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Regional variation in mitochondrial DNA copy number in mouse brain
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Mitochondria have their own DNA (mitochondrial DNA [mtDNA]). Although mtDNA copy number is
dependent on tissues and its decrease is associated with various neuromuscular diseases, detailed distribution
of mtDNA copies in the brain remains uncertain. Using real-time quantitative PCR assay, we examined
regional variation inmtDNA copy number in 39 brain regions of male mice. A significant regional difference in
mtDNA copy number was observed (Pb4.8×10−35). High levels of mtDNA copies were found in the ventral
tegmental area and substantia nigra, two major nuclei containing dopaminergic neurons. In contrast,
cerebellar vermis and lobes had significantly lower copy numbers than other regions. Hippocampal dentate
gyrus also had a relatively low mtDNA copy number. This study is the first quantitative analysis of regional
variation in mtDNA copy number in mouse brain. Our findings are important for the physiological and
pathophysiological studies of mtDNA in the brain.
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1. Introduction

Mitochondria play important roles in energy production, apoptosis,
calcium signaling, as well as synaptic transmission, and neuroplasticity
in neurons [1]. Mitochondrial dysfunction induces various mitochon-
drial diseases and may also be linked to neurodegenerative disorders,
such as Parkinson's disease (PD), Alzheimer's disease, and Huntington's
disease [2–4]. These mitochondrial dysfunctions can result from
heteroplasmic mitochondrial DNA (mtDNA) mutations, including
point mutations and deletions in mtDNA [4,5]. A mitochondrion
contains a number of mtDNA copies, and mtDNA depletion also causes
mitochondrial diseases [5–10]. It is possible that differences in mtDNA
copy number among brain regions lead to association with region-
dependent mitochondrial function and disease susceptibility. However,
the distribution of mtDNA copies in the brain has not been studied in
detail so far.

In the present study, we determined mtDNA copy number in 39
representative brain regions of adult mice using a micropunch
technique and real-time quantitative PCR (qPCR). The results
demonstrate that mtDNA is enriched in substantia nigra (SN) and
the ventral tegmental area (VTA), where dopaminergic neurons are
located.
2. Materials and methods

2.1. Animals

Male C57BL/6J mice were kept in the laboratory under light/dark
conditions of 12 h:12 h (lights on at 8:00 a.m.). The laboratory was
air-conditioned, and temperature and humidity were maintained at
approximately 22–23 °C and 50–60%, respectively. From age 20 to
28 weeks, mice were individually housed in cages (24 cm
wide×11 cm deep×14 cm high) equipped with a steel wheel (5 cm
wide×14 cm in diameter). All animal experiments were performed in
accordance with the protocols approved by the Animal Experiment
Committee of RIKEN (Wako, Saitama, Japan). All efforts were made to
minimize the number of animals used and their suffering.

2.2. Micropunch

Transcardiac perfusion fixation was performed with 4% paraformal-
dehyde in phosphate-buffered saline (PBS), and then brains were
immersed in PBS.

Slices (0.5 mm thick) of mouse brain were generated using a
mouse brain matrix (Neuroscience, Tokyo, Japan), and 39 regions
(Table 1, Fig. 1) were punched out bilaterally from the fixed slices
under a stereomicroscope with a handmade microdissecting needle
(gauge 0.5 mm), which has thinner wall than commercially available
micropunchers, to pick up adjacent regions from one slice. The
anatomical nomenclature is based on the atlas of Franklin and Paxinos
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Table 1
Micropunched 39 brain regions.

Brain area Abbreviations Brain region

Cerebral cortex PrL-s Prelimbic cortex–superficial layers
PrL-de Prelimbic cortex–deep layers
IL-s Infralimbic cortex–superficial layers
IL-de Infralimbic cortex–deep layers
Cg Cingulate cortex
Motor-s Motor cortex–superficial layers
Motor-in Motor cortex–intermediate layers
Motor-de Motor cortex–deep layers
cc Corpus callosum

Hippocampus CA1 CA1
CA2/CA3 CA2, CA3
DG Dentate gyrus

Amygdala A Amy-m Anterior amygdaloid complex–medial
A Amy-l Anterior amygdaloid complex–lateral
P Amy-m Posterior amygdaloid complex–medial
P Amy-l Posterior amygdaloid complex–lateral

Septum LS Lateral septal nucleus
Basal ganglia Acb-core Accumbens nucleus–core

Acb-shell Accumbens nucleus–shell
CP-m Caudate putamen–medial
CP-l Caudate putamen–lateral
LGP Lateral globus pallidus

Thalamus VP Ventral posterior thalamic nucleus
PVT Paraventricular nucleus of thalamus
MD Mediodorsal thalamic nucleus
Hb Habenular nucleus
LG Lateral geniculate body
MG Medial geniculate body

Hypothalamus SCN Suprachiasmatic nucleus
SPZ-v Subparaventricular zone–ventral part
SPZ-do Subparaventricular zone–dorsal part
PV Paraventricular hypothalamic nucleus
LH Lateral hypothalamic area

Midbrain SN Substantia nigra
VTA Ventral tegmental area
IP Interpeduncular nucleus
PAG Periaqueductal gray

Cerebellum Cb-vermis Cerebellar cortex–vermis
Cb-lobe Cerebellar cortex–lobe
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(Fig. 1) [11]. After overnight incubation of each micropunched region
in lysis buffer (1 punch/25 μl, 10 mMTris–HCl, pH 8.0, 1 mMEDTA, pH
8.0, 0.5% Triton X-100, and 500 μg/ml proteinase K [Roche Applied
Science, Mannheim, Germany]) at 55 °C, samples were incubated at
65 °C over 6 h to de-crosslink, followed by heat inactivation at 96 °C
for 10 min and addition of an equal amount of 10 mM Tris–HCl (pH
8.0).

2.3. Real-time qPCR analysis

Real-time qPCR analysis was performed using the 7900HT Fast
Real-Time PCR System (Applied Biosystems, Foster City, CA, USA)with
SYBR Premix Ex Taq reagent (Takara Bio, Otsu, Japan) according to the
manufacturer's instructions. Each PCR product was separately
amplified from 2 μl of lysate of micropunched sample in a 10-μl
reaction containing 5 μl of 2×SYBR Premix and 0.2 μM of each primer.

For estimation of amounts of mtDNA in mice, the control region
(D-loop) of mouse mtDNA was amplified using the primer pair D1
(5′-CCC AAG CAT ATA AGC TAG TAC-3′) and D2 (5′-ATA TAA GTC ATA
TTT TGG GAA CTA C-3′). Using this primer set, the thermal cycling
protocol used was 95 °C for 20 s, 55 °C for 20 s, 72 °C for 80 s for 30
cycles after an initial denaturation. In a preliminary experiment, the
quantification using COX1 or ND4 region in mtDNA showed similar
results to quantification using D-loop region, that is, lower copy
number in cerebellum compared with frontal lobe, other cortices, and
basal ganglia (Supplementary Figure 1). For determination of the
amount of nuclear DNA, the apoB gene was used as a reference:
5′-CGT GGG CTC CAG CAT TCT A-3′ and 5′-TCA CCA GTC ATT TCT GCC
TTT G-3′. In the case of amplification using these three primer sets, 40
cycles of two-step PCR followed: 95 °C for 10 s and 60 °C for 30 s after
an initial denaturation at 95 °C for 1 min.

These real-time qPCRs were carried out in quadruplicate for all
measurements. After confirmation of the single major peak repre-
senting the specific amplification with the melting curve, the
quantities of each PCR product were calibrated by a linear regression
model, using standard curves calculated between Ct values and the
logarithm of concentrations of standard pCR2.1-TOPO plasmids
(Invitrogen, Carlsbad, CA, USA) containing each PCR fragment. In
every run, the high linearity (R2N0.99) of the standard curves was
verified by amplifications of each PCR product from dilution series of
the plasmids made up to 10 ng by pCR2.1-TOPO plasmid. Ct values of
all samples were within the linear range.

The relative number of mtDNA copies per cell was calculated as the
normalized ratio of D-loop/apoB gene to a median value of 39 brain
regions. In all samples examined, PCR products both of the D-loop in
mtDNA and of the apoB gene in nuclear genome were amplified
within the linear range of assays.
2.4. Statistical analysis

The results of quantitative experiments were analyzed by
nonparametric tests after use of the Kolmogorov–Smirnov test for
confirmation of a normal distribution. A two-tailed test was used for
exploratory analysis. Statistical significance was determined using
KyPlot 4.0 (KyensLab, Tokyo, Japan). RelativemtDNA copy numbers in
several regions did not show a statistically normal distribution
(Kolmogorov–Smirnov test, Pb0.05). Therefore, we used nonpara-
metric tests for detection of statistical significance among brain
regions. To determine detailed significant regional differences in
mtDNA copy number, we used the nonparametric multiple compar-
ison Steel–Dwass test (α=0.05).
3. Results

The average relative mtDNA copy number in the 39 brain areas
was between 0.0847 and 2.54 (Fig. 1). There was a statistically
significant regional variation in mtDNA copy number among the 39
brain regions (Kruskal–Wallis test, Pb4.8×10−35) (Fig. 2). In VTA, the
mtDNA copy number (median=2.62, average±SD=2.54±0.80)
was significantly higher than in 24 other regions. The relative mtDNA
copy number in SN (median=2.12, average±SD=2.23±0.65) was
higher than in 19 other regions. Moreover, the interpeduncular
nucleus (IP) showed a significantly higher mtDNA copy number
(median=1.76, average±SD=1.86±0.53) than did 14 other brain
regions.

In contrast, a significantly lower mtDNA copy number was observed
in the anterior cerebellar lobe (Cb-lobe) (median=0.0965, average±
SD=0.0847±0.0492) than inmost other regions.MtDNAcopynumber
in cerebellar vermis (Cb-vermis) (median=0.0857, average±
SD=0.144±0.157) was lower than in 28 other brain regions. In the
dentate gyrus (DG), mtDNA copy number (median=0.321, average±
SD=0.384±0.196) was significantly lower than in 18 other brain
regions.

In addition to these statistical differences, there were significant
differences between caudate putamen–medial (CP-m) (medi-
an=0.594, average±SD=0.567±0.236) or habenular nucleus (Hb)
(median=0.325, average±SD=0.408±0.284) and anterior amygda-
loid complex–lateral (A Amy-l) (median=1.31, average±SD=1.36±
0.48) or motor cortex–intermediate layers (Motor-in) (median=1.31,
average±SD=1.33±0.40).

No significant differences were detected between other brain
regions.



Fig. 1. Thirty-nine representative brain structures punched out bilaterally are shown in Nissl-stained coronal slices of a mouse brain. Regional variation of mitochondrial DNA
(mtDNA) copy number is shown as a pseudo-color heat map. Abbreviations are expanded in Table 1.
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4. Discussion

In this study, we first quantitatively demonstrated that there is a
large regional variation in mtDNA copy number in the brain. Study
results could be affected by regional variation in the neuron/glia ratio,
if there is a difference in mtDNA copy number between neuron and
glia. An in situ mtDNA hybridization study showed stronger signals
from gray matter than from white matter in striate cortex of primates
[12], and an in situ PCR study also showed stronger signals from
neurons than from glial cells [13]. However, a study using qPCR
analysis showed no statistically significant difference in mtDNA copy
number between gray matter and white matter of human postmor-
tem brains [14]. In addition, the mtDNA copy number in corpus
callosum, containing mostly glial cells, was comparable to that in
other brain regions in this study. The results of these quantitative
analysis studies suggest that the 30-fold difference in mtDNA copy
number between VTA and cerebellum cannot be solely accounted for
by regional variation in neuron/glia ratio.

The highest mtDNA copy numbers were observed in VTA and SN,
two major midbrain nuclei containing dopaminergic neurons. This
findingmight be relevant to the fact thatmitochondrial dysfunction and
mtDNA mutations are implicated in PD, caused by degeneration of
dopaminergic neurons of SN [2,3,15]. PD is also a frequent complication
ofmitochondrial diseases [4,5]. DegenerationofVTAneurons is reported
to be associatedwith depression [16], which is also a frequent comorbid
condition of mitochondrial disease [5]. It remains unclear why VTA and
SN contain particularly high copy number of mtDNA. It is plausible that
vulnerability of mtDNA to oxidative stress resulting from the metabo-
lism of dopamine in these two nuclei may be relevant to the present
finding [17]. Meanwhile, it has recently been shown that high mtDNA
copy number induces increased mtDNA deletion formation, which
might be caused by increased mtDNA replication [18]. If high mtDNA
copy number in SN indicates faster turnover, it might be relevant to the
fact that SN is particularly susceptible to defects of the clearance of
damagedmitochondria, due tomutations of Parkin and PINK1 [5,19,20].

On the other hand, cerebellar vermis and lobes had particularly low
levels of mtDNA. The significantly lower mtDNA copy number in
cerebellum is consistent with other reports that cerebellum showed
lower level of mtDNA copies than several brain areas of rat or human
[21,22]. A number of mitochondrial diseases associated with mtDNA
depletion and mutations affect the cerebellum [4,5,23]. Although it is
still unclear that both the regions with high mtDNA copy number such
as SN and those with low copy number such as cerebellum are relevant
to mitochondrial diseases, it would coincide with the fact that both
depletion and increased copy number of mtDNA are reported to cause
mitochondrial dysfunction [8,18]. It seems reasonable that mutation of



Fig. 2. Analysis of mtDNA copy number in 39 micropunched brain regions shows substantial regional variation. Each circle indicates one mouse (n=12). The vertical axis represents
the estimated relative number of mtDNA copies to a median value of 39 brain regions. Group median values are indicated by horizontal bars. The horizontal axis represents each
brain region. Differences among brain regions were observed (Kruskal–Wallis test, Pb4.8×10−35). A multiple comparison using the Steel–Dwass test (α=0.05) showed significant
differences in mtDNA copy number among brain regions, as follows: (a) VTANPrL-s, PrL-de, IL-s, IL-de, Cg, Motor-de, cc, CA1, CA2/CA3, DG, P Amy-m, Acb-core, Acb-shell, CP-m, CP-l,
LGP, VP, MD, Hb, SCN, SPZ-v, PV, Cb-vermis, and Cb-lobe; (b) SNNPrL-s, PrL-de, IL-de, Cg, Motor-de, cc, CA1, CA2/CA3, DG, P Amy-m, Acb-shell, CP-m, CP-l, VP, Hb, SCN, SPZ-v,
Cb-vermis, and Cb-lobe; (c) IPNPrL-de, IL-de, cc, CA2/CA3, DG, Acb-shell, CP-m, CP-l, VP, Hb, SCN, SPZ-v, Cb-vermis, and Cb-lobe; (d) Cb-lobebPrL-s, PrL-de, IL-s, Il-de, Cg, Motor-s,
Motor-in, Motor-de, cc, CA1, CA2/CA3, DG, A Amy-m, A Amy-l, P Amy-m, P Amy-l, Acb-core, Acb-shell, LS, CP-m, CP-l, LGP, PVT, MD, MG, SCN, SPZ-v, SPZ-do, PV, LH, SN, VTA, IP, and
PAG; (e) Cb-vermisbPrL-s, PrL-de, IL-s, IL-de, Cg, Motor-s, Motor-in, Motor-de, cc, CA1, A Amy-m, A Amy-l, Acb-core, Acb-shell, LS, LGP, PVT, MD, MG, SCN, SPZ-v, SPZ-do, PV, LH, SN,
VTA, IP, PAG; and (f) DGbPrL-s, IL-s, IL-de, Cg, Motor-in, Motor-de, A Amy-m, A Amy-l, Acb-core, LS, LGP, MD, PV, LH, SN, VTA, IP, and PAG. Abbreviations are expanded in Table 1.
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mtDNA in smaller copy number can affect themitochondrial function in
the brain regions having lower copy number of mtDNA.

In the present study,wefixed the tissueswith 4%paraformaldehyde,
because it is difficult to capturemore thanone region at equal conditions
froma frozenor freshbrain sectiondue to its fragility. This approach also
allowed us to identify brain structures clearly; we were able to pick up
all brain regions from one animal at once. Moreover, we confirmed that
paraformaldehyde fixation did not affect the linearity of quantification
of each PCR product (R2N0.91, Supplementary Figure 2) and relative
amount of mtDNA per nucleus can be compared among brain regions
using fixed samples. By introducing de-crosslinking, we could measure
mtDNAcopynumber. Thismethodologymade it possible to describe the
distribution in detail.

Our findings on regional variation in mtDNA copy number in the
brain provide important information on regional differences in
vulnerability to mitochondrial dysfunction.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.bbabio.2010.11.016.
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