g)-’ u(p)} (0.1) 

of the space of smooth sections of E, with a certain subspace of smooth 
functions on P with values in I’,; we write the action of G on P as a right 
action. There is an associated covariant derivative operator 

Vj.: Cm(M, E,) ~ C”(M, T* 0 E,), (0.2) 

where T* = T*A4. There is also associated a natural connection on 
T* 0 El, and we have 

V,: C”(M, T* @ E,) + C”(M, T* @ T* @ E,). (O-3) 

The Riemannian metric produces a bundle map of T* @ T* to the trivial 
bundle of scalars; call this map y. Then we have a composed operator 

H;= -~oV~QV,: C*(M, E,)+C”(M, E,), (0.4) 

a nonnegative second order elliptic differential operator on sections of El. 
On the space C”(P) there is the ordinary Laplace-Beltrami operator d, 

which also acts componentwise on Cm(P, V,). If we regard Cm(M, E,) as a 
linear subspace of Cm(P, VJ, via (O.l), then as in [4,39] we will use the 
identity 

A= -H;+A; on C”(M EJ, (0.5) 

where AC is the operator on Y(P) produced from the Laplace operator 
A, on G via the G-action on P, also acting components on C”(P, V,). 

If we consider a particle whose mass is normalized to be f, the operator 
HI: gives the quantum mechanical Hamiltonian for motion in the gauge 
field considered above, when Plan&s constant ti = 1. If there is in addition 
a scalar potential V defined on M, the Schriidinger operator is H’j + V. In 
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local coordinates, and given a local frame field for El, this operator has the 
form 

gjk(iaj+ ~,)(ia, + ~,)+@a,+ v. (0.6) 

We now incorporate Planck’s constant as a parameter. For the case of a 
scalar field, one has 

H, = -fi*d + I’. (0.7) 

In the case of an abelian gauge field on flat Euclidean space, associated, for 
example, to a magnetic field, one considers the Schrodinger operators 

v(ihaj+ Aj)(ihak + A~) + v. (0.8) 

However, such a prescription, written in this form, would not make sense 
in the general case, due to the transformation properties of the connection 
coefficients. 

The following prescription makes invariant sense, and coincides with 
(0.8) in the case of abelian fields on flat Euclidean space. Suppose that, for 
fi = 1, we have the quantum Hamiltonian 

H,=H’j,+ I’, (0.9) 

with I, a given highest weight for an irreducible representation of G. Then 
we will vary the representation with fi, replacing I, by nA,, subject to the 
relation fi - l/n, and take 

H, = fi*H;,, + I’. (0.10) 

For (0.10) to coincide with (0.9) when n = 1, we would take #i = l/n, but the 
formulas which arise take a neater form if we relate fi and n by 

h= Id, +61-l, (0.11) 

where 6 is half the sum of the positive roots of the Lie algebra of G. What 
is behind this is the fact that, for an irreducible representation zA of G with 
highest weight A, which belongs to a lattice in t*, the dual space of the Lie 
algebra of a maximal torus of G, there is the formula 

-?rj@,)= 11+612- Icy*. (0.12) 

Then (0.11) is equivalent to 

k2 = -n,,,(d,) + 1612. (0.13) 

Our first major goal is the following. Let CE Y(R), i.e., rr is a smooth 
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function on R which is rapidly decreasing, together with all its derivatives. 
We want to analyze the asymptotic behavior of 

tr 4K,) as fi + 0. 

More generally, we want to analyze the behavior of 

(0.14) 

trII4fi) 4Hh)l, h -, 0, (0.15) 

for a sufficiently rich class of families of observables A(h), described in 
more detail in the body of the paper. 

Our attack on (0.14)-(0.15) will use a functional calculus based on the 
fundamental solution to the wave equation. We sketch here the basic 
approach to g( -fi’A), which does not possess complications inherent in 
the analyses of a( -fi’A+ V), or of a(H,) with H, given by (0.10). Set 
p(r) = a(~‘), so p is an even function in Y(R). Set p,(r) = p(fir). We use the 
formula 

p,(G) = (27~)~“’ Ia p,,,(t) cos t ,,6dt. (0.16) 
-03 

Note that 

P*f~)=ww~), (0.17) 

which decreases rapidly outside any fixed neighborhood of the origin as 
r’i + 0, if p E 9’(R). It follows that we need only analyze cos t t/-d for 1 tj 
small. In view of the finite propagation speed for the solution operator 
cos t -J-d to the hyperbolic equation (a2/at2 - A)u = 0, we can easily 
localize the analysis of (0.16) to coordinate neighborhoods. In any given 
coordinate neighborhood on A4, we can write cos t fi as a sum of 
Fourier integral operators 

(0.18) 

Here the phase functions ‘p* satisfy certain eikonal equations, 

aq * iat = +A l(~, d9 * 1, (0.19) 

where A,(x, 5) is the principal symbol of fi, and we can take 

cp+(O,x, 0=x-t. (0.20) 

The amplitudes a,(& x, <) satisfy certain transport equations, and we can 
take 

a.64 x, r,=+. (0.21) 
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Substituting (0.18) into (0.16), we can write 

p,(&)u=C j p,(D,)(a,e”Pi)l,=,zi(~)d5. 
f 

(0.22) 

Now the stationary phase method allows for a precise analysis of 

Ph(D,)(a.ei’P~)l,=,=b,(h,x, t)e’“‘r, (0.23) 

and this leads to a line analysis of 

(0.24) 

This approach to spectral theory was used in [30, Chap. XII]. There a 
study was also made of q(G) when q(1) is a fixed function, not of rapid 
decrease but rather with symbolic behavior. Parallel to (0.22t(0.24), one 
has, for q(1) even, 

= s p(x, () e”.‘%(() d<, (0.25) 

where p(x, <) is a symbol whose asymptotic expansion is obtained by the 
stationary phase method. In particular its leading term is 

Pok 5) = d-4 *(xv 5)). (0.26) 

To treat p(dm), one could write 

p( JPzT, = p4( JTmv), l=A-‘. (0.27) 

This could be analyzed in a fashion parallel to 0.16)-(0.24), given a con- 
struction of a parametrix for cos C d -A + 1 V which is increasingly 
accurate as A+ co. We do this in Section 1. This works easily once V is 
adjusted to be positive. Then a construction of such a parametrix is essen- 
tially equivalent to the construction of a parametrix for 

cos t J-0 on Mx S’. (0.28) 

In fact, the analysis of the family of operators p(,,/m) can be 
obtained by the analysis of the single operator on functions on A4 x S’, 
with De = (l/i) do, 

p(D,’ ,,/m) = p&/no, D,), (0.29) 
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where p,(/.~, v) = p(&) is a symbol of order 0 in the two variables (p, v); 
since the operators Do and ,/mO commute, the analysis 
(0.25~(0.26) generalizes in a straightforward fashion to provide an analysis 
of (0.29) as a pseudodifferential operator. The idea of analyzing the spec- 
trum of - fi2A + I/ in terms of the joint spectrum of -A - I’&$ and Do was 
used by Cohn de Verdiere [9]. 

A similar technique, in a more elaborate form, is effective in the study of 
a(H,) when H, is given by (O.lO), in terms of a gauge field. We consider the 
following operators on C”(P), where P is the principal G-bundle over M 
discussed above: 

L=A+ VI(x) A,p-[1612 V(x), (0.30) 

A = -A; + 1612. (0.31) 

Here, A is the Laplace operator on P and A; is the operator derived from 
the Laplace operator A, on G by the G-action on P, as in (0.5). We sup- 
pose Y(x) > 1, which can be arranged by a trivial shift, and set Y,(x) = 
V(x) - 1. Then a( -A -‘L) can be analyzed as a pseudodifferential operator 
on P: 

o( -A - ‘L) E OPSO( P). (0.32) 

We note that c( -A -IL) commutes with the natural G-action on Cm(P). 
The relation of (0.32) with a(H,), acting on Cm(M, E,), 1=nl,, is 
described as follows. Denote by gA the subspace of Cm(P) on which G acts 
as a sum of copies of 7~~. Then, as in [39], we use the isomorphism 

iSA zz sum of di copies of C”(M, E,), (0.33) 

where dj. is the dimension of the representation space Vn of x1, and 

o( -A ~ ‘15) 1 Bi z sum of dA copies of a( Hh). (0.34) 

In order to analyze the left side of (0.34), we make use of the following 
construction. If B is an operator on Cm(P) with smooth integral kernel, 

WP) = j HIA 4) u(q)dvoUq)> 
P 

(0.35) 

we define Tr, B to be an operator on Cm(G), namely convolution by 

K(g) = j 0 .g, p)d Wp). (0.36) 
P 

If B commutes with the G-action, then rc is a central function, so Tr, B is a 
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bi-invariant operator on C”(G). The transformation Tr, can be defined on 
a certain class of pseudodifferential operators, and, as we will show in 
Section 4, 

Tr, o( -A ~ ‘L) E OPS”‘(G), (0.37) 

where m = dim M. Given the bi-invariance of (0.37), it can be shown that 

where p(A) is a symbol of order m in A it*. The principal term in the 
asymptotic expansion of P(n) is simply the restriction of the principal 
symbol of Tr, (T(--A-~L) to t*, regarded as a subspace of T,*G = g*. 
From (0.34) we have 

d,: * tr c(Hh) = fl(n + S), (0.39) 

and hence as PI = 12 + 61-’ + 0 this has a complete asymptotic expansion, 
with a simple explicit formula for its leading term. Further elaboration of 
this attack allows for an asymptotic analysis of (0.15), for certain families 
of pseudodifferential operators A(A), described in Section 2 and 3. 

As described above, the study of the family of Schriidinger operators H, 
associated with a gauge field is closely tied to the study of operators on 
Coo(P) commuting with the G-action. The symbol of a pseudodifferential 
operator on P is a function on T*P, the cotangent bundle. If one restricts 
attention to operators commuting with the G-action, the symbols are 
naturally defined on a vector bundle over T*M, whose fibers are linearly 
isomorphic to g*. Such a bundle, which we will call the WGS bundle, has a 
natural Poisson structure; it is foliated by symplectic manifolds, each of 
which is a fiber bundle over T*M with fibers which are diffeomorphic to 
co-adjoint orbits of G. The “classical dynamics” defined by the gauge fields 
under consideration are defined by flows on such spaces. We will give a 
more detailed description of thse bundles and flows, introduced in 
[34, 27, 111, in Section 5. 

We utilize the asymptotic expansions of (0.14k(O.15) to obtain two 
different types of qualitative information on semiclassical limits. First 
we show how families of “smoothed out Chern forms” arise from a family 
of SchrGdinger operators (O.lO), with a smoothly parametrized family of 
gauge fields and potentials. Phenomena arising here are related to studies 
of Berry’s phase [S, 7,261, and Hannay’s angle [13]. 

We also use the asymptotic behavior of (0.15) to obtain results on eigen- 
functions of H, in cases when the classical dynamics exhibit aspects of 
chaotic behavior, e.g., ergodicity. Such results were established for the 
Laplace operator on a compact manifold, with ergodic geodesic flow, in 
[lo], and for Schrgdinger operators with scalar potentials, in [ 143. 
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Ergodic flows on constant energy surfaces are not so easy to come by, and 
we give a result which is valid in nonergodic cases, as we will illustrate with 
some examples, in Section 8. 

The complete asymptotic expansions of (0.14)-(0.15), given by 
(6.18~(6.19) and (9.7)-(9.10), generalize the complete asymptotic expan- 
sions of tr e--BHh as h + 0, for fixed /? > 0, given in [24], which in turn 
relined the analysis of the leading behavior in [42]. We also mention 
related work of Guillemin and Uribe [ 12, 391 on the spectral behavior of 
Schriidinger operators in gauge fields. The paper [39] considers H, + V as 
J. = nil, + co rather than (O.lO), a family of operators whose behavior is dif- 
ferent in detail from the families considered here; nonetheless the WGS 
bundle arises in [39] to describe spectral behavior. In the paper [39] par- 
ticular attention is paid to the case when all the geodesics on the principal 
bundle P are closed, with the same period, and delicate results on cluster- 
ing of eigenvalues are derived. The paper [ 121 looks at the family (O.lO), in 
the case V= 1, with A+ cc along a ray, and examines spectral asymptotics 
of a somewhat different nature than (0.14) using an averaging process that 
also sums over 2 = d,. An important phenomenon considered in [ 123 is 
the influence of closed trajectories in the WGS bundle on spectral behavior. 

We now outline the contents of the main body of the paper. In Section 1 
we develop an analysis of the operators (0.27), using a family of Fourier 
integral operators depending on a parameter 1, and derive results on the 
asymptotic behavior of (0.14) for H, of the form (0.7), arising from a scalar 
field. The results of Section 1 of course have points in common with other 
approaches to asymptotic analysis of Schrodinger operators, such as those 
described in [9, 15, 19,22,40,44,46]. We discuss in more detail relations 
with some of this work at the end of Section 1. While the material of Sec- 
tion 1 partly serves a pedagogical purpose to orient the reader toward the 
attack we make in the gauge field case, it also contains some novel points, 
even when the analysis is specialized to functional calculus for the Laplace 
operator, as we also explain in further detail at the end of Section 1. Hav- 
ing obtained an analysis of a(H,) in Section 1, as a family of pseudodif- 
ferential operators, we introduce two classes of families of pseudodifferen- 
tial operators, OP J?’ and OPR”, in Sections 2 and 3, respectively, and 
derive some of their basic properties. In Section 3 we make an asymptotic 
expansion for (0.15), for A(h) belonging to one of these families, in the 
scalar field case. Connections between OP ,Y and OPR” and classes of 
pseudodifferential operators on M x S ’ are emphasized, and they serve as a 
guide for an appropriate generalization of these expansions to the gauge 
field case. 

In Section 4 we analyze the transformation Tr, and prove mapping 
properties which enable us to establish (0.37) once a( -A -‘L) is analyzed 
as a pseudodifferential operator (which is done in Section 6). 
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In Section 5 we give a description of the WGS bundle and its Poisson 
structure, close to that of [ 111. We approach it here as a natural space on 
which to define the principal symbol of a G-invariant pseudodifferential 
operator on the bundle P, and emphasize the connection between the 
Poisson structure on the WGS bundle and Egorov’s theorem, for con- 
jugation by a G-invariant Fourier integral operator. 

In Section 6 we obtain an asymptotic expansion of (0.14) in the gauge 
field case. The analysis of (0.15) is similarly obtained (as briefly described 
in Section 9). In Section 6 we also consider a more general family of 
Schrlidinger operators, 

H, = A2@ + ih,( X) + v, (0.40) 

where X is a section of the vector bundle gad = P xad g over M. The for- 
mula for the leading term of the expansion of (0.14) in this case lacks some 
of the gratuitous symmetry of that in the more restricted case (O.lO), and 
the influence of the bundle P on this formula is more fully apparent. 

Finally, in Sections 7-9, we apply the asymptotic expansions for 
(0.14~(0.15) to the studies of smoothed out Chern forms and to reflection 
of chaotic behavior of the flow on the WGS bundle, on the spectral 
behavior of H,, as mentioned above. Section 8 also has a partly 
pedagogical purpose. The material of Section 8 is closely related to the 
recent paper [14]; we have presented our variant of this work in such a 
manner as to introduce the further analysis of Section 9. 

We will make extensive use of pseudodifferential operators in this paper, 
and will follow notation used in [17, 301, some of which we briefly recall 
here. To a “symbol” p(x, <), a smooth function of (x, 5) E R2” satisfying 
certain growth restrictions, we associate an operator p(x, D), acting on 
functions on R”, by 

p(x, D)u = (2$“‘2 j p(x, r) e”“iq<) 4, (0.41) 

where ti([) is the Fourier transform of U. One frequently used class of 
symbols is denoted STO. We say p(x, 5) E Sr,, provided 

lw;P(x, 5)l sc,,wm-‘% (0.42) 

where (5) = (1 + 1t)2)“2. If p(x, 5) E ST,,, the operator (0.42) is said to 
belong to OPSyO(R”). We say p(x, r) E S” if it belongs to Sr,, and has an 
asymptotic expansion 

Ax, o- c Pjk 51, (0.43) 
jP0 

where pj(x, 5) is homogeneous of degree m -j in 5 for 151 2 1. There are 
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other classes of symbols of importance, including classes of families 
p(zi, x, <), with fi as a parameter, tending to 0, such as the symbol classes 
,??’ and Rp mentioned above. For any class of symbols V, we denote by 
OP V the corresponding class of operators. In certain cases, one has 
invariance under diffeomorphisms, and OP V(M) can be defined for a 
compact manifold M. 

The symbol spaces Cp and Rp are two of a number of symbol spaces 
which arise in this paper, to describe various important specific properties 
that operators and families of operators may possess. To help the reader 
keep track of these symbols, we include at the end of this paper a list of 
symbol spaces, accompanied by formula numbers, near or at which 
definitions can be found, and we also include a list of other special symbols 
used in the paper. 

1. FUNCTIONAL CALCULUS FOR -W’L+ V 

Let L be a negative semi-definite second order elliptic differential 
operator on a compact Riemannian manifold M, acting on scalars (or 
more generally with scalar principal symbol), V a smooth real valued 
function on M. We want to understand the behavior of 

a( -i?L+ V) (1.1) 

as h + 0, given e E Y(R). Replacing u(r) by u(r - C) with C a sufficiently 
large constant, we can suppose without loss of generality that V is positiue, 
and this assumption will be in effect throughout this section. 

Let p(r)=o(t2), so p is an even function in Y(R). Let p,Jt) =p(tir). 
Then ( 1.1) is equal to 

P*(&=m, (1.2) 

with I = ti-‘. We will use the following identity to study (1.2); 

p,(JzTFv)u= (2n)-“2 s_m_ @Jt)cos t&%%fudt, (1.3) 

where fin(t) is the Fourier transform of ~~(7). Note that 

~&)=h-‘&ui). (1.4) 

For each ti > 0, A E R (not necessarily equal to fr -‘), (1.2) is a smoothing 
operator, with a smooth integral kernel r(h, A, x, y), x, y E M. We first note 
the local nature of the behavior of this kernel as fi + 0; this result has been 
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given in [8] and in [30, Chap. 121 in case V = 0. The following holds for 
v>o. 

PROPOSITION 1.1. The kernel function r(W, A, x, y) is rapidly decreasing 
off the diagonal x = y as h + 0. For any neighborhod U of the diagonal 
((x, x) E Mx M), we have 

I44 2, x, YN -S C(N l.4 hN if(&Y)EMXM\U, 

as h --f 0, where C(N, U) is independent of A. 

(1.5) 

Proof: We use the fact that cos t J-L + ,12V satisfies the finite 
propagation speed condition; its distribution kernel vanishes for dist(x, y) < 
C Itl, for some constant C, so to evaluate r(h, A, x, y) we need only 
integrate (1.3) over ItI > C-’ dist(x, y), on which set fiti =h-‘b(t/h) is 
rapidly decreasing as h -+ 0 if (x, y) E M x M\ U. 

Let /I E C,“(R) be supported on 1 tl < C, and equal to 1 on 1 tl < C0/2, 
where Co is chosen small enough that dist(x, y) < CC, implies (x, y) E U, 
and let y(t) = 1 - P(t). Then write 

R 1,h.l = (21~))“~ [ P(t) ah(t) cos t Jmdt (1.6) 

R2,h,Z=(2n)-“2 j+ r(t)fih(t)cos t,/mdt. (1.7) 

It follows that the integral kernel of R,,,,, is supported in (x, y)~ U. It 
remains to estimate (1.7). Note that cos t ,,/w has operator norm 
< 1 on L’(M), for all 1 E R, provided V > 0. Integration by parts produces 

R 2,h,~=(2n)-“2(--L+~2V+l)-k[ (D;+l)k()(t)&,(t)) 

. cos t ,/WV dt. (1.8) 

Since (-L+A2V+1)-k=(-L+1)-k(-L+l)k (-L+A2V+l)-kmaps 
L2(M) to H2k(A4) with norm independent of AE R, desired sup norm 
estimates on the integral kernel of R,,,,,, and also of all x- and 
y-derivatives, follow. 

Consequently, we can get a very accurate picture of the behavior of (1.2) 
by working in local coordinates on M, and we need only analyze the 
operator cos t Jm for I tl G Co, with Co as small a fixed positive 
number as we like. It is convenient to make such an analysis by applying 
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the method of geometrical optics to (1.3). Such an approach has been 
pursued in [33] and in [30, Chap. 123 following the work [16], in the 
case V=O. 

For Irl small, we write 

cos~~~u(x)=~~a*(r,x,~,l)e’C’(‘~x~~~”)ti(~)~~, (1.9) 
+ 

given u supported on a coordinate patch in M. The phase functions cp* are 
determined by the eikonal equations 

(&p*/dr)*=L2(X,Vx(P+)+~*V(X), 

cp’(O,x,(,L)=x*~. 
(1.10) 

Here L,(x, 5) is the principal symbol of -L, a polynomial homogeneous of 
degree 2 in <, which is strictly positive for < # 0. We take the positive 
square root to specify rp + and the negative square root to specify rp -. This 
first order nonlinear PDE has a solution for 1 tI small. Next we set 

.* WjFO qw, x, L 2) (1.11) 

with a,* homogeneous of degree -j in (r, A), defined by the following 
transport equations (with the convention D Z 1 = 0): 

i(2cpfa,-2<v,(p*,V,>+(Lb~*))a,f(t,x,5,1Z) 

= 48: -L) a:- l(t, x, tf, J), (1.12) 

a~(O,x,~,11)=~,ui+(O,x,~,1)=0 for ja 1. (1.13) 

In (1.12), ( , ) stands for the bilinear form obtained by polarizing L,(x, 0, 
a quadratic form in 5, and Lb stands for L with the zero order term 
omitted. We clearly have the following symmetries: 

cP-(r,x,r,I)=cp+(-r,x,5,1), 

a,: (t, x, r, A) = a,+ ( - t, x, g, A). 
(1.14) 

We note that the construction of the phase functions rp* and amplitudes 
a* in (l.lO)-( 1.13) is equivalent to the geometrical optics construction for 
the equation (which is hyperbolic if V> 0) 

(a*/at’ - L - va;, u = 0 (1.15) 

for u = u(t, x, t?) defined on R x A4 x S i. Thus the standard estimates for 
this construction show without further work that, if the sum in (1.11) is 
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restricted to 0 <j< K, and K is sufficiently large, then the difference 
between cos t Jr L + A V, for t < C,, and the resulting Fourier integral 1 1 
operator is a family of operators mapping L*(M) to H”‘(M), with norm 
which is 0((A) PN), and N can be taken arbitrarily large provided K is 
sufficiently large. 

Continuing our analysis of (1.3), we have, modulo a remainder which is 
a smoothing operator, O(fi”) + 0((A) -“) for N arbitrarily large, 

PAJ~)u=~ j Pn(D,)(B(f)a*ei~P’)lt=ol;(S) &. (1.16) 
* 

Here, we let fi and A be independent, though later we will identify I with 
K’. Since cp,’ is nonzero, we can apply the stationary phase method, in the 
form of the fundamental asymptotic expansion formula for pseudodifferen- 
tial operators (see, e.g., [30, p. 186]), to write 

PO,)(B(~) ufe4* )IrzO=b*(ti, x, 5, A.)e”r.t. (1.17) 

Here 

where pj(x, t, A) is given explicitly by the formula 

Pj(X, 5, J)=C (a/atY (u*eiP’)ll,o 
+ 

with 

(1.19) 

P*(t,x,5,1)=rp’(t,x,r,I)-x.5-tcp~(t,x,r,1). (1.20) 

Therefore, outside (LJ, A) = (0, 0), pj(x, r, A) is a classical symbol, satisfying 

Pjtx, t* n) E s CW.il(M, RF; 1). (1.21) 

We note that, in addition to (1.14), we have 

so pj(x, <, A) = 0 for j odd. Hence we can restrict attention to j even in 
(1.18). Since p”‘(r) is even if j is even, we have, for ti E (0, 11, and for 
O<f!<j, if jis even, 

~'p"'(JL2(x,~5)+(f11)2 V(x))= O(fPC) in S,,C(M, R;,: I). (1.22) 
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Furthermore, if we sum over 0 < j < 25 in (1.18), the remainder term is 

O(fi u-c) in Sf,id(M, RF,;‘), for 0 <r! < 2J. 
If we write 

P*jCx, 5, n) - 1 Pj(tx, t, A) (1.23) 
t,0 

with pjJx, 5, A) homogeneous of degree j- G in (l, A), then 

b(k x, 5, fi-‘) N c ti’+Lp’2j’(&2(x, fit) + l’(x)) qu(x, ho, (1.24) 
j,ebO 

where 

qjt(x, l) =~j/(x, 5, 1) E Sj-‘(M, RT)* (1.25) 

Rearranging the asymptotic sum (1.24), we have the following analysis 
of (1.1). 

PROPOSITION 1.2. For a( -ii*L + V), CJ E Y(R), there is the following 
Fourier integral representation in local coordinates, module a smoothing 
operator which is rapidly decreasing as fi + 0: 

a( -h*L + V) = (271))“‘* 1 c(#i, x, e) e”“%(t) d& (1.26) 

where 

m x, 0 - c fikCk(X, fa. 
ka0 

(1.27) 

Here, each ck(x, 5) belongs to S-“, i.e., is smooth in all arguments, even at 
< = 0, and rapidly decreasing with all derivatives as 1 Q + co. In particular, 

cob9 5) = P(JL2(4 5) +  W)) 

= @2(x, e> + V(x)). (1.28) 

Note that, since the left side of (1.26) is an even operator valued function 
of ti, the amplitude c(ti, x, 0 in (1.26) is an even function of fi. It follows 
that, for the expansion (1.27), c,(x, 5) is an euen function of 5 when k is 
even and an odd function of 5 when k is odd. 

The trace of an operator of the form 

Bu(x) = (27r)-“I’ j b(x, 5) e”.%(r) dt (1.29) 
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(27~~” j- W, 4) & dx (1.30) 

if Ib(x, <)I 6 C(t)-‘-’ and b(x, 5) is compactly supported in x. We apply 
this to (1.26F( 1.27). Since j ck(x, &) dt = 0 for k odd, we have the follow- 
ing conclusion. 

PROPOSITION 1.3. For o E 9’(R), we have 

tr a(-h2L+ V)-h~“(a,+a,h2+a,ti4+ . ..). (1.31) 

where n = dim A4, with 

ae= (2n)-” s 6%x, 0 + @I) & dx. (1.32) 
T*M 

We point out some notable features of the construction given above. The 
form (1.26)-(1.27) for a( -fi’L+ I’) exhibits explicitly the phenomenon of 
rapid decrease off the diagonal demonstrated in Proposition 1.1, a property 
that relies very strongly on the fact that L is a differential operator, so that 
finite propagation speed can be exploited, and would fail for a general ellip- 
tic (negative self adjoint) second order pseudodifferential operator. Now 
the geometrical optics construction used above depends on L being a 
differential operator; for the eikonal equation (1.10) to have a solution 
smooth for (5, A) # (0, 0), we require L,(x, 0 to be smooth at < = 0, so it 
must be a polynomial in <; this is also required for the symbol estimates 
(1.22); similarly the rest of the symbol of L must be a polynomial in 5 for 
the transport Eqs. (1.12b(1.13) to have smooth solutions. The fact that L 
is forced to be a differential operator for this geometrical optics construc- 
tion to work gives the formulas enough extra structure to exhibit this 
special phenomenon, and other properties special to the differential 
operator case. In particular, the form (1.26)-(1.27) leads easily to the 
special form of the asymptotic expansion (1.31), involving only even 
powers of +i in the parentheses. In the case of V=O, the expansion of 
tr a( -h2L) for L a pseudodifferential operator would generally involve 
also odd powers of ti and, as pointed out by Duistermaat and Guilleman 
[38] (for a(r’)=exp( -r’)), also terms including a factor of logfi. 
Therefore, even when we are interested in functional calculus for L alone 
(with V= 0), in the differential operator case it is convenient to throw in a 
term I/= 1, trivially shifting the spectrum, and use the construction above, 
to obtain results which are more precise than one would get using a 
geometrical optics construction valid for pseudodifferential operators L. 
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The approach to functional calculus used above, via (1.3) and the 
Fourier integral representation for cos t ,/m, follows the develop- 
ment of functional calculus in [33], which was further expounded in [30, 
Chap. 123. This work and work of Colin de Verdiere [9], which was 
published about the same time, have a number of points in common; both 
considered more generally functions of commuting pseudodifferential 
operators L, , . . . . Lk, such that -L = L: + ... + L: is elliptic. One dif- 
ference is that, while [9] relied on the analysis of Strichartz [29] to obtain 
a basic identification of various operators f(L, , . . . . Lk) as pseudodifferential 
operators, [33] emphasized that this property was a particularly simple 
consequence of the geometrical optics construction. This direct approach 
has advantages; for example, the method of [29] requires L to have com- 
pact resolvent, while use of (1.3) adapts readily to cases of operators on 
noncompact manifolds where L may have continuous spectrum; some 
applications of this are made in [S, 371. 

Another approach to functional calculus, based on the Mellin transform, 
has been developed by Helffer and Robert [41,22,45-J. It starts from a 
formula equivalent to 

f(-L)=dlw(-L)) 

= (27r-“2 Jo0 b(s)( -L)‘” ds, (1.33) 
-cc 

where g(J) = f(e”). Construction of approximations to ( -L)‘” can be done 
via purely pseudodifferential operator methods. An advantage of this 
approach is that quite general sorts of elliptic operators can be treated, in 
cases where it would not be easy to produce a Fourier integral 
approximation to e jr’ or to e”a. In return a price is paid. The integral in 
(1.33) cannot be effectively localized near s=O, as can (1.3), and as 
approximations to (-L)‘” do not improve as jsj + co, the remainder 
estimates one gets for approximations to f( -L) and to f( -fi2L + V) by 
this method are not as sharp as, via (1.3). For example, the works 
[41, 22,451 contain results which imply that c( -ti2L + V) in Proposition 
1.2 is an admissible family of operators, while the analysis above shows that 
here it is a strongly admissible family, in the terminology of [22]. The 
analysis of f( - L) via the Mellin transform, when spec( -L) c [0, co), and 
similarly of f( -h2L + V), also requires that f(n) vanish to infinite order at 
A= 0, which allows one to study the spectrum in intervals bounded away 
from 0 more easily that in intervals containing 0. A further price, noted at 
the end of [22], is that the approach via the Mellin transform is not con- 
venient for studying functions of commuting pseudodifferential operators. 
The approach via (1.3) is easily modified to treat this case, and in sub- 
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sequent sections of this paper we will make essential use of such a 
functional calculus for commuting operators. 

Another attack made on the spectral asymptotics of -h*L+ V, 
operating on functions on R", is via a Fourier integral representation of 
exp it( - A'L + I’). This approach is used in [IS, 221, among other places. 
In this case, of course, the eikonal equation is quite different from (l.lO), 
and the Fourier integral operators produced are of a different nature from 
the ones used here. This construction works for Schrodinger operators on 
R", with a variety of potentials V(x), ranging from short range potentials 
to those resembling that of the harmonic oscillator. Such an approach does 
not work on compact manifolds. As noted by Duistermaat and Guillemin 
[38], the operator eif“ on a compact M can be expected to squirt 
singularities all over the place instantly; one does not expect to construct a 
useful parametrix for such operators when M is compact. 

We also mention another approach to semiclassical spectral asymptotics, 
taken by Shubin in [46, Appendix 23. This involves taking the family of 
pseudodifferential operators with complete symbol crh( -fi*L,(x, 5) + V(x)), 
for a certain class of functions ofi, approximating the characteristic function 
of an interval, as a first approximation to the operators (TJ -li*L + V). It is 
shown in [46] that this can be used to give the leading behavior of the 
spectral asymptotics. An approach that starts with an a priori guess of the 
symbol of an approximating operator is limited when it comes to produc- 
ing further terms in an asymptotic expansion, though it is likely that the 
methods of Strichartz [29] could be exploited in the context of the analysis 
of [46] to produce such expansions. 

2. SPECIAL FAMILIES OF SMOOTHING OPERATORS 

Here we present some general results about families of operators with 
symbols of the form (1.27), which arose in the description of 6( -ti*L + V). 
For starters, we will work on R", with coordinates denoted X. A family of 
operators that has been used before in [30], which we will denote OP Z; , 
consists of operators a(#r, x, D) with symbols a(!& x, 5) belonging to Z$ , 
which means the following: a(+& x, <) is smooth for h E (0, 11, x, < E R", and 

i.e., 

AkDja(h, ., .) is bounded in Sy,Ej-k(R") for fi E (0, 11, (2.1) 

We also sometimes take the parameter fi in [ - 1, 11. The family of 
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operators of particular interest to use here is denoted OP J?‘, where 
a(+$ x, r) E ,??’ if and only if a(fi, x, 5) E C$ and 

a(tiY x, t) N lfil p-P C h'Uj(Xs ht), uj(x, 5) E S-"(R"), (2.3) 
j 2 0 

in the sense that the difference between a(+& x, 5) and the sum over j< k 
belongs to C$-“, and furthermore h-” times this difference belongs to 
Z$- k + [, for 0 < L’ < k. In (2.3) we insist uj(x, 5) be smooth, even at r = 0. 
From Proposition 1.2 it follows that, in any local coordinate system, 

a( -fi2L + V) E OP ZO. (2.4) 

We recall that (T( -fi2L+ Y) has more structure, which is captured as 
follows. Set 

L$! = (a@, x, 4) E ,??: (2.3) holds with uj(x, -5) = ( - 1 y’ uj(x, <)I. (2.5) 

Then, in any local coordinate system, 

a(-VL+ V)EOPC$ (2.6) 

Note that 

Z$ = (Ifi1 --p ,?I:) n ,P, (2.7) 

and Cg can be characterized as consisting of functions a(#~, x, [), defined 
and smooth for (fi, x, <)E [ - 1, l] x R” x R”, belonging to L”, and even 
in ti. 

One important property of OP ,??‘ is that it captures the phenomenon 
described in Proposition 1.1. Indeed, if u(h, x, D) has the symbol of the 
form (2.3), then 

46 x3 D) 4x) = j 4fi, x, Y) U(Y) dY (2.8) 

with 

(2x)” A(fi, x, y) - ltil --Ir C tij J u,(x, iit) eicX-Y).c d< 
jzo 

- JhJ -il--n c ti’Aj(X, (x - y)/h), (2.9) 
jP0 

where Aj(x, z) is C” in x and z rapidly decreasing as (z( + co. In fact, (2.9) 
with such Aj(x, z) precisely specifies the class of integral kernels of elements 
of OP L’“, when p = 0. 
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We note the foliowing algebraic properties of OP F’ and OP Cc, whose 
proofs are routine. 

PROPOSITION 2.1. Suppose b(x, D) is a dtfferential operator of order m, 
and a(h, x, D) E OP C”. Then 

b(x, D) a(& x, D) and a(h, x, D) b(x, D) belong to OP C@+“‘, (2.10) 

if the parameter set for t? is (0, 11. Also 

a(h, x, D)* E OP F. (2.11) 

Furthermore, if c(h, x, D) E OP C”, then 

a(h, x, D) c(A, x, D) E OP Z”+“. (2.12) 

The results (2.11k(2.12) holds with C* replaced by C,*. 

We remark that (2.10) fails in general when b(x, D) is a pseudodifferen- 
tial operator. A more substantial result is the following. 

PROPOSITION 2.2. The classes OP .P’ and OP Zr are invariant under 
diffeomorphisms of R” which are linear outside some compact set. 

Proof. Suppose a(& x, D) E OP F’. Under such a diffeomorphism x, the 
standard transformation law, given, e.g., in [30, Chap. 21, implies that the 
family of conjugated operators is of the form cT(h, x, D), with symbol 

W, x(x), 5) - c (P&G t) D$(h, x, Dx(x)’ 0, 
CT>0 

(2.13) 

where (PJx, 4) is a polynomial in 5, of degree ~3 Ial, cpo(x, c)= 1. Given 
a(h, x, 5) of the form (2.3), it is easy to express (2.13) in a similar form, 
giving ii(h, x, D) E OP .F’. If a(h, x, D) E OP Cz, the evenness in k perists 
for ii(!i, x, D), and the invariance of OP L’; follows from this. 

Thus there is a natural notion of OP Z@(M) and of OP E;(M), for any 
compact manifold M, such that a(h, x, D) E OP J?‘(M) has integral kernel 
which is rapidly decreasing as h + 0, outside the diagonal in M x M. In 
particular, (2.6) gives 

a( -AZL + V) E OP C;(M), (2.14) 

with L and V as in Section 1. 
Now we discuss an isomorphism between OP J?‘(M) and a certain 
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algebra of pseudodifferential operators on A4 x S’. Given a(ti, x, D) E 
OP,??(M), define an operator A on C”(Mx S’) by 

A(u(x) eike) = a(k-I, x, D) u(x) eik6 (0 if k=O) 

Then A is a pseudodifferential operator, with symbol 

(2.15) 

NJ%@, t,~)=4-‘,x,t)-l~l” c n-j+,t/q, (2.16) 
j>O 

if a(& x, 5) satisfies (2.3). For a general symbol aj(x, 0, (2.16) would be 
singular at I =O, but the hypothesis ajE S-“(M) implies that this 
singularity is removable. A(x, 8, <, A) is C” in all its arguments, away from 
(5, A) = (0, 0), and belongs to S”(M x S ’ ). Furthermore, the complete sym- 
bol of A(x, 6, D,,B) vanishes to infinite order at A = 0, i.e., on the subbundle 
h*(MxS’) of T*(MxS’) defined by 

h&,,(MxS’)= {<ET&JMxS’): 5 is orthogonal to the 

tangent space to the fibers of Mx S’ + M}. (2.17) 

We will denote the class of symbols in S”(M x S’) vanishing to infinite 
order on this subbundle by 

Sff(Mx S’), (2.18) 

and the associated operator class by OPSg(M x S ’ ). Denote by 
OPS&(Mx S’) the subset consisting of operators commuting with the 
S ‘-action. The correspondence a(& x, D) H A of (2.15) defines a transfor- 
mation 

f: OP &Y(M) --, OPS~&%I x S’). 

Note that, if A(x,8, 5, A) E Sff,(Mx S’), then 

A(x9 Ed 55 I) N C l1l” Aj(x9 5~ Al 
i b 0 

(2.19) 

(2.20) 

with Aj(x, 5, A) homogeneous of degree -j in (<, A), vanishing to infinite 
order at I = 0. This implies A j( x, 5, 1) vanishes to infinite order as 15 ( + cc, 
since Aj(X, 5, 1) = ltl’Aj(X, [/I<[, 151 -I). Thus A(x, 8, 5, A) corresponds 
under (2.16) to ciao )fiI - a+j Aj(x, fit, 1). This proves the following: 

PROPOSITION 2.3. Module OPZ-” and OPS;ssm(Mx S’) the map 
(2.19) is invertible. 

The following result, whose proof is obvious, provides a convenient 
characterization of the class OPSg(M x S’). 
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PROPOSITION 2.4. Given P E OPY(M x S ‘), P belongs to OPSg(M x S ‘) 
if and only if, for each j> 1, there exists Pie OPS”-‘(M x S’) such that 

P= D&P, mod OPS”(Mx S’). (2.21) 

Afso,for each VE R, IDsly PEOPS~+“(MX S’)provided PEOPS{(MX S’). 

Note that 
J+(-h*L+ V))=a(-D,*L+ I’), (2.22) 

and (2.19) implies this operator belongs to OPS&(MxS’). We now give 
an alternative proof of this, touching on a point mentioned in the Introduc- 
tion. Namely, we have 

a(-D,*L+ V)=&/-L- I’d;, De) (2.23) 

with 
Plh v) = 4P2/V2). (2.24) 

Since 0 E sP( R), the apparent singularity at v = 0 is removable; p, is C no on 
R*\(O, 0), and homogeneous of degree 0. The operator L + I’di is elliptic 
on A4 x S’ and commutes with D,. Hence the results of [30, Chap. 121, or 
of [29], apply to show that the operator (2.23) belongs to OPSO(Mx S ‘); 
obviously it commutes with the S’-action. Furthermore, mod OPS-“, 

p,(,/‘==i@, De) = D&,(J=;, DB) (2.25) 

with 

Yj(/.ft, v) = v-%?(p*/v’), (2.26) 

also smooth on R*\(O, 0) and in S-‘j(R*\(O, 0)), so yj(,/mi, De) 
belongs to OPS-“(A4 x S’). This reproves 

a(-D,*L+ J’)EOPS$(MXS’). (2.27) 

In view of Proposition 2.3, this provides a second proof that a( -h2L + V) 
belongs to OP Co(M), which is slightly weaker than (2.14). 

Of course, this just reiterates the equivalence between the geometrical 
optics construction of Section 1 and the geometrical optics construction for 
ordinary hyperbolic equations in one more variable. 

3. REGULAR FAMILIEB OF OPERATORS AND FURTHER ASYMPTOTICS 

Here we introduce a class of symbols somewhat larger than the class C’ 
discussed in Section 2, defined by (2.3). We take as our motivation for the 
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more general class the correspondence (2.15) taking OP F’(M) to 
OPS”(Mx S’). We consider a@, x, 0, defined for 

fiE(O, W)U(-QO)U @>, (3.1) 

and we set 

We say 

4x, r, n)=4n-‘, x, 0. (3.2) 

a(h, x, 5) E R+l4) 0 A(x, (, n) E S”(M x S’), (3.3)) 

and we say a(!& x, D) E OPR@(M) is a regular family of operators. As in 
Section 2, the correspondence on the operator level is given by 

A(u(x) eiks) = u(k-‘, x, D) u(x) eike. (3.4) 

We continue to denote the correspondence a(+& x, D) H A by 3, so 

f: OPRI1(M) -+ OPS;(Mx S’), (3.5) 

where OPS$(Mx S’) denotes the set of operators in OPS”(Mx S’) which 
commute with the S’-action. Clearly 

OP F‘(M) c OPR”(M). (3.6) 

The map (3.5) is invertible from OPR”(M)/OPC-“(M) to 
OPS$(M x S ‘)/OPS; “(M x S ‘), the inverse of (3.2) being 

44~,5)=A(x,~,~-‘). (3.7) 

Note that, if 

A(x, 532) - C Aj(x, 5, A) 
j>O 

(3.8) 

with A](x, 5, ,I) homogeneous of degree p--j in (r, J.), we have 

u(+fi,x,r)- c h-“+~uif(x,fi~) for fi > 0, 
jr0 

where 

(3.9) 

u,+(x,~)=A~(x,~,+~)ES”-j(M). (3.10) 

Our class OPR”(M) is a sub-class of the class of “admissible” operators 
considered in [ 14, 151. We develop it there to advertise its basic simplicity 
and rather desirable properties. 

580/83/Z-4 
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To give some examples of elements of OPRp, we note that if L and V are 
as in Sections 1-2, then 

-L+V21’~OPR2(M), (3.11) 

and 

(-h*L + V) -’ E OPR’(M), (3.12) 

but of course 

-fi2L + V$OPR’(M). (3.13) 

Also, any differential operator of order k on M (independent of A) belongs 
to OPRk(M), though of course a pseudodifferential operator of order p on 
M independent of ci typically does not belong to OPR”(M). 

We also note that the operator calculus on Mx S’ immediately implies 
that OPR“(M) is invariant under coordinate changes on M and for 
products of regular families we have 

OPR”‘(M) . OPR”*(M) c OPR#’ + ‘2(M). (3.14) 

If A,(h) E OPRw(M), we have from (3.4) 

%(A,(ti).A,(ti))=(%A,(ti)).(~A,(A)). (3.15) 

Since the product of two pseudodifferential operators Pi E OPSfi(M x S’) 
belongs to OPS? +Pz(M x S ‘) if either factor belongs to OPSr(M x S’), we 
also have 

(3.16) 

if Ai E OPRb(M) and either factor belongs to OP C&(M). In particular, 
if L and V are as above, given acY(R), Ah OPR”(M), we have 

A(h) a( -f12L + V) E OP ZqM). (3.17) 

Next we prove an Egorov-type theorem. A related result is given in 
[ 14, 223. 

PROPOSITION 3.1. Let L be a second order elliptic operator on M, 
negative semidefinite, as above, let V E C”(M), V > 0, and let A(h) = 
a(/& x, D) E OPR’(M). Consider 

B(h) = exp[ih-‘t J-1 A(h) exp[ -iti-‘t J-1, (3.18) 
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for any fixed t. Then B(h) E OPR”(M). Furthermore, 

Wfi) = bo@, x, D) mod OPR”-‘(M), 

where, if 

a(fh, x, t;)- c P+hjyx, fg), 
j 2 0 

then 

(3.19) 

(3.20) 

bo(+h,x,r)=h-‘B*(X,fi5), (3.21) 

where 

P*k o=Q;((exP tH,)b, 5)), (3.22) 

H, denoting the Hamiltonian vector field associated with the function 

w, 5) = CL,(x, 5) + wp, (3.23) 

and L,(x, <) denoting the principal symbol of -L. 

Proof: The operator f defined by (3.4) transforms the right side of 
(3.18) to 

E#=exp[itJ~]~~A(ii).exp[-itdw)] (3.24) 

acting on Cm(M x S’). Since L + K$?, is an elliptic second order negative 
semidefinite operator on M x S’, Egorov’s theorem gives B# = B,(x, D,@) 
mod OPY-‘(Mx S’), with 

Bob9 k 2) = A,((exp tH,)(x, 5,2)), (3.25) 

where A,(x, 5, &A) = A%$(x, t/A) and U= [L2(x, 5) + V(x) A*]‘/*. Since 
aU/atI = 0 and A, is independent of 0, we can write (3.25) as 

where 

B,(-G 5,l) = A,((exp tY)(x, t, A)), (3.26) 

Y = (au/at) alax - (au/ax) a/a<. (3.27) 

From this (3.21~(3.22) is an immediate consequence, and the proposition 
is proved. 

Note that if A(h) E OP Z‘(M), so jA(fi) E OPS‘(M x S’), then Bx also 
belongs to OPSg(Mx S’), and hence B(~)EOP Z”(M). In this case, we 
also have (3.19) holding modulo OP Cp- ‘(M). 
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We make brief mention of a few other families of operators. In analogy 
with the definition of OPR“(M), we say a(h, x, D) belongs to 

OW,,W) (3.28) 

provided the operator on C”(M x S’) given by (3.4), i.e., fa(h, x, D), 
belongs to OPS;,,(M x S ‘). As in the previous cases, any element of 
OPS’;O(Mx S’) which commutes with the Si-action comes from an 
element of OPRt;,,(M). Similarly, we say a(h, x, D) belongs to OP C$‘,(M) 
provided its image under f is an element of OPSy,,(Mx S’) whose com- 
plete symbol vanishes to infinite order on h*(Mx S’). It is clear that 
Proposition 3.1 extends to these classes of operators. 

We next derive a result on the asymptotic behavior of the trace of 
operators of the form (3.17). In the proof we find it convenient to 
anticipate a result which will be proved in the next section, on the G-trace, 
in the case G = S’. The map Tr, has been defined in the Introduction, in 
(0.35)-(0.36). 

PROPOSITION 3.2. With L and V as above, aE Y(R), and 
A(h)e OPR’(M), having symbol expansion of the form (3.9), we have as 
hl 0, 

trA(h)a(-fi2L+V)-~-“-“(a,+cr,~+a,~2+ ..v), (3.29) 

where n = dim M, and 

Ci,= 
f @$(x3 5) dL2(x, 0 + V(x)) d5 dx. (3.30) 

T*M 

Proof. Set A# =$A(h) E OPV(Mx S’). We have 

ya(-h2L+ V)=a(-Dg2L+ V)EOPS~(MXS’), (3.31) 

and 
f(A(h)a(-h2L+ V))= A#a(--Di2L+ V)EOP<(MXS’). (3.32) 

This operator clearly commutes with the S’-action, and we have 

tr A(h) a( -h2L + V) = e-‘@@(eiks) for A=k-‘, (3.33) 

with 

@ = Trsl $(A(fi) a( -h2L + V)). 

As shown in Proposition 4.2, this implies that 

@EOPS’+“(S’), 

(3.34) 

(3.35) 
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which gives (3.29), and the principal symbol calculation for @J given by 
(4.12) yields (3.30). (In this case, Lemma 4.3 and (4.13) suffice.) 

If one considers a sequence aj E C,“(R) converging to the characteristic 
function of an interval Z= [a, b] c R, a standard limiting argument from 
(3.29) produces the following well known result on the asymptotic behavior 
of the spectrum of -h*L + V (cf. [30,15]). 

PROPOSITION 3.3. For a given compact interval Z, let 

N(ti, I) = number of eigenvalues of -h2L + V belonging to Z, (3.36) 

counting multiplicities. Then 

lim fi”N(h, I) = meas 0,. V(Z), 
h-0 

(3.37) 

where 

%, Y(Z) = P,:(Z), PL, vk 5) = LAX, 0 + V(x)- (3.38) 

In fact, for (3.37) we need (3.29) only with A(f’r) = 1, i.e., Proposition 1.3 
suffices. Choosing more general A(h) produces a more detailed picture of 
the spectral behavior of -A2L+ V, as we will see. 

If the eigenvalues of -h2L + V are denoted 

e,(h) <e2(h)<e3(h)G ... (3.39) 

we let 
A(h, I) = {j: ej(h) e Z}. (3.40) 

Thus the quantity N(fi, I) above is the cardinality of n(Zi, I). We denote the 
associated normalized eigenfunctions of -h2L + V by (pi”: 

(-h2L+ V)cp~=ej(h)cp~. (3.41) 

Following [35, 10, 141, we introduce a set $ of probability measures 
associated to the eigenfunctions cp; by the following device. Let a@, x, r) E 
R:,,(M), with B(x, c, 1) = ~(1~‘, x, 5) E Sy,,(M x S’). An operator 
BE OPSy,,(M x S ‘) with principal symbol B(x, C;, A) is well defined modulo 
OPS;,‘(Mx S’), and there exists an association B(x, 5, A) H BF (defined 
by Friedrichs symmetrization) such that BF E OPSY o(M x S ‘) has principal 
symbol B(x, c, A), and BF is a positive semidefinite operator provided 
B(x, 5, A) > 0. We can also suppose BF commutes with the S’-action. Then 
we can define AF(h) E OPR:,,(M) satisfying 

AF(h) u(x) = epikeBF(u(x) eike), h=k-‘, (3.42) 
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and we have AF(fi) positive semidefinite when a(fi, x, 0 B 0. Furthermore, 

/IF(h) = a@, x, D) mod OPR;,‘(M). (3.43) 

The choice of AF(fi) is not unique, but we can arrange the map 
a(Ci, x, D) w AF(fi) to be linear, and we can also arrange that, if 
a(!~, x, D)u = cpu, cp E Cm(M), is a multiplication operator, independent of 
#i, then AF(fi)u= cpu also. Given a choice of the correspondence 

a(h, x, D) H AF(fi), there is a unique probability measure $ on G such 
that 

J 4% 5) d$b, 5) = (AFW) 4$ cpi”,, with u(tt, x, 5) = u(x, tit), (3.44) 

for all u(x, fit) E R:,,(M). Here Gis a compactification of T*M, namely 
the maximal ideal space of the uniform closure of the set of all bounded 
functions u(x, <) on T*M with the property that u(x, fit) belongs to 
R:,,(M). Note that (3.43) implies 

mod U(h). (3.45) 

Now, as in [ 141, we define a set of probability measures rnf (for any 
compact interval I) by 

m~=N(h,Z)-'. 1 pf. (3.46) 
ie A(fi.0 

Now standard limiting arguments applied to (3.29) yield 

I 4x, 5) dm:(x, cl) + [meas R., y(l)l-l JoL v(l) 4x, 5) & dx, (3.47) 

as fi + 0, for each u(x, <) such that u(x, fit) E R&(M). Therefore 

m: -+ [meas R, ,A01 -’ x~L,‘L,y~,~(dS dx) as A + 0, (3.48) 

the convergence being in the weak * topology on the space of finite 
- 

measures on T *M. In other words, in a certain mean sense, $ converge 
weakly to the (normalized) Liouville measure as fi -+ 0. In Section 8 we will 
establish some results which in particular strengthen this limiting behavior 
in cases where the classical dynamical system is ergodic on constant energy 
surfaces. 



GAUGE FIELDS AND QUANTUM CHAOS 285 

4. THE G-TRACE 

Suppose P is a compact Riemannian manifold on which a compact Lie 
group G acts as a group of isometries. We write the action as a right 
action, so G has a unitary action on t’(P): 

4g) U(P) = U(P *g). (4.1) 

Let B be an operator on Coo(P). For now suppose B has a smooth integral 
kernel: 

WP) = jpb(p, 4) u(q) dV(q). (4.2) 

We define 
Tr, B: C”(G) + Cm(G) 

to be convolution (on the left) by 

(4.3) 

K(g) = fp HP .g, PI MP). (4.4) 

LEMMA 4.1. Zf B commutes with the G-action (4.1), then Tr, B is a 
bi-invariant operator on C w(G). 

Proof. The relation tl( g) B = Ba( g) is equivalent to 

HP-g, q)=b(p, m-‘). (4.5) 

If this holds, then, for all g, g’ E G, 

da7 = i, bb -g, P. (g’)-‘) Mp) = 5, b((q .g’) .g, 4) Wq) 

= Wg)* (4.6) 

Hence rc(g) is a central element of the convolution algebra C”(G). 

We next consider the extension of Tr, to a class of pseudodifferential 
operators. We make the hypothesis that G acts on P without fixed points, 
indeed, that each p E P has a neighborhood U diffeomorphic to 0 x G, with 
G acting on the second factor, by right translation. This hypothesis, which 
holds when P is a principal G-bundle over a compact manifold M, will be 
in effect throughout the rest of this section. We define a subbundle Ij*P of 
T*P by 

b,*P= (5 E T,*P: < annihilates vectors tangent to the G-orbit through p). 

(4.7) 
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Then set 

OPSc(P) = {A E OPV(P): the complete symbol of A mod S-“(P) 

vanishes to infinite order on h*P>. (4.8) 

Similarly define the subspace OPSy,,,(P) of OPSI;,,(P). Note that 
(2.17)-(2.18) is a special case of (4.7)-(4.8). The following result, for that 
special case, was invoked in the proof of Proposition 3.2. In its general 
form, it will play an important role in subsequent sections. This generalizes 
[24, Proposition 4.71. 

PROPOSITION 4.2. The transformation Tr, has a unique continuous exten- 
sion to 

Tr,: OPS$&(P) + OPSf,$“(G), (4.9) 

where 
n=dim P-dimG. (4.10) 

We have 

Tr,: OPSc(P) + OPSpfn(G). (4.11) 

Zf A E OPS$( P) has principal a,(x, 0, then B = Tr, A has a principal symbol 
which satisfies 

&de, 1) = fhep a&, t + 1) ML PI, (4.12) 

for 2~ T,*Gzg*. 

Here the G-invariant metric on P gives rise to a natural injection 
g* 4 T,* P for each p, and it also gives a natural volume element on b* P. In 
(4.9) and (4.1 l), if A commutes with a(g), then Tr, A is bi-invariant. 

Writing A as a sum of a smoothing operator and an operator with dis- 
tributional kernel supported very near the diagonal in P x P, we can obtain 
the proof of Proposition 4.2 as a consequence of the following two lemmas. 

LEMMA 4.3. Consider the case G = T”, P = Xx T”. Then (4.9 )-(4.12) 
hold in this case. 

Proof. In this case, if A E OPSI;,,, (Xx T”) has symbol, in local coor- 
dinates x E X, y E T”, a(x, y, 5, A), then Tr, A has symbol 

b(A) = 1 4x, y, t. A) dt dx dy. (4.13) 



GAUGEFIELDSANDQUANTUMCHAOS 287 

The hypothesis a E Sy,,, (Xx T”) implies a(x, y, 5, J.) is rapidly decreasing 
as 151 + co, for fixed I, which guarantees the integral above is convergent, 
and it is easy to see that b(l) has the properties stated in Proposition 4.2 in 
this case. 

In the context of Proposition 4.2, we can deduce that, for 
A E OPSf,,,(P), with distribution kernel supported near the diagonal, 
Tr, A is given by convolution by BX6,, with BX E OPSy,$“( V) having 
principal symbol satisfying (4.12), where V is a (small) neighborhood of 0 
in R” (m = dim G), identified with a neighborhood of e in G via the 
exponential map. The following result finishes the proof of Proposition 4.2. 

LEMMA 4.4. Let B’ E OPS;,,(G), and let B be convolution (on the left) 
by 

rc = B#c~,. (4.14) 

Then BE OPS;,,(G) and the symbols b,X( g, A) and bO(g, A) are related by 

bde, 2) = bE (e, A) mod S;,i’. (4.15) 

Zf Bx E OPS”(G), then BE OPS”(G). 

A proof of Lemma 4.4 can be found in [32, Chap. I] or in [28]. 
Though we will not make direct use of it, we note the following simple 

consequence of the reasoning given above, namely we have 

Tr,: OP J?‘(P) + OP F+“(G), (4.16) 

and in fact the following diagram is commutative: 

OPZC (PI TrG ) OPZ ’ + “(G) 

r 
OP&.(PXS’) 

Tr GxS’ 

5. THE WGS BUNDLE 

Here we discuss the space which is the natural phase space for the 
classical version of motion in a gauge field. This space and the associated 
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flow were defined by Wong [34] for the special case of an SU(2)-bundle 
over flat Euclidean space, and by Guillemin and Sternberg [ 11,271 in 
general (see also Weinstein [47]). A detailed discussion of the relation 
between these studies is given by Montgomery [43]. From our point of 
view, this space arises as a natural space on which to define symbols for 
G-invariant pseudodifferential operators on a principal G-bundle P + M. 

As before, let P -+ M be a principal G-bundle over a compact Rieman- 
nian manifold M, with a connection, associated to a G-invariant metric on 
P. The G-action will be written 

R,p=p-g. (5.1) 

Let A E OPSp(P) commute with the G-action. Then the principal symbol 
A,(p, c), defined on T* P, satisfies 

&(R, P, 0 = A,(P, W(P)’ 0 (5.2) 

Thus A0 can be specified by a “symbol” defined on the quotient space of 
T*P under the equivalence relation 

W, P, 0 - (P, D&(P)’ 0 (5.3) 

This quotient space is a vector bundle over T*M in a natural fashion, 
which we proceed to describe. 

In fact, the G-invariant metric on P (corresponding to the connection) 
produces isomorphisms 

T,*Px$,*PQg* 

M T,*M@ g*, (5.4) 

where x is the image point of p in h4. The G-action on T*P can then be 
described as 

(P,r).g=(R,p,DR,(p.g)-“i), (5.5) 

or as 

(~,t+J).g=(p%S+(Ad*g)-‘2) (5.6) 

with 

By (5.4), we see that 

tET,*M AEg*. (5.7) 

b*P-+ T*M (5.8) 
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is a principal G-bundle, namely the lift of P + M to T*M, and in view of 
(5.3), the equivalence relation on T*Pzlj*P@g* produces the vector 
bundle 

!i& = t)*p XAd* @+ (5.9) 

over T*M, associated with the principal bundle (5.8) via the coadjoint 
representation of G on g *, The bundle (5.9) is the WGS-bundle, and, by 
(5.2), we have 

Ao=A,X “4, (5.10) 

where 

q: T*P + g,“d 

is the projection defined by the equivalence relation (5.3), and 

(5.11) 

47 E Ws,x,), (5.12) 

where to define the space of symbols on g$, we regard g,“d as a vector bun- 
dle over M, and use the vector space structures on the fibers over points of 
M to define a dilation on g$, giving meaning to the notion of a function 
on the space gzd being homogeneous of a given order. 

A symbol defined on g,“d gives rise to a natural flow on this space. We 
produce this flow in the following fashion. Let A E OPSp(P) be G-invariant, 
and let ME OPS’(P) be G-invariant and self adjoint. Then, by Egorov’s 
theorem, for each t E R, 

A(t) = ei’MAe-i’M E OPS’( P), (5.13) 

and A(t) is G-invariant. Thus the principal symbol A,(t) of A(t) is of the 
form 

A,(t) = A,X(r)oq, (5.14) 

with q as in (5.11) and A,X E Y(g.$). The flow on T* P generated by the 
Hamiltonian vector field Z-I,,.,, (MI being the principal symbol of M) is a 
flow which preserves the class of symbols of G-invariant operators, and it 
induces a flow on the WGS-bundle g$, whose generator we denote W,,.,: 
(where MI = MT 0 q). We call the corresponding flow the WGS-flow. The 
pairing 

(A,#, M:)++ J,&.qA,# (5.15) 

defines a Poisson structure on g,“d ; this bundle is foliated by symplectic 
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manifolds, which are in fact bundles over T*M with fibers which are dif- 
feomorphic to coadjoint orbits for G. (For more details on this, see 
[ 11,431.) The formula for principal symbols given by Egorov’s theorem, 
when applied to these G-invariant operators on C “(P), can be stated as 

A:(t) = A,# 0 (exp tIV,:). (5.16) 

Since the flow on g,“d generated by WM: preserves homogeneity, with 
respect to the dilations of g,“d described above, it induces a flow on the unit 
sphere bundle S(g$,) (regarding g,“d as a vector bundle over M). We denote 
the generator of this last flow by S,,. 

6. FUNCTIONAL CALCULUS AND 
TRACE ASYMPTOTICS IN THE GAUGE FIELD CASE 

We turn now to an analysis of the family of operators H, associated to a 
gauge field as in (O.lO), i.e., 

H,=fi*H;+ ?‘, (6.1) 

where 

A=nl,, fl= lA+dl-1. (6.2) 

As indicated in the Introduction, our approach is via analysis on the 
principal bundle P. As in [4, 393, we make use of the identity 

A= -H;+A; on C”M Ed, (6.3) 

where Cm(M, E,) is identified with a linear subspace of C”(P, VJ, A is 
the Laplace operator on P, and AZ the operator derived from the Laplace 
operator A, on G by the G-action on P. The representation theory of G 
implies that, if & is the subspace of C”(P) on which G acts like copies of 
x1, then in fact gA is isomorphic to a direct sum of d, copies of C “(M, E,) 
(cf. [39, Lemmas 5.3 and 5.41. Furthermore, if we set 

L=A+V,A~+~*V 

with VI(x) = V(x) - 1, and 

A = -A;+ 161*, 

since n(AG)= -(11+61*-IS]*), it follows that 

(6.4) 

(6.5) 

-A-‘LI,,xsumofd,copiesofH,. (6.6) 
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We suppose V(x) > 1, so VI > 0. Thus L is a negative semidefinite elliptic 
differential operator on P. We have the following result. 

PROPOSITION 6.1. For 4 E Y(R), 

cT( -A - ‘L) E OP!q P). (6.7) 

ProoJ: We have 

a(-A-‘L)=p,(,/=, ,/m), (6.8) 

where 

PI(PL, v) = 4P2/2(V2 - P’)). (6.9) 

The argument of Q is singular at p= +v, but if GE Y(R), then this 
singularity is removable; p1 E Ca(R2\ (0,O)). Clearly p1 is homogeneous of 
degree 0 in (p, v). Since -L and -L + $A are both elliptic, and commute, 
the functional calculus described in [30, Chap. 123, or that described in 
[29], applies to show c( - A-‘L) E OPS’(P). Furthermore, 

a(-A-‘L)=(iA)$(fi,d-) (6.10) 

with 

Yj(lc, v) = (v’- p2)-’ o(v2/2(v2 - p2)), (6.11) 

smooth on R2\ (0,O) and homogeneous of degree -2j in (p, v), so 
yj(fl, Jw) belongs to OPSp2j(P). This implies that the com- 
plete symbol of a( -A - ‘L) vanishes to infinite order on the bundle Lj*P, 
defined by (4.7), so the proposition is proved. 

From Proposition 4.2 it follows that 

Tr, a( -A -IL) = BE OPS”( G), (6.12) 

where n = dim M. The operator B is bi-invariant, so it is a scalar on each 
linear span 

YA=span{ny: l,<i, jGd,}. (6.13) 

By (6.6), we have 

d;’ tr a(H,)= BI,. (6.14) 

The analytical tool which provides an asymptotic analysis of (6.14) is given 
by the following result, which was proved in [30, Chap. 121 and used in 
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[24]. It is a microlocalization of a theorem of Zelobenko [36]. For its 
statement, we recall that the set of highest weights 1 for irreducible 
representations of G is characterized as being the intersection of a Weyl 
chamber and a lattice in t*, the dual space of the Lie algebra t of a 
maximal torus in G. Using the bi-invariant metric on G, we can identify t* 
as a subspace of g*. 

PROPOSITION 6.2. Zf B E OP!Y(G) is bi-invariant, then 

B~zY = &A + 6) +j (6.15) 

with 

P(n) E wt*), (6.16) 

invariant under the Weyl group. The principal symbol B,( g, A) of B and the 
principal term /3,(A) in the expansion of /?(A) are related by the identity 

B,(e, A) = B,UL AEt*cg*, (6.17) 

which uniquely determines the correspondence between B,(g, A) and /?,(A). 

This allows us to obtain the main result of this section. 

PROPOSITION 6.3. For o E Y(R), we have, as h -+ 0, 

d;’ tro(H,)-h-“(a,+a,h+a,h2+ ..+), 

with 

(6.18) 

a,= I 415lf+ W)) & dx. 
T*M 

Proof: By (6.14k(6.15), we have 

d;’ tr a(H,) = /?(A + 6) (6.20) 

with 

P(n)-P&)+B,(~) + .*.3 (6.21) 

where pi(A) is homogeneous of degree n-j in A. This proves (6.18). The 
leading term /?,,(A) is equal to the principal symbol of Tr, a( -A-‘,?,) at 
(e, ,I). By Proposition 4.2, this is given by 

We, Al=1 414 -’ L,(P, t + A)) W&p), (6.22) 
hop 
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where L, is the principal symbol of -L. Since 

Jw,5+J)= ItI:+ M2+(W- 1) IA2 

= bx+ V(x) M2T (6.23) 

we have 

&(e, J.)= 14” S,*, 4151:+ V(x)) d5 dx, (6.24) 

which proves (6.19). 

It is also of interest to consider the more general class of Schrijdinger 
operators 

H, = fi2H! + iha, + I’, (6.25) 

where X is a section of the vector bundle gad over M, defined by 

gad = p ’ Ad 9. (6.26) 

In analogy with (6.6), we have a vector field Y on P, tangent to the fibers 
of P + M, such that 

Y I4 w sum of d, copies of x1(X). (6.27) 

The flow generated by Y commutes with the G-action on P. Thus, we 
might attack the analysis of a(H,) by using 

A-‘(-L+A”2Y)Iqzsumofd,copiesofH, (6.28) 

in this case. A technical problem arises because AlI2 is not a pseudodif- 
ferential operator on P; its “symbol” is singular on Ij*P. We “resolve” this 
problem of a singular symbol by adding one more variable. 

Thus we work on P x S’, with 8, = a/a0 on CQ)(S1), D, = (l/i) a,. Also 
let a be a parameter, taking values in a small neighborhood of Iill I. We will 
make a partial replacement of A’/* by aD,. We set 

~==++(8-l)d~-16128+aa,r+Ka2a~, (6.29) 

where 

v= V-K. (6.30) 

K is a positive constant, and we assume V> K+ 1, so P> 1; in fact, we will 
suppose p is bounded below by a suficiently large constant; as noted 
before, this can be done without loss of generality, since one can easily 
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adjust (6.25) by adding a suitable constant. Then we replace the left side of 
(6.28) by 

-Ap’12(aDo)p1 Y. (6.31) 

If we set 

then 
%$,=(uEC~(PXS~):G acts like n,, DO=k), (6.32) 

provided 

-A-“*(aDe)- 2’[Iq.k~dl copies of Hh (6.33) 

h=I1+61-‘=(ak)-‘. (6.34) 

It is clear that the operator Y is strongly elliptic provided 8> 1 and K is 
taken to be sufficiently large. Furthermore, if r is greater than a sufficiently 
large constant, we can guarantee that -9 is positive definite. 

The operators LZ’, A, and Do all commute, and we have 

a( -Ap1’2(aD,)-1LY)=y(&??, ,/m, aDo) (6.35) 

with 
Y(P, v, tl) = a(P*/lv* - P*l”* ?I. (6.36) 

Given d E Y(R), y is C” on R3 except for the union / of the lines (0, 0, q) 
and (0, v, 0) tf, v E R, on which y is generally singular. Since we are 
interested in functions on P x S’ on which A’12 -aD,, we can make the 
following construction. The closed conic subset W of R3 defined by 

q = Iv* - p’21 l/2 

intersects the set e only at the origin (0, 0,O); thus we can pick a function 
b E Cw( R3\ (0, 0, 0)), homogeneous of degree 0, equal to 1 on a 
neighborhood of V, and equal to 0 on a neighborhood of 4. If we set 

‘yh v, v) = w4 v, v) rh VP ?I? (6.37) 

then 7 E C”(R’\ (0, 0, 0)), homogeneous of degree 0, and it follows from 
(6.33) that 

y(G, &%%& aD,) Is*., w dx copies of a(H,) 

provided (6.34) holds. Now we have 

y’ (G, ,/m, aD,) E OPS’(P x S’). 

(6.38) 

(6.39) 
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Also it is easily verified that its complete symbol vanishes to infinite order 
on the orthogonal complement to the fibers of P x S’ --f M. Thus we can 
apply Tr, x S1 to (6.39), obtaining a bi-invariant operator in OPS”(G x S ‘). 
Here o! enters as a parameter, and all quantities are smooth in a. Taking 
a = )1+ 61 /k with A= kl, so that (6.34) holds, we have the following exten- 
sion of Proposition 6.3. 

PROPOSITION 6.4. If H, is given by (6.25), o E Y(R), then, us ii + 0, 
dy’ tr a(H,) has an expansion of the form (6.18), with 

a, = 
I Ml:+ (J~P), 1) + v(x)) dU5, P), (6.40) 
b’P 

where X(p) is the section X in (6.25)-(6.26), regarded us a function on P 
with values in g, and ~=~,/~~,~. 

7. QUANTUM CHERN FORMS 

Let Y be a parameter space for a family of Hamiltonians H, = H,,(y). If 
Hfi is of the form -ti*d + V(x), then the Riemannian metric on M, hence 
the Laplace operator d, and also the potential function V(x), can depend 
on y E Y. In the case H, = HA arises from a gauge field, the gauge field can 
also depend on YE Y. We might write HI,(y) = -h*d( y) + V(x, y), for 
example, in the case of scalar fields, but we will usually suppress the 
y-dependence in our notation. We will associate a family of differential 
forms on Y, depending on the parameter A, and consider the semiclassical 
limit #i + 0. 

We start with a description of curvature and some characteristic classes 
for a certain class of vector bundles on a smooth manifold Y. Let F be a 
Hilbert space, and let P(y) be a smooth family of orthogonal projections 
on F, with range EY. This gives rise to a smooth vector bundle E + Y, with 
fibers E,,. E is a subbundle of the trivial bundle Y x F. A section of E is a 
special case of a function on Y with values in F. If X is a vector field on Y, 
u a smooth F-valued function on Y, we denote by D,u the componentwise 
X-derivative of u. Then a connection on E is defined by 

VXU(Y) = J’(Y) DAY), u a smooth section of E. 

The curvature of this connection has the intrinsic definition 

(7.1) 

QW,, X*b= c~x,~~,,l~-~~x,,x~,~~ (7.2) 

where X, are smooth vector fields, u a section of E. Thus, 52 is an 

580/83/Z-5 
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End(E)-valued 2-form on Y. Gauss’ formula for curvature (in Cartan’s 
notation) reads 

Q=PdPr\dPP. (7.3) 

A set of characteristic classes is defined as follows. Suppose the fiber 
dimension of E is K; say E, is a complex vector space of dimension K. Let 
p(A) be a polynomial defined on the space of K x K complex matrices, 
homogeneous of degree e, which is invariant under conjugation 

p(BAB-‘) = p(A) 

for any invertible matrix B. Then there is naturally defined 

P(~h a 2/-form on Y. (7.4) 

The form p(Q) is closed. It will be worthwhile to recall a proof of this. The 
End(F)-valued l-form 

r=dPP=(Z-P)dP 

is related to the curvature form by the identities 

(75) 

a/It=0 (7.6) 

and 
dG!=r A l2, (7.7) 

hence 
dQ=r A 52-Q A T. (7.8) 

Assuming p is homogeneous of degree e, we denote by q the L-linear 
function polarizing p, and the conjugation invariance of p when differen- 
tiated implies 

and hence 

1 q(A, .,., [A, B], . . . . A) = 0 (7.9) 

1 q(i& . . . . a A Z - 7 A f& . . . . a) = 0. (7.10) 

By (7.8), this gives 

and hence 

1 q(Q, . . . . dQ, . . . . 0) = 0, (7.11) 

dp(Q) = 0. (7.12) 
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Hence p(Q) defines a deRham cohomology class on Y. Furthermore, it can 
be shown that such a cohomology class is independent of the choice of 
connection on E (see [21]). The particular examples which we will take 
are 

p,(A) = trace A”. (7.13) 

The associated classes are [p,(Q)] E H2”( Y, C). The case G = 1 corresponds 
to 2ni times the first Chern class. Other characteristic classes are obtained 
as polynomials in the classes [p,(0)]. 

A particular case which gives rise to a line bundle is the following: Sup- 
pose H(y) is a smooth family of self adjoint operators and suppose e,(y) is 
a smooth function on Y such that e,,(y) is an eigenvalue of Z-I(y), with one 
dimensional eigenspace E,. For the resulting vector bundle with connec- 
tion, the first Chern class provides an analysis of Berry’s phase, as dis- 
cussed in [26]. 

We now proceed to set up a certain generalization of the notion of vector 
subbundles of F, of a connection, and of curvature. Let P(v) be a smooth 
family of self adjoint operators on F, not necessarily projections. We will 
suppose each P(y) has finite rank, though this hypothesis could be 
generalized; the hypothesis that each P(y) is Hilbert-Schmidt would be 
adequate. We continue to associate a “smoothed out curvature form” Q to 
P, by the formula (7.3), and “smoothed out characteristic forms” 

Pew) E 4 0 (7.14) 

with pe given by (7.13), i.e., 

p,(G) = trace Sz A . .. A Sz (e factors), (7.15) 

where the product Sz A ... A Q is an End(F)-valued 2e-form, and the trace 
is applied to the End(F)-coefftcients. 

We apply this construction to the following situation. Let 

m v) = 4H,(Y)h (7.16) 

where 0 E C?(R) and H,(y) is a family of quantum Hamiltonians. Thus we 
consider the family of End(F)-valued 2-forms 

0, = dff,b’)) ~,MU~)) A ~,4%(~N OH,), (7.17) 

where F= L’(M) (or L2(M, En)), and we consider the family of 2k-forms 
on Y: 

Fi= trace[Q2, A ... A Q,] (k factors). (7.18) 
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The following describes the behavior of Fi as !i + 0. We concentrate on the 
gauge field case, though of course the case of scalar fields is included, with 
di. = 1. The form (7.20) in the scalar case was first observed in [2]. 

PROPOSITION 7.1. AsA+O, h=ll+61-‘, we have 

&‘FkN,?-mfk 
% fi &CO + $kl h + bklfi2 + ’ ’ ‘)Y 

where bkj are 2k-forms on Y. In particular, 

where, if Hf, is given by (6.1), with y E Y as a parameter, 

@(-G r, Y) = 415t:, + w, Y)). 

In local corrdinates on Y, 

{dy@, dy@} = c {a@/a.Yjv a@layk} 4, A dYk, 
j, k 

{ , } denoting the usual bracket of functions on T*M. 

(7.19) 

(7.20) 

(7.21) 

The proof of Proposition 7.1 is very much like that given in Section 6. 
Recall the operators on the principal bundle P + M, 

L=A+ V,(x)A~+(* V(x), A = -A;+ 1612. 

The operator L depends on YE Y as a parameter. Then, if C& is the sub- 
space of C”(P) on which G acts as copies of rcA, we have the restriction to 
9% of 

r=a(-A-‘L)d,o(-A-‘L) A d,a(-A-‘L)o(-A-‘L) (7.22) 

acting as an orthogonal sum of d, copies of 52,, given by (7.17). Here, r is 
a 2-form on Y, with values in OPS; l(P). Note that 

r=x ~(-A-lL)[~y,+A-‘L),~,o(-A-lL)] a(-A-‘L)dyj A dy,. 
Ak 

Moreover, f k I s,i is an orthogonal sum of dA copies of Q:. Therefore, with 
Fi given by (7.10), 

F:: = d,P,(l+ d), (7.23) 
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where 

(Tr, rk) ny = pk(A + 6) ny. (7.24) 

Here, Tr, Tk is a 2k-form on Y with values in the space of bi-invariant 
operators in OPS” - k(G), m = dim M, and hence Pk(A) is a 2k-form on Y 
with values in the symbol space S m-k(t). There is an asymptotic expansion 

Pk@) - PkOfA) + Pkl(lZ) + ‘.’ (7.25) 

with pkj(n) homogeneous in 1 of degree m-k-j, and hence (7.19) holds, 
with 

bko=Pko(~lI4). (7.26) 

Since p,JA) is obtained from the principal symbol of Tk, which is 

ikCrp2{dycp9 Q41k~ (7.27) 

where 

dx, 5,A Y) = 414 -* Ml:, + w9 Y) l4*)), (7.28) 

by the process described in Section 6, the formula (7.20) follows, and 
Proposition 7.1 is proved. 

Having characterized this semiclassical limit, we note an important con- 
trast with the characteristic classes described in the beginning of this sec- 
tion. Namely, the forms Fi defined by (7.18) are not generally closed. In 
fact, the proof that the characteristic forms associated with a connection on 
a vector bundle are closed described in (7.5~(7.12) uses the identity 
P= PP in an essential way, an identity which does not generally hold for 
a(H,(y)). Similarly, the forms I&,, in (7.20) cannot be expected to be closed. 
In the case k = 1, we have 

d,,blo=2i 
s @d,,@ A {d/D, d/B} dt dx. (7.29) 

T.A.4 

Note that d,{@, d,,@} = Id,,@, d,,@}, but there is no reason to conclude 
that (7.29) vanishes. Of course, if dim M= 2k, then Fk is closed, and so are 
all the coefficients in the expansion 7.19. 

We can also treat the more general case where H, is given by (6.25), with 
YE Y as a parameter. In that case, using Proposition 6.4 in place of 
Proposition 6.3, we see that the expansion (7.19) continues to hold, with 

!h= ik jbeP (@‘{d,@, dy@}lk WC, p), (7.30) 
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@(P, 5, ~,Y)=~M12,,y+ (WPY Y), 0 + WY Y)). (7.31) 

As before, fi = 2, /II, I. In (7.30) the Poisson bracket on h* P is used; the 
formula could also be written in terms of symbols defined on the WGS 
bundle. 

As remarked to us by A. Connes, one could replace the four ds in (7.17) 
by four different functions in 9’(R), cri, . . . . g4, and obtain a similar 
asymptotic expansion in this more general case, by the same arguments. 
More generally, we can replace the 4k cfs in (7.18) by ei, . . . . a,,; the 
resulting object defines a current. 

8. ERGODIC CLASSICAL MOTION AND QUANTUM CHAOS: 
SCALAR FIELDS 

In this section, we prove the following result. Let M be a compact 
Riemannian manifold, with Laplace operator A. Let ei(ri), N(h, Z), n(fi, Z), 
pTi”, mf, etc., be as in Section 3, with L = A. As before, we take VE C”(M), 
V> 0. Given a compact interval Z, we set 

where 

@(Z)= ((x3 5): Pvk 04 (8.1) 

P&P a= KlZ+ W). (8.2) 

We will assume that 

pV(x, 0 has no critical points in 0(Z). (8.3) 

THEOREM 8.1. Let a(#~, x, 5) E R’(M) be given, of the form a(h, x, <) = 
a(x, #it). Assume that there is un interval 73 Z such that, for almost all 
b, 5) E om, 

lim T-l ’ 4(exp Wk 5)) dt = ~a(~v(xp 0) 
T-CD f 0 

= 4x3 C), (8.4) 

where Y=(p) is the average value of a(x, [) on the surface pV(x, <) = p, with 
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respect to the natural Liouville measure, and X is the Hamiltonian vector 
field 

X= HA. (8.5) 

Then we have (for any E > 0) 

lim N(h,Z)-‘card j~n(ti I)* 1 ad@-- !PO(ej(h)) <E 
h-i0 

{ , .( / ]=I. 03.6) 

The property (8.4) holds for any a(x, tit) E R’(M) if the flow generated 
by X is ergodic on (pJx, 5) =p} for almost all p ET On the other hand, 
even if this ergodicity fails, (8.4) may hold for certain interesting a(x, <), if 
not for all such functions, and it seems worthwhile to phrase Theorem 8.1 
in this general fashion. 

Theorem 8.1 is similar to the main result of [14], but is differs in that we 
consider a fixed interval of energies rather than a family of intervals shrink- 
ing to a single point. Our proof of Theorem 8.1 follows along the lines of 
[lo, 143; we give the proof principally as a warm-up for the arguments of 
the following section. 

Adapting notation from [14], we set 

aj” = 
I 

a d$ - YO(ej(h)), 

bT,=j (a- T-’ JOT (aoexp tX) dt) dp;, 

and 

1 T( 
0 

a.exp tX)dt- ul,(p,(x, 5)) d$ 

= I l&h 511 4;. 

(8.7) 

(8.8) 

(8.9) 

We also get 

(8.10) 

The aim of the proof of (8.6) is to show that la;1 < E for most Jo n(ti, I), if 
h is small, and we approach that via the estimate 

Ia;1 < lbTTI + &‘+ ldj”l. (8.11) 
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To estimate Z&, we write 

where AF(fr) E OPRY ,,(M) is the family associated with A(fi) = a(fi, X, D) E 
OPR’(A4) via the Friedrichs symmetrization process, discussed in Section 3, 
and A:(h) E OPRy,,(M) is similarly associated with a,(~, fr<), where 
a,(x, <) = a((exp tX)(x, <)). As before, H, = -ti2d + V. By Proposition 3.1, 
we have for any given T the estimate 

lb; A G C,h, (8.13) 

and hence there exists h, (T, 5) > 0 such that 1 bl”, TJ < ~/3 for all j E /1 (Zi, I) 
provided Zi c h,( T, 5). 

It is in the estimate of (8.9) that the hypothesis (8.4) comes in. We have 
ET(x, 5) uniformly bounded on O(Z), and as T + co, EAx, 0 + 0 a.e., with 
respect to the smooth measure d vol(x, 5). Thus, for any 6 > 0, we can pick 
To = T,(6) such that 

s IE,k 01 d VW, 47 <h/3. (8.14) 
@(I) 

Now the weak convergence result (7.48) implies that there is an 
h2( To, 6) > 0 such that 

I I&,(x, 01 W <U for fi < h,( To, 6). (8.15) 
a0 

Since rnf is the mean of the measures $’ for Jo LI(!z, I), this says 

(8.16) 

for fi <h,(T,, 6), given To large enough that (8.14) holds. Thus, by 
Tchebicheffs inequality, the proportion of Jo n(fi, Z) such that 

Ic;,I <e/3 (8.17) 

is greater than 1 - 6, provided S < ~~19 and h < h2( To, 6). 
To complete the proof of Theorem 8.1, we estimate (8.10). Note that 

hypothesis (8.3) implies !?Jp.(x, 5)) is C” on U(Z). In fact, it is C” on 
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O(7) 3 O(Z) for a slightly larger interval z Let us temporarily suppose 
a(x, 0 is actually supported in O(T). In that case, we also have 
44 5) = ya(~dx, 0) in C;(N)), i.e., Y0 E C?(l). In this case, recall that 

f 4x, 5) d/.$ = (crF(fi, x, D) qpi”, cp,“, 

= (4% x, D) vi”, vi”, + W), 

where ii(f& x, 5) = ti(x, ri<) = !Z’JZi* lrlf + V(x)), which 
OP z’(M). Now the functional calculus gives 

yaw/J = 4% x, D) mod OP C-‘(M). 

Thus (8.18) yields 

I @x, 0 d$ = (YaW,) vi”, cp)) + 0th) 

(8. 18) 

belongs to 

(8.19) 

(8.20) 

and the inner product on the right is of course just Ya(ej(ti)). 
Putting together our estimates of (8.8~(8.10), we see that the desired 

conclusion (8.6) holds whenever a(x, <) belongs to C,“(O(r)). But the 
general case of a(x, tit) E R’(M) can be reduced to this, by the following 
argument. Fix p E C;(?) such that p = 1 on a neighborhood of Z, and 
consider p(H,) E OP L”. Now let 

Ul(X, 43 = 4x9 5) P(PY(X, 5)) E cwm. (8.21) 

Set a,(& x, 5) = a,(~, At) EL”‘(M). Then (8.6) holds with a replaced by ai, 
and 

Thus 

~I(~, x, D) = 4fi x, D) pW*) mod OP z-‘(M). (8.22) 

I ud~~=(u(~,x,D)cp:,cp:)+O(fi) 

= (4% x9 D) PW,) cp,", cp,", ifjEA(Zr, I) 

= u,d$+O(fi) I (8.23) 

and 

yJejV)) = y,,(ej(fi)) ifjEA(tt, I), (8.24) 

so Theorem 8.1 is proved in general. 
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We make a few complementary remarks on Theorem 8.1. When V= 0, 
the flow generated by X is the geodesic flow on T*M, identified with TM 
via the Riemannian metric, and thus (8.4) holds for all a E R’(M) if and 
only if the geodesic flow is ergodic on each nonzero constant energy surface 
in T*M, i.e., on the unit sphere bundle. It is the content of the paper [lo] 
that (8.6) holds in such a case. We remark that if M = T” is a flat torus, 
such ergodicity obviously fails, but nevertheless the hypothesis (8.4) does 
hold for a certain class of a(x, r), namely when 

4x, 5) = 4x). (8.25) 

Indeed, in such a case, the limit on the left in (8.4) is equal to the mean 
value of a(x) over T” for all 5 = (cl, . . . . ?j,) for which the rj are pairwise 
incommensurable, which is almost everywhere on T*T”‘. Thus Theorem 8.1 
applies to all multiplication operators by a E Cm(Tm). This says that, 
except for a sequence of density 0, the eigenfunctions of LI on T” are equi- 
distributed over T”, consistent with the obvious fact that 

spans the eigenspace of -A with eigenvalue 1, and all these eigenfunctions 
have constant modulus. However, Theorem 8.1 applies to an arbitrary 
choice of basis for such eigenspaces, and, especially for large m, there may 
be many such choices, so the conclusion of Theorem 8.1 may not be com- 
pletely obvious in such a situation. On the other hand, when M= S”, the 
standard sphere, if u(x, r) is of the form (8.25), it need not follow that the 
left side of (8.4) is equal to 5(x, r) for almost every (x, 0, and indeed there 
are a good many spherical harmonics concentrated near the equator. 

In any case, it is worth remarking that there are often special classes of 
interesting symbols u(x, 5) for which (8.4) holds, even in the absence of 
ergodicity on constant energy surfaces, particularly since examples of 
classical Hamiltonian flows for motion other than geodesic flow on certain 
types of Riemannian manifolds, exhibiting such ergodic behavior, are hard 
to come by. Some recent examples which do exhibit such ergodicity are 
given in [18]. 

As further preparation for the result of Section 9, we produce a variant of 
Theorem 8.1. Observe that, with h = k-l, the eigenfunctions cp; of 
H,, = -fi2A + V with eigenvalue ej(fi) correspond to the functions 

~j,)j,k=~)(x)eik’B~Cm(MxS’) (8.26) 

which are simultaneously eigenfunctions of L = A + V(x) 8; with eigenvalue 
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- k2ej(k-‘) and eigenfunctions of DB with eigenvalue k. Note that L and 
Do commute and L is elliptic on M x S ‘. The condition that ej(Zi) belong to 
the interval Z= [a, b] is equivalent to the condition that (k[ej(k-‘)]1’2, k) 
belong to the wedge in R2, 

W,=((A,~)ER~:A>O,(&)~EZ}. (8.27) 

Thus our problem can be translated into a problem of considering the 
asymptotic behavior of the joint spectrum of the pair (fi, Do) within 
the wedge W,. 

If CI(X, l) belongs to C;(cO(T)) as above, we have a@, x, <)EL”(M), and 
also b,(x, 8, <, A) = u(x, l/A) E S”(M x S’); let us denote the associated 
operator in OPS’(Mx S’) by B,; if BI is obtained by Friedrichs sym- 
metrization, then the measure $, restricted to Co(T), satisfies 

if ti = k-l, by the construction of (3.42k(3.44). Note that the hypothesis 
(8.3) is equivalent to the following hypothesis on the mapping 

,Q: T*(MxS’)+R2 (8.29) 

given by 

Q(x, 65, A) = C,j’m, 11, (8.30) 

Q has no critical points in W(Z), (8.31) 

i.e., Q has surjective differential everywhere in W(Z), where 

WI) = Q-‘(W,) 
=((x,e,~,~):IZ>O,l~/~~L:+V(X)EZ). (8.32) 

Meanwhile, hypothesis (8.4) is equivalent to the hypothesis for b = b,, 

lim T-’ 
T-CO 

JOT b((ev tY)(x, t5, A)) df = %A,/-, 1) 

= &, 4 5, A), (8.33) 

for almost every (x, 8,<, A) in W(Z), where L,(x, 5, A) = I<\: + V(x) A2 is 
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the principal symbol of -L, @JP, q) is the mean value of b(x, 8,5, J.) over 
the (codimension 2) surface {+“m = p, A= q}, with its natural 
measure, and Y is the Hamiltonian vector field Y = HJZ;. 

The following is a restatement of Theorem 8.1. A generalization of the 
case of gauge fields will be proved in the next section. 

PROPOSITION 8.2. Gioen a, 6, us above, if hypotheses (8.31) and (8.33) 
are assumed to hold, then 

(8.34) 

Note that, by homogeneity, 

9. QUANTUM CHAOS AND ERGODIC MOTION: GAUGE FIELDS 

In this section our goal is to produce an analogue of Theorem 8.1 for 
gauge fields. As a first step, we will need the gauge field version of 
Propositions 3.2 and 3.3. Since we have gotten used to the notion of 
relating fi and 1, we will alter our notation a bit, replacing Hfi as in (2.12) 
by H,, 

HA=h2H’j+ V on C”(M Ed, (9.1) 

where 1 belongs to the lattice parametrizing the irreducible representations 
of G, and, as before #i = IL + 61- i. Therefore, with L as in (6.4), 

L=A+ V,(X)A;-[~~~ V(x), (9.2) 

an elliptic operator on the principal bundle P, and with A as in (6.5), 

A = -A;+ IS!‘, (9.3) 

we have, as in (6.6), 

-H,=A-‘L (9.4) 

on the subspace QL of Cm(P) on which G acts as copies of ?rl, a space 
which is isomorphic to a direct sum of dA copies of C”(M, E,). 
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Our replacement for a family in OPR’(M) which was used in the case of 
scalar fields is naturally obtained from an operator BE OPS’(P) which 
commutes with the G action. Clearly, if (T E Y(R), then 

Bo(A -‘L) E OPSO(P) (9.5) 

commutes with the G action. The restriction of B to the space gA c C”(P) 
produces a family of operators 

b(l, x, D): C”(M, E,) + C”(M, E,), (9.6) 

generalizing the notion of an element of OPR’. Note that 

tr b(l, x, D) a(H,) = d,J”(A + 6), 

where 

(9.7) 

Tr, Bo(A -‘L) nv = /?(A + 6) ny. (9.8) 

From (9.5) it follows that fib(A) E Y(t*), having an expansion 

BbW-Bfx4+/L(4+ ... (9.9) 

in terms bk-j(,I) homogeneous of degree m -j in A, with 

BiM= PI”’ I Bob 5+WIMltl;+ W)V vol(t,p). (9.10) 
h*P 

This simultaneously generalizes Propositions 6.3 and 3.2. Recall from 
(5.2k(5.6) that B,, the principal symbol of B, satisfies the invariance 
property 

Bob .g> < + 1) = Bob, t + Ad*d), (9.11) 

where we consider 5 E @,*P x T,*M, Iz E g*. 
We denote the eigenvalues of H;, on Cm(M, El) by 

cl(A) Q e,(A) G e,(A) d . . . (9.12) 

and let A(A, I) denote the set of e,(A) belonging to an interval Z= [a, b], 
N(1, I) the cardinality of A(& I), and cpj the assocciated normalized eigen- 
functions of H,: 

H,cpj = ej(l) cpj”. (9.13) 
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The generalization of Proposition 3.3 is 

,$nrn d, l IEGI + N(il, I) = meas O(Z), (9.14) 

for any fixed compact interval Z, where O(Z) is given as in (8.1~(8.2) by 

O(Z)= {(x, t)e T*M: Ill;+ V(X)EZ}. (9.15) 

The result (9.14) follows directly from (9.7)-(9.10), in the special case 
where B is the identity operator; in other words it follows from Proposition 
6.3. 

To each cp; satisfying (9.13), there is a d,-dimensional space of eigen- 
functions of A - ‘L in g,,, which we denote by Ej(n): 

-A-lL~j,,=ej(;l)~j,a for $j,i E Ej(n). (9.16) 

Pick an orthonormal basis for Ej(n), say 

$j,2.,! E Ej(A)3 1 <t<d,. (9.17) 

We can now define a family of measures Z$ on the unit sphere S(g.$) of the 
WGS bundle g,“d + M generalizing the notion of the measures $, as 
defined by (8.28). Let a E C “O(S(g,xd)); this gives rise to a function 
homogeneous of degree 0, a, E S’(g,xd), coinciding with a on S(g,xd). This in 
turn gives rise to an element b, E So(P), satisfying the invariance condition 
(9.11): 

b,=aooq, where q: T*P --f g,“d is the natural projection. (9.18) 

Using local coordinates, we have in the usual way an associated operator 
B,E OPS’(P), and we let B,F E OPSy,,(P) be associated with this by 
Friedrichs symmetrization. Then Z$ is characterized by 

(9.19) 

In analogy with (3.46), we define probability measures rn: on S(g,#d) by 

As a consequence of (9.10), we have 

(9.20) 

(9.21) 
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in the weak* topology of measures, where the probability measure @ on 
S(g$) is defined by 

Here, r: t)*P + T*M is the natural projection, so 

meas O(Z) = J d w5, PI, (9.23) 
r-‘(w)) 

and O(Z) is given by (9.15). In (9.21), b, is the function on T*P, obtained 
from aE Ca(S(g,#,)) by the prescription above (cf. (9.18)). 

To parallel the use of the form of Egorov’s theorem given in Proposition 
3.1 in the analysis of the term b; r given by (8.8), we recall the effect of con- 
jugating an operator BE OPS”(P) which commutes with the G action by 
eirfi, with L as in (9.2), or more generally the action of conjugating such 

B by eitM, given MEOPS~(P) self adjoint and G-invariant. As we have 
mentioned in Section 5, by Egorov’s theorem, 

B(t) = ei’MBe pi’M E OPS’( P) (9.24) 

for each t. Also, each B(t) is G-invariant. Since B is G-invariant, its prin- 
cipal symbol B,, defined on T*P, can be written in the form 

B,,=B,Xoq, (9.25) 

where q: T*P + g,“* is the projection mentioned in (9.18), and Bf is 
defined on the vector bundle g,“d + M, with symbolic properties. Similarly, 
if M, is the principal symbol of A4, we have 

M*=Mf~q (9.26) 

with MT defined on g ,“d. The flow on T*P generated by the Hamiltonian 
vector HM, is a flow which preserves the class of symbols of G-invariant 
operators, and it induces a smooth flow on the WGS bundle g$, whose 
generator we denote WM:. This flow preserves homogeneity, so it induces 
a flow on the unit sphere bundle S(g$), whose generator we denote S,:, 
or, loosely, S,,. We note that differentiating B,f with respect to W,+ 
produces the Poisson structure on the WGS bundle g$, described ih 
Section 5, and, from a different perspective, in [ 111. The significance of this 
flow for the description of (9.24) is that, by the result of Egorov on the 
principal symbol BA of B(t), we can write B& = BAX 0 q with 

B;# = B,f 0 (exp fSM,). (9.27) 



310 SCHRADER AND TAYLOR 

Recall that exp tS,,,, is the WGS flow on S(ga#d) defined by the symbol M,. 
As a further preliminary remark for our main analysis in this section, we 

will find it convenient to use the following notation, in place of J a &:, 
sometimes. Namely, with a~ Cco(S(g,#,)), to which is associated 
ao~Cm(g,#,\O), homogeneous of degree 0, and also b,EC”(T*P\O), 
homogeneous of degree 0, it is convenient to regard pj as acting on each of 
these functions, so we make the identifications 

j ad/$= j a,du$= j b,du;. (9.28) 

Which notion is used should be clear in context. In the second integral in 
(9.28) we think of $ as a measure on the o-algebra of Bore1 subsets of 
g$\O which are invariant under the radial action on the fibers of g,“d + M, 
and the third integral in (9.28) we think of $ as a measure on the 
a-algebra of radially invariant Bore1 subsets of T* P\O which are also 
invariant under the G-action: (p, 5, A) .g = (p . g, 5, Ad* g-IL). We make 
the same conventions for rnf and ti :I. Note that tif1, pictured as defined on 
a a-algebra of subsets of T*P\O, is supported on a submanifold of 
T*P w b*P x g*. In fact, it is “supported” on h* P x (I!$, where (?A, c g* is 
the co-adjoint orbit containing 1, / 11 i 1; more precisely it is supported on 
the union of the set of rays in T*P\O through points in h* P x O,,. 

We now present the following generalization of Theorem 8.1. 

THEOREM 9.1. Let I, be fixed and let Z = [a, b] be a compact interval in 
(0, co). Let BE OPS’(P) be G-invariant, with principal symbol B,. Let 
a(Z) c t)*(P) denote the inverse image of O(Z) under b*(P) -+ T*M. Assume’ 
that, for almost all (p, 5) E a(Z), we have 

lim T-’ i ’ B,((exp tX)(p, t, h)) dt = Bob, 5, iI) T-a, 0 

Here, @Bo(P, 2) is assumed to be homogeneous of degree 0 in 
(ji,X)eRxg*\(O,O), C” in a neighborhood of II x { 1, }, where 
I, = [&, fi], 1, = 1,/11,1. It is also assumed to satisfy the identity 

@t&j, Ad*& = @a@, A) for all g E G. (9.30) 

In (9.29), X is the Hamiltonian vector field, X = HA. Then we have 
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lim N(I,Z)-‘card 
“+a0 

1 BOdpj-GBo(lll ej(n),n) 

(9.31) 

where A= nA, in (9.31). 

Proof: Parallel to the proof of Theorem 8.1, we adopt the following 
notation: 

bjT=l (Bo- T-l JboT (B,oexp LX) dt) dpj, 

and 

Note that 

G= 11+61 ,/$& on Ej(l). (9.36) 

Since @&Ii, X) is homogeneous of degree 0, and smooth near I, x {AI}, it 
follows that 

@&(I4 &m)-@&JIA+4 &mw (9.37) 

as n+ co, with I=nl,. 
As before, the goal of the proof of (9.31) is to show that Ia$ <E for most 

j E /l(n, I) if 1= nl, , with n large, and we tackle this using 

Ia;1 < lbfTI +Cj,+ Id41 J ’ 
(9.38) 

To estimate biT, write 

b;,=d,-’ 1 T-’ 5,’ ([ei’J-LBFe-irfi-B;] $j,)i.l,c, @&dt. (9.39) 
e 

580/83/2-6 
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Here BF is a Friedrichs symmetrization of B, as in (9.19), and Br is the 
symmetrization of B,, which for each r is an element of OPS’(P) with 
principal symbol B,oexp 0’. By Egorov’s theorem, for each I, 

D(t)=e”J=BFe-“J-L-B+OPS#‘). (9.40) 

Consequently D(t) ~~EOPS~,~(P). By (9.36) that implies that, for 
any T 

lb;.I<c,lA+61-‘, (9.41) 

for all j E /1( 2, I). This is an adequate estimate for bj T. 
As before, the hypothesis (9.29) figures into the estimate of c$ We have 

E,(p, 5, X) uniformly bounded and, as T+ co, E,(p, <, X) + 0 almost 
everywhere with respect to the measure fiA ,I, since the invariance property 
EAp .g, 5, X) = E,(p, <, Ad* gA) together with (9.30) shows that the con- 
clusion of (9.29) holds with 1, replaced by Ad* g,?., for all gE G. Thus, for 
any s2 > 0, we can pick To = TO(.sZ) such that 

s I E,(p, 5, x)I dfi)’ < ~213. (9.42) 

Now the weak convergence result (9.21) implies that there is an 
h,( To, Q) > 0 such that 

s I E,(p, 5, X)1 dm: < ~~1’2 for II+SI-‘<h,(T,, Q). (9.43) 

In other words, 

N(A, I) - l (9.44) 

for IA + 61 --I < h,(T,, sZ), given To large enough that (9.42) holds. Thus the 
proportion of j E A(1, I) such that 

I$ ToI < E/3 (9.45) 

is greater than 1 - ,/&, provided s2 < s2/9 and IA + 6[-’ < h,( To, s2). 
We turn to the estimate of dj. We first suppose B, is supported on a 

small conic neighborhood of a(Z) x { lJ, Ad* gfi, }, so that the function 
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is C” on the support of B,, (outside the O-section of T*P). We have 

where BF is an element of OPSy,,(P) with principal symbol (mod S,,'(P)) 
equal to B,, given by (9.46). As in the proof of [30, Chap. 12, Theorem 
6.31, by the invariance (9.30) for @&I, I), together with a theorem of 
Matner [20], we can write 

c&/z, 4 = a&, 4)5 ..-, 4)), (9.48) 

where Oj(X) are smooth on g*\O, homogeneous of degree 1, and invariant 
under Ad* g, g E G. Thus the functional calculus, as developed in [30, 
Chap. 121, implies 

BF+j,A,t = ~Bo(IA^+~l~,~)~,,~.c+o(l~+sI-'). (9.49) 

This gives 

Jd;l<CIIz+61-‘, (9.50) 

under the hypothesis above on the support of B,. We can remove this 
hypothesis by the same sort of argument as that used in the proof of 
Theorem 8.1, to get (9.50) in general. The estimates on b&, c& and dj 
established above complete the proof of Theorem 9.1. 

Theorem 9.1 can of course be reinterpreted, in terms of symbols and 
flows on the WGS bundle gf , in a straightforward fashion. Also the results 
of this section extend readily to Schrodinger operators of the form (6.25). 

APPENDIX A : 
LIST OF SYMBOL CLASSES FOR PSEUDODIFFERENTIAL OPERATORS 

Symbol class Reference 

(0.42) 
(0.43) 
(2.1)-(2.2) 
(2.3) 
(2.5) 
(2.18), (4.8) 
(2.19) 
(3.3) 
(4.8) 
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APPENDIX B: OTHER SYMBOLS 

Symbol Reference 

(0.4) 
(0.5), (6.3) 
(0.33), (6.6) 
(0.30), (6.4) 
(0.31), (6.5) 
(2.17) 
(2.19), (3.5) 
(3.36) 
(9.12) 
(3.38) 
(8.1), (9.15) 
(3.39) 
(9.12) 
(3.40) 
(9.12) 
(3.41) 
(9.13) 
(3.42) 
(3.44) 
(9.19) 
(3.46) 
(9.20) 
(4.3k(4.4) 
(4.7) 
(5.9) 
(5.15) 
(5.16) 
(7.17) 
(7.18) 
(8.7) 
(8.8) 
(8.9) 
(8.10) 
(9.32) 
(9.33) 
(9.34) 
(9.35) 
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