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Abstract

The Ocean Voyager exhibit residing at the Georgia Aquarium Inc. (GAI) is one of the largest reef gallon aquariums in the world,
with a capacity greater than 6.2M gallons. Reef aquariums are closed systems and must compensate by ‘turning over’ their complete
volume of water many times a day through biological, chemical, and mechanical filtration. Due to the Georgia Aquarium being a
non-profit organization, GAI sought to investigate ways to maximize efficiency and lower operating costs. This paper will focus
on using low-cost software solutions to perform trade space analyses and optimization directed towards the Ocean Voyager exhibit
and related GA Aquarium life support and energy systems.

The software solution herein demonstrates a top-down System of Systems (SoS) to subsystem modeling approach that provides
decision makers with interdisciplinary dashboard-level tools to visualize system design. The goal of the analysis is to provide
executive level decision-making support for designing or enhancing existing complex systems and SoS. The analysis was
performed as a capstone project by Georgia Tech graduate students progressing from cradle to finish in just 9 weeks to show the
benefits of systems engineering to Georgia Aquarium staff. Integrating software SE tools into a single, aggregate model enables
project engineers and decision makers to direct design directions with confidence.
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1. Introduction

Georgia Aquarium Incorporated (GAI) is a public aquarium in downtown Atlanta. GAI operates as a 501(c)3 non-
profit organization. GAI relies on corporate sponsors, individual donors, volunteers, and public ticket sales to sustain
operations. “The mission of the GAI is to be an entertaining, educational and scientific institution featuring exhibitions
and programs of the highest standards, offering engaging and entertaining visitors’ experiences, and promoting the
conservation of aquatic biodiversity throughout the world” [1]. In executing this mission, GAI also has to be a good
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steward of their community contributions and thus desires to investigate ways to both improve efficiency and
incorporate green energy solutions.

The Aquarium itself is a System of Systems (SoS) constructed of more than sixty interconnected fresh and salt
water exhibits funded by multiple sponsors. The Aquarium's purpose was established at the onset, but the
requirements, exhibits, energy technology, and hydraulic technology have changed over time. When GAI opened in
2005, it was unprecedented in that it was the largest Aquarium in the world. Perhaps due to its unprecedented water
volume, when it opened to the public there were limited specific energy consumption goals and there were certainly
no considerations for the use of green energy. Since its inaugural opening, the Aquarium has added exhibits, increasing
energy demand and the energy cost keeps increasing. Newer aquariums of similar size are more efficient and have
moved ahead with a host of green energy initiatives. The goals for GAI are not only to reduce their energy footprint
and save money but also to become a leader in the use and education of green energy.

The GAI displays characteristics of an “acknowledged” SoS [7]. GAI has recognized goals, a Board of Advisors,
and resources for the SoS, however, the constituent systems retain their own independent ownership, objectives,
funding, and sustainment approaches [2]. The Georgia Aquarium architecture is diverse due to the number of sponsors,
the number of exhibits, the unique requirements of each exhibit, and the complexity of sustaining marine wildlife. The
aquarium architecture is organized around 7 themes: Ocean Voyager, Tropical Diver, and so on. However all exhibits
share some common attributes: each of these themes includes a large-tank exhibit along with any number of smaller
tanks and interactive displays. The general architecture for large-tank exhibits is shown in Figure 1. In this figure,
each large-tank exhibit consist of actors (e.g., animal(s), corporate sponsor, researchers, and so on), an energy system,
a water source, and a wastewater plant. Only the Ocean Voyager is shown here because it is the principal system of
interest in this study. The other 6 themed exhibits have a similar block diagram description.
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Figure 1. Georgia Aquarium Domain Level Block Definition Diagram (SysML)
2. Problem & Solution Strategy

Problem:

Using real world data, how can the Georgia Institute of Technology (GIT) Professional Masters in Applied Systems
Engineering (PMASE) Team AquaTech, recommend changes to increase GAl's energy efficiency by 5%
(threshold); 10% (objective) and lower operating costs? A secondary goal is to learn what the viable "green"
alternatives and respective implementation costs for future upgrades. High-level constraints and project details are
listed in the project overview, Table 1.
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Table 1. Project Overview

1) Budget for proposed solution(s): $200-$400K

Constraints:
2) ROI < 2.5 years
Timeline: May 1 - Aug 1, 2014
What: GIT PMASE Capstone Project
Members: GIT PMASE Team AquaTech

The nature of the problem involves the aggregation of large multi-system design spaces and different engineering
and cost simulation analyses into one coherent and synergetic decision making support process. Obtaining this solution
calls for architecting a decision support process which would enable informed decision making across all stakeholders.
The decision support process in making a system more efficient within technical and financial constraints can be
complex and ideally would require the following:

o Accessible: easy to use processes allowing non-technical stakeholders to be included

e Transparent: trade off analysis is repeatable and unambiguous.

Traceable: all requirements with an impact on the decision making attributes are understood by the decision
makers, allowing them to adjust targets and constraints appropriately

Real Time: promote “what if” scenarios and “decisions in the board room”

Robust: in that uncertainties can be represented and their impact accounted for

Inclusive: in that design variables and measures of performance are linked across each system

Accurate: quantitative data and simulation driven, qualitative only when necessary (soft factors, etc.)

Cost Effective: use open source languages and technical libraries

Various system engineering and design optimization approaches allow supporting such qualities and the critical
issue is to successfully coordinate these approaches in a synergistic manner. While each approach has its unique pros
and cons as shown in Table 2, the authors suggest an implementation of a "best of many" systems engineering
disciplines using a real world problem. A roadmap is provided in Figure 3 for future improvements of these processes
so they can be applied across a wide range of problems of similar complexity.

The executive level decision support tool often needs to be visual and simple to understand by abstracting much of
the lower level modeling and simulation details away. The use of sampling, applying constraints and visualizing the
design space is therefore a critical factor in allowing decision makers to be actively involved in the analysis, promoting
consensus via common understanding of the process and the system behavior under study. Concurrently, detailed
optimization methods can be employed to find a solution in a faster timeframe and handle highly complex behaviors
existing between subsystems more systematically than a manual approach; especially when uncertainties are added
into the mix and the number of variables becomes prohibitive for easy synthesis and visualization.

While numerical optimization may find the ideal solution faster — some techniques like heuristics may get stuck in
local optima creating unease in letting an algorithm handle costly investment decisions without further checks while
others, such as Exact methods will require long run time which is incompatible with our real time decision making
support objectives. Stakeholders and decision makers prefer to be involved in, or at least have visibility in the analyses
and decisions beyond simply providing requirements definitions. Asking them to implement the solution identified by
a “black-box” optimization algorithm is asking a lot. Additionally, the identification of unrealistic and competing
requirements is achieved and hence readily mitigated early on by the stakeholders. Complex Algorithms also require
an expert user, costly solvers, to ensure that global convergence and repeatability in the proposed solution are achieved
while at the same time maintaining the ability to examine the solution’s sensitivity across uncertainties in a large
design space. The process combines these approaches in a manner that helps detect inconsistencies and double checks
solutions:

¢ QFD for example enables expert knowledge to provide high level directions for the design, hence providing for
an initial simplification of the problem (reducing number of design variables for example) for the user so as to
mitigate the overwhelming complexity of a problem (also applies to computing resources).
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Greedy algorithms allow Stakeholders to develop understanding over the design variables and their effects on the
design space. Using a user driven iterative process around sampling the design space, setting constraints (top
down and bottom up) and filtering for feasible designs down to a single or set of design solutions, the user maps
out a decision process that is visual, reproducible and explainable. Our implementation combines different Global
(Exact) Optimization techniques such as adaptive search and exploratory methods in a way that allow the user to
be part of the process, hence deviating from Exact methods fully automated nature.

Direct numerical approaches allow for the automation in finding a unique solution. Depending on the design
space characteristics (linear, non-linear, discontinuous, etc...) these techniques may provide accurate results
rapidly. However they may also provide a local optimum which can mislead the decision maker in the case of
Heuristics techniques.

Therefore, in mimicking exact methods processes in adding adaptive and exploratory phases to the optimization
process, our proposed process can alleviate such problems. For example, the exploratory nature of the process
can handle discontinuous space more effectively. However, the "black box" nature of this process may still not
provide the full confidence in the solution that one may require, which led the team to choose for a path of
collaboration between the techniques as opposed to choosing either extremes. Additionally, the algorithms'
achieved speed also enables other types of analysis to be included, such as sensitivity analysis to test for
robustness which is critical to decision making.

Table 2. Methods Comparisons Matrix

Methods Example Transparent.
Greedy Visualization of design
Algorythm space
(Data Farming (point clouds, mulit-
and Filteringor | sctatter matrix, filtering
"brute force”) | _Space with cosntraints
AoA QFD
Method of Feasible
Direction (MMFD),
Direct Sequential
Numerical | Programming (NLPQL),
Techniques Mixed Integer
Sequential Quadratic
Programming (MISQP)
e Complete, Adapative
Optimization | Search, Branch and
Bound

Legend . 2 =
9 Reduced Neutral Improved

Defining the Aquarium SoS architecture and subsequently establishing a SoS solution architecture is necessary

because it decomposes the Aquarium’s systems into individual modules which ultimately help manage the complexity
due to the number of financial sponsors and the number of exhibits (Figure 2). The SoS Architecture also fosters the
development of models and simulations as new technologies, modules, and interfaces emerge.
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Figure 2. Georgia Aquarium Energy SoS
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This decomposition is not easy because the Aquarium sometimes presents a radically different view to each

stakeholder and these views must be integrated by a large number of highly-specialized disciplines. A list of the
principal disciplines is provided below:

Mechanical Engineering

Electrical Engineering

Software Engineering

Industrial Engineering Systems
Information Technology

Marine Wildlife Conservation

Cost & Financial Modeling

Human Factors / Cognitive Systems

For analyzing the project problem and determining focus areas for optimization, PMASE Team AquaTech chose

to first establish a SoS architecture. This resulted in an improved allocation of team-member resources by forming
tiger teams to address the potential efficiency improvements that could be obtained from the following elements:

Solar Element: Investigates solar mounted roof arrays, solar covered parking, solar roads

Wind Element: Investigates roof mounted variable direction mini-wind turbines

Hydraulic Element: Scoped to Ocean Voyager exhibit focusing on pump design, components flow losses and
overall hydraulic infrastructure

Pedestrian Kinetic Energy Panel Element: Investigates installing Kinetic Energy Panels (such as those
produced by the British company, Pavegen) in specific areas of the aquarium to create electrical energy from
visitors walking on the panels.

Lighting Element: Investigates use of lighting technologies including 85W and 120W LEDs and the use of sensors
to automatically control lighting in low traffic areas

Demand Response: Partnering with energy providers like Georgia Power, a Southern Company, to reduce
electrical consumption during peak demand.

3. Heuristics

Heuristics are simple phrases that are learned by experience and passed down to others to help guide the SE process.

Design, budgeting, and other factors that influence design processes, are not always intuitive. Sticking to key heuristics
was vital to help Team AquaTech stay on track within a compressed timeline for deliverables. Derived heuristics from

external sources that can be applied to the GAI project are as follows:

Heuristic 1: “Systems engineering involves communications, critical to international partnerships, so before
worrying about technical interfaces, make sure the integrated product teams and communications bandwidth
between partners are optimal” [3]. The key is to make interfaces as simple as possible to maximize compatibility
among models at the SoS level. Decomposing the Cohort Capstone team into interdependent tiger teams was
essential for the engineering process, and ultimately, project success.

Heuristic 2. “Estimate using multiple methods” (analogy, parametric, etc.)” [4]. Use of a number of modeling
tools, varying from high level conceptual design and multidisciplinary decision analysis, to detailed, domain-
specific solutions. AnyLogic, SysML, Microsoft Excel, Flowmaster, JMP and Phoenix Integration ModelCenter
software packages were used to quantify uncertainty and determine areas for decision makers to make trade-offs.
While this toolset was later down selected to more cost-effective and readily available software solutions in order
to share the trade space tools with the customer, the analysis team leveraged as many options as possible upfront.
Heuristic 3: “Models can’t replace decision makers” [5]. Models are not reality, but instead act to help illustrate
and simulate specific areas of the project. Therefore, models cannot replace the insight or funding constraints of
decision makers. Their development helps the Aquarium decision makers to properly allocate funds to
technology alternatives, understand uncertainty and ensure primary goals/milestones are communicated across
the SoS spectrum.
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Based on the heuristics above, the authors propose that the following attributes in defining a decision support
process includes:

e A multi-layer system analysis — allowing technical specialists and decision makers to use a common, interlinked
environment so as to collaborate in reaching a solution to a common problem. For example, a complex technical
problem may generate different solutions across different “what if” technical scenarios (i.e. what if flow loss was
reduced by 6%). These what-if solutions could be used as inputs to an accessible cost model that a decision maker
could use to perform trade off scenarios and share findings. This process promotes transparency across
stakeholders.

e A concurrent environment allowing for visualizing of “black box” driven results (i.e., push the “optimize button”
and wait for the result) and user driven sampling and filtering exercises. This allows the user to compare their
results for consensus building but also allowing different views of the optimization space (e.g., suppose the entire
design space is too large to reasonably plot). The user can then enhance the running speed using fast greedy
algorithms to keep the user involved in a more collaborative and knowledge driven approach.

e An Open Source environment and low-cost, highly available software integration approach that is cost effective
and uses the immense wealth of smart libraries designed across the world.

4. Establishing a System of Systems Modeling Framework

For the current prototype, the team proposed a large set of processes, integrated some of these into the current
analysis, and provided a roadmap for further integration. The current prototype uses:

e A single Excel spreadsheet hosting several dashboards that represent each technical system’s design space
(Greedy Algorithm and cost models) and connects the individual Excel dashboards into a System of System
higher level visualization. Excel was chosen because everyone in the team (client included) is versed in its use.
Additionally, VBA provided the platform to implement sampling to drive the greedy algorithms process across
the dashboards.

e An Open Source optimization environment in Python — using a framework, such as OpenMDAOQO, which can
provide access to complex workflow designs (sharing data across system designs) and implements optimization
with uncertainties. The Python environment also has become widely used for data analysis. Since there are open
source solutions for converting to and from UML and Python, the implementation could be extended to help
manage the models and relationships in UML/SysML.

The framework to integrate the Python optimization with the Excel dashboards was created to allow the ability of
calling Python code from VBA (using libraries such as "xIwings") which provides a roadmap for future integration.
Additional requirements may be added later, such as allowing for collaboration via the web so that true concurrent
analysis can be run across remote users. The current solution focuses on quick turnaround for a specific problem in
the absence of such a user friendly but highly complex framework. The prototype was built in 10 weeks and was used
to solve a complex SoS problem without access to Software Developers or buying expensive optimization and
visualization software (beyond the simulation and modeling phase which required commercial physics based software
to be used within this timeframe). The following diagram depicts the process of integrating each subsystem model
into the following areas:

1. SoS level model and data

2. User Visual Interface

3. Optimization

4. Future integration improvement.

SoS modeling was organized into the staged approach shown in Figure 3. In this figure, the generic solution was
broken into four stages identified by the red boxes and numbered according to the order in which each phase was
addressed.
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Figure 3. SoS Software Modeling Framework Staged Approach (Stages 1-4)
4.1. Stage 1 - System & Subsystem Individual Modeling and Simulation (M&S), Response Surface Modeling

Systems within the Ocean Voyager were modelled and simulated using a diverse set of software tools. Different
tools are better suited for certain systems or system attributes. The software used to create the base data set are:

MATLAB/Simulink: Renewable systems (solar, wind)

Flowmaster: Hydraulic systems (PSK, Sand Filters loops)

Microsoft Excel: Cost Models to include SoS level investigation and individual dashboard designs
AnyLogic: Pedestrian / kinetic energy panel simulation

Input and output variables were selected so as to provide design specification changes to sub-systems based on
common and linked measures of performance (energy demand and energy generation). For example, the hydraulic
system for the Ocean Voyager was divided into two loops: “PSK” (protein skimmers) loop and “Sand Filter” loops
(which includes sand filters, ozone contact, denitrification and aeration towers). Measured data for flow rate and
pressure were used to correlate and create two baseline energy demand models in Flowmaster. These demand models
were parameterized to support a design of experiments (DOE) analysis over the following design and control variables:

e Pump Design Rated Flow, Speed, Efficiency and Head
e Pump Control Speed
e Components (PSK, Sand, Ozone...) flow loss Coefficients

The DOE matrix was designed to generate data for the creation of surrogate response surface models (RSM)
accessible to both the Excel Dashboard and the Python optimization processes. RSMs replace CPU intensive physics
based models with faster than real time models with minimal loss in accuracy. In order to obtain good fit, the DOE
space was sampled using 3-level full factorial (corners + mid-points) and a space filling Latin Hypercube (around 400
runs for PSK and 12,000 for the more complicated Sand Filter loop). The resulting data formed a surrogate model for
each output versus input relationship.

4.2. Stage 2 - Excel dashboard, visualization and data farming concepts

For business and non-simulation expert level decision makers, a set of Excel dashboards were created around the
individual systems. The systems represented the Aquarium system of system (SoS) architecture to allow exploration
of the design trade space using the "data farming" methodology. Using MS Excel is beneficial because high-level
decision makers already possess the skills to manipulate and understand MS Excel functions. The MS Excel approach
also provides visual plots of the analysis and that is much better than looking at a large dataset of numbers. The overall
goal of the dashboard approach was to provide an integrated environment for stakeholders to rapidly understand the
solution space and the impacts of requirements on it. This enables real time decision making around complex SoS
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architectures and provides a SoS user interface that allows for added/editable design parameters to be incorporated by
future users. The methodology for creating the dashboards has been outlined in the following sections.

4.2.1. Response Surface Model Integration

The RSM formulae outlined in stage 1 are imported into Excel. The dashboard contains the same design variables
with the same respective ranges as those used to generate the RSM formulae. This allows the Excel dashboard to
rapidly calculate the outputs based on the design variables. The same RSM formulae can be used in Python so as to
integrate into optimization with OpenMDAO.

4.2.2. Data Farming

The "data farming" algorithm samples the RSM (using uniform distribution sampling of the design variables). This
allows users to study the problem using a visual representation of the design space. The VBA "data farming" algorithm
could be augmented or replaced by the DOE driver capability in OpenMDAO if the two were integrated, which would
provide the capability to perform Latin Hypercube sampling. The user can then set constraints on the solution space
(flow constraints for example) and visualize which design variable satisfies those constraints. Ranking the feasible
solution for lowest power consumption provides the user with an understanding of how the system behaves.
Optimization is then used to refine if necessary and to check the solution. Other advantages of the Neural Networks
approach is the prohibitive cost of the CAE software and the difficulty of integrating them directly into the decision
support tool. Another key factor is that software such as Flowmaster and AnyLogic have a significant learning curve
which decision makers do not need to worry about. However, the simulation expert needs to choose the DOE input
variables' range that will cover the range of analysis as well as generate enough runs to produce quality RSMs that the
end user wishes to undertake.

4.2.3. Dashboard Development

Individual dashboards were built for the solar, wind, hydraulic, lighting, and pedestrian systems. Design (input)
variables such as turbine blade length, solar array surface area, and efficiency were used to investigate utility (output).
The dashboards permit users to investigate annual cost savings, annual power generation, and ROI based on user
constraint entries such as maximum investment budget and minimum annual power produced and design variables.
The hydraulic, solar, pedestrian, lighting, and wind dashboards were then integrated into an SoS dashboard to provide
the user with a tool that can select an evolutionary, mixed architecture and look at multiple design variables that factor
into cost and power. The dashboard for the GAI system of systems is shown in Figure 4. User input cells are
highlighted in grey (shown in top middle of figure). The output cells are highlighted in blue. At the top left, the user
can select the number of iterations to run the Monte Carlo simulation. The user can also adjust the design variables as
checked or unchecked (Boolean) during the run of the design space. Additionally, the user can adjust the design
variables with scroll bars. In the middle of the page, the user can select Hydraulics and Demand scenarios to simulate
three different demand levels. The user also can input constraints for the maximum cost, Return on Investment (ROI),
and energy savings. The output plots show the sub model design space and the SoS performance space for the ROI
vs. cost and energy generated (kWh) vs cost.

Figure 4. Example GAI System of Systems (SoS) Dashboard
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4.3. Stage 3 - OpenMDAQO and Utilization of Python wrappers

OpenMDAO was chosen as a low-cost/free solution for design optimization comparable to Phoenix ModelCenter.
The concept of design optimization is based around decision theory which results in a design decision being made
from design alternatives with outcomes based on uncertainty probabilities. This allows the selection of a utility
parameter and corresponding equation to optimize design alternatives through analyzing uncertainties and performing
DoE. OpenMDAO is an open source optimization framework written in Python that serves as a common platform
software package that connects other individual software applications together. The open source aspect of
OpenMDAO permits low-cost collaboration for users compared to optimization software packages that cost
approximately $30K. Team AquaTech generated a framework in OpenMDAO for both GAI and future GIT PMASE
cohorts. The framework included the following system models (Pedestrian, Solar, Wind, Ocean Voyager Hydraulics)
incorporated into a higher level Georgia Aquarium Energy Model to investigate the design space and determine the
optimal SoS solution. The model setup documentation created in Sphinx 1.2.2 can be referenced in Figure 5. Sphinx is
an application that easily can create automated Python documentation that can be reviewed in an html repository.
OpenMDAO also served to collectively investigate uncertainties at the energy model domain level for the Aquarium.
The Uncertainties Driver documentation was also set up in Sphinx (Figure 6). In future iterations the bulk of the VBA
scripts will be transferred into Python using the xIwing open source library.
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Figure 5. Uncertainties Driver Component Figure 6. Decision Making Framework

4.4. Stage 4 - Integration of Python and VBA

The use of Python would separate the visualization component from the modeling component. The result is that
Excel visualization or any other visualization tool would have much less impact on the models and the integrating
elements. Therefore, you could extend either the models or visualizations and the resulting changes on each would be
minimized. The flexibility and quick turnaround of something like Excel dashboards are advantages that enabled this
type of work to be possible across many different problem statements, while providing the platform to prototype and
iterate. Excel is powerful for creating visualizations quickly, but would be less robust in the long term if the experience
was to be generalized and provided to a larger user base. If that is the case, then there are web-based visualization
libraries that could be leveraged (Bokeh, Crossfilter.js, NVD3.js) as part of a web framework.

5. Recommendations
Use of the SoS trade space analysis framework provides insight into system sensitivities. Analysis shall be

conducted to quantitatively compare design choices on cost and power as well as system budgets such as hydraulics,
solar, wind, and lighting. Performing analysis at the SoS level additionally allows a combination of the individual
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systems to promote evolutionary upgrades and creating optimal returns on investment. Comparison between the design
alternatives using the proposed SoS modeling framework provides justification for the recommendations provided,
leveraging the sensitivity effects. The models show GAI what they currently have today in a terms of system
characteristics captured in a set of system models, but this could be extended to additional domains within the
aquarium within the construct that was developed. The way that the OpenMDAO models were developed were as
standalone units with discrete interfaces, and will provide a strong foundation to extend off of for additional or more
detailed analysis.

6. Conclusion

The main purpose of this research was to assess the systems of systems engineering (SoSE) approach and
architectural processes applied to the development and evolution of the Georgia Aquarium. Establishing a tiger team
framework early in the lifecycle helped align resources to project scope to meet the rapid schedule. Additionally,
decomposing the architecture allowed individual models, including software, to be constructed for in-depth analysis
and then unified to analyze the Aquarium from a SoS perspective. The suggested framework creates a low-cost,
editable open-source environment investigating energy efficiencies and technologies for the Aquarium from the SoS
perspective. As time progresses, the proposed framework will also allow enhanced collaboration for team members
to prevent bottlenecks in model development and analysis. After extensive analysis, the PMASE 2012 Team
AquaTech concludes that the established goals of 5% energy savings can be made with an investment budget of $400K
or less. Modeling and simulation results demonstrated that near term improvements employing Sand Filter and Protein
Skimmer system upgrades as well as integrating LED lighting into the Aquarium architecture would meet the energy
goal. The SoS analysis calculated a 17% savings for electricity and cost. Using the software, the estimated SoS
improvements cost $385,000 with a ROI of 1.1 years.

Shortcomings: Autonomy leans towards independence resulting in independent partners and constituents acting as
independent actors. Aquarium exhibits have their own sponsors, funding, needs, and roadmap which challenge a SoS
perspective.

Key Takeaways:

e M&S tools such as MATLAB Simulink, Flowmaster, Excel VBA, SysML, OpenMDAO, and AnyLogic can
perform powerful analysis for organizations such as GAI

o Architecture framework defines boundaries and interfaces to reduce complexity.

e Creating/aligning individual architectures for the SoS, software, & organizational structure helps governance,
reduces complexity, reduces costs, and increases situational awareness for the multiple sponsors.

e The integrated software SoS approach allows an integrated environment for stakeholder real time decision
making around complex SoS architectures.
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