Arcs in Planes of Even Order

AIDEN A. BRUEN*

In a finite projective plane π of order n a k-arc is a set K of k points of π with no three collinear. K is complete if K is not properly contained in a k'-arc with $k' > k$. In this note we study properties of a complete n-arc K in π. By the results of B. Segre and G. Tallini (see [7, 9]), this forces π to be non-Desarguesian. Throughout this note "tangents" and "secants" mean tangents and secants to K, which are defined in the usual way. Now, since K is complete, each point X off K lies on at least one secant to K. We say that X is K-special if X lies on exactly one secant to K. Denniston [4] intimates that there are no K-special points for any complete 9-arc in the known non-Desarguesian planes of order 9.

Theorem 1. Let K be a complete n-arc in a projective plane π of order n with n even. Then each point X of π not on K lies on at least $\frac{1}{4}n$ secants to K.

Proof. Let X lie on exactly α tangents to K. If $\alpha = 0$, X lies on $\frac{1}{2}n > \frac{1}{4}n$ secants and we are done. So assume $\alpha > 0$. Put

\[A = \{\text{tangents not on } X\}; \]
\[B = \{\text{all non-tangent lines of } \pi \text{ through } X\}; \]
\[S = A \cup B. \]

Since n is even each point P of π lies on an even number of tangents. Thus if a point $P \neq X$ of π lies on a tangent from X, then P lies on at least one tangent not passing through X. Thus

(i) each point P of π lies on at least one line of S.

Since K is complete, no point of π can lie on as many as n tangents. Also, $\alpha > 0$. Thus we get

(ii) no point of π has all the lines through it contained in S.

Properties (i) and (ii) guarantee that S is a dual blocking set with $|S| = 3n + 1 - 2\alpha$. But from [2, 3], $|S| > n + \sqrt{n} + 1$. Thus $\alpha < n - \frac{1}{2}\sqrt{n}$. Now if U denotes the secants on X we have $|U| = \frac{1}{2}(n - \alpha) > \frac{1}{4}n$.

Discussion. I first obtained Theorem 1 for planes of order $n = 2 (4)$ by using methods of coding theory. For an interesting account of such methods we refer to Assmus and Mattson [1], Hering [6] and MacWilliams, Sloane and Thompson [8]. To describe the original proof of Theorem 1 for $n = 2 (4)$, we require another result which may be of interest in its own right. We adopt the terminology of [8]. Let π denote a projective plane of order $n = 2 (4)$, let C denote the code of the dual plane and let \tilde{C} denote the extended code. It is known (see [1, 6, 8]) that $\tilde{C} = \tilde{C}^\perp$. Now let K be any k-arc in π, complete or not. If k is odd, then every point of π lies on an odd number of tangents to K. If k is even, then every point of π lies on an even number of tangents to K. Using the fact that $\tilde{C} = \tilde{C}^\perp$, we get the following theorem.

* Research supported in part by the N.S.E.R.C. of Canada.
THEOREM 2. Let K be a k-arc in a plane π of order $n = 2 (4)$. Then
(a) if k is even, the tangents to K yield a codeword in \tilde{C} of weight $k(n + 2 - k)$;
(b) if k is odd, the tangents to K form the "finite part" of a codeword in \tilde{C}.

REMARK. It is worth noting that if $k = n = 10$ and if K is complete then the tangents to K yield a primitive codeword M_{20} of weight 20 in \tilde{C}. Primitive codewords of weight 20 are extensively studied in Hall [5].

We return to Theorem 1 for the case $n = 2 (4)$. From Theorem 2 the $2n$ tangents to K there form a codeword u in C of even weight. The $n + 1$ lines of π on X from another codeword v in C of odd weight. Then $u + v$ is a codeword in C of odd weight. Now $u + v$ corresponds to the set S. From [8, 2.4] S yields a dual blocking set in π. As before, an appeal to the blocking set result [2, 3] completes the proof.

REFERENCES

Received 16 November 1981

A. A. BRUEN
Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B9, Canada