Note
 Directed triangles in directed graphs

Maurits de Graaf
CWI, Kruislaan 413, Amsterdam 1098 SJ, The Netherlands

Received 27 October 2002; received in revised form 3 October 2003; accepted 10 October 2003

Abstract

We show that each directed graph (with no parallel arcs) on n vertices, each with indegree and outdegree at least n / t where $t=2.888997 \ldots$ contains a directed circuit of length at most 3 . (c) 2003 Elsevier B.V. All rights reserved.

Keywords: Girth; Digraph; Degree condition; Directed triangle

In this paper, directed graphs have no loops or parallel arcs. It is an intriguing conjecture of Cacetta and Häggkvist [2] that any directed graph on n vertices, each with outdegree at least $\lceil n / k\rceil$ contains a directed circuit of length at most k. Surprisingly, the special case for $k=3$ is still open.
Instead of proving the conjecture, one may look for values of s so that any directed graph on n vertices with minimum outdegree at least n / s, contains a directed triangle. The highest value of s is due to Shen [6], who obtained the value

$$
\begin{equation*}
s=\frac{1}{3-\sqrt{7}}=2.8228757 \ldots \tag{1}
\end{equation*}
$$

Shen's result improved approximations by Cacetta and Häggkvist [2] and Bondy [1].
It is not even known whether any directed graph on n vertices, each with both indegree and outdegree at least $n / 3$, contains a directed triangle. Again, one may look for values of t so that any directed graph on n vertices, each with both indegree and outdegree at least n / t contains a directed triangle. The best result on this problem is in

[^0][3], where using (1) it is shown that $t=(22-2 \sqrt{7}+(1+\sqrt{7}) \sqrt{45-17 \sqrt{7}}) / 6 \approx$ 2.875. This improved the results obtained by Cacetta and Häggkvist [2] and Li and Brualdi [4].

In this note we use Shen's approximation (1) to show the following:
Theorem 1. Any directed graph on n vertices, each with both indegree and outdegree at least n / t_{0} where

$$
t_{0}=\frac{1}{72}(241-17 \sqrt{7}+2 \sqrt{4064-1522 \sqrt{7}}) \cos \alpha
$$

where $\alpha=\frac{1}{3} \arctan (18 \sqrt{1262428404 \sqrt{7}-1131169991} / 1367549)$ contains a directed triangle.

Note that $t_{0} \approx 2.8889971$.
The theorem is proved by extending the approach of [3]. Before doing so, we introduce some notation. For each $v \in V$ let E_{v}^{+}and E_{v}^{-}denote the sets of outneighbours and inneighbours of v, respectively. For $u, v, w \in V$ let

$$
E_{u v}^{+}=E_{u}^{+} \cap E_{v}^{+}, E_{u v}^{-}=E_{u}^{-} \cap E_{v}^{-} .
$$

Moreover let

$$
\varepsilon_{v}^{+}=\left|E_{v}^{+}\right|, \quad \varepsilon_{v}^{-}=\left|E_{v}^{-}\right|, \quad \varepsilon_{u v}^{+}=\left|E_{u v}^{+}\right|, \quad \varepsilon_{u v}^{-}=\left|E_{u v}^{-}\right|
$$

We recapitulate a number of earlier results in the following proposition.
Proposition 2 (de Graaf et al. [3]). Let $D=(V, A)$ be a directed graph on n vertices with no directed triangle, where for each vertex $v \in V \varepsilon_{v}^{+} \geqslant k$ and $\varepsilon_{v}^{+} \geqslant k$, such that deletion of any arc would violate this assumption. Then
(1) there exists a vertex v^{\prime} with both indegree and outdegree equal to k,
(2) if $(u, v),(v, w),(u, w) \in A$ then $\varepsilon_{u v}^{-}+\varepsilon_{v w}^{+} \geqslant 4 k-n$,
(3) for each arc (u, v) of $D: \varepsilon_{u v}^{-} \geqslant(3 k-n) s$ and $\varepsilon_{u v}^{+} \geqslant(3 k-n) s$.

Now we are in a position to prove Theorem 1. With respect to [3], the stronger inequality in this paper is obtained because instead of showing that the total number of arcs in one of the graphs induced by $E_{v^{\prime}}^{+}, E_{v^{\prime}}^{-}$exceeds $k^{2} / 2$, we use the lower bound on the number of triangles in an undirected graph established by Moon and Moser [5].

Theorem 3 (Moon and Moser [5]). Let $G=(V, E)$ be an (undirected) graph with $|V|=$ $n,|E|=m$. Then G contains at least $m\left(4 m-n^{2}\right) / 3 n$ (undirected)-triangles.

Proof of Theorem 1. Suppose $D=(V, A)$ is a directed graph with $|V|=n$, each with both indegree and outdegree at least $k=\left\lceil n / t_{0}\right\rceil$, and without any directed triangle. We may assume that deleting any arc would give a vertex of indegree or outdegree less
than k. Let $t=n / k$. For future reference we note that

$$
\begin{equation*}
3-\frac{2}{10}<s<t<t_{0}<3-\frac{1}{10} \tag{2}
\end{equation*}
$$

where the lower bound for t follows from (1).
According to Proposition 2 there is a vertex with both indegree and outdegree equal to k. Let v^{\prime} be such a vertex. Let u^{\prime} be a vertex of minimum indegree in the subgraph induced by $E_{v^{\prime}}^{-}$and let w^{\prime} be a vertex of minimum outdegree in the subgraph induced by $E_{v^{\prime}}^{+}$. So $\varepsilon_{u^{\prime} v^{\prime}}^{-} \leqslant \varepsilon_{u v^{\prime}}^{-}$for all $u \in E_{v^{\prime}}^{-}$and $\varepsilon_{v^{\prime} w^{\prime}}^{+} \leqslant \varepsilon_{v^{\prime} w}^{+}$for all $w \in E_{v^{\prime}}^{+}$. By Shen's result we have

$$
\begin{equation*}
\varepsilon_{u^{\prime} v^{\prime}}^{-}<k / s \quad \text { and } \quad \varepsilon_{v^{\prime} w^{\prime}}^{+}<k / s \tag{3}
\end{equation*}
$$

Without loss of generality we may assume that $\varepsilon:=\min \left\{\varepsilon_{u^{\prime} v^{\prime}}^{-}, \varepsilon_{v^{\prime} w^{\prime}}^{+}\right\}=\varepsilon_{u^{\prime} v^{\prime}}^{-}$. Next, we consider the subgraph induced by $E_{v^{\prime}}^{+}$.

By Proposition 2 we know that for all $w \in E_{u^{\prime} v^{\prime}}^{+}$we have

$$
\begin{equation*}
\varepsilon_{v^{\prime} w}^{+} \geqslant 4 k-n-\varepsilon_{u^{\prime} v^{\prime}}^{-}=4 k-n-\varepsilon . \tag{4}
\end{equation*}
$$

For all other $k-\varepsilon_{u^{\prime} v^{\prime}}^{+}$vertices in $E_{v^{\prime}}^{+}$we have

$$
\begin{equation*}
\varepsilon_{v^{\prime} w}^{+} \geqslant \varepsilon_{v^{\prime} w^{\prime}}^{+} \geqslant \varepsilon . \tag{5}
\end{equation*}
$$

As $n<3 k$ and $\varepsilon<k / s$ it follows that $4 k-n-\varepsilon \geqslant k-\varepsilon \geqslant \varepsilon$. By removing arcs if necessary, we may assume that in (4) and (5) equality holds.

For the number of arcs in $E_{v^{\prime}}^{+}$we find, using $n=t k$,

$$
\begin{aligned}
m & =\varepsilon_{u^{\prime} v^{\prime}}^{+}(4 k-n-\varepsilon)+\left(k-\varepsilon_{u^{\prime} v^{\prime}}^{+}\right) \varepsilon \\
& =\varepsilon_{u^{\prime} v^{\prime}}^{+}((4-t) k-2 \varepsilon)+\varepsilon k .
\end{aligned}
$$

Using Theorem 3 it follows that the number of transitive triangles T in the graph induced by $E_{v^{\prime}}^{+}$is bounded from below according to

$$
\begin{align*}
T \geqslant & -(1 / 3 k)\left(\varepsilon\left(k-2 \varepsilon_{u^{\prime} v^{\prime}}^{+}\right)-k(t-4) \varepsilon_{u^{\prime} v^{\prime}}^{+}\right) \\
& \times\left(-4 \varepsilon\left(k-2 \varepsilon_{u^{\prime} v^{\prime}}^{+}\right)+k\left(k+4(-4+t) \varepsilon_{u^{\prime} v^{\prime}}^{+}\right)\right) . \tag{6}
\end{align*}
$$

Let $T_{\text {low }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$ denotes the lower bound for the number of transitive triangles given by the right-hand side of (6).
The number of transitive triangles is bounded from above by

$$
\begin{align*}
T & \leqslant \sum_{w \in E_{v^{\prime}}^{+}}\binom{\varepsilon_{v^{\prime} w}^{+}}{2} \\
& =\varepsilon_{u^{\prime} v^{\prime}}^{+}\binom{4 k-n-\varepsilon}{2}+\left(k-\varepsilon_{u^{\prime} v^{\prime}}^{+}\right)\binom{\varepsilon}{2} \\
& \leqslant \frac{1}{2} \varepsilon_{u^{\prime} v^{\prime}}^{+}((4-t) k-\varepsilon)^{2}+\frac{1}{2}\left(k-\varepsilon_{u^{\prime} v^{\prime}}^{+}\right) \varepsilon^{2} . \tag{7}
\end{align*}
$$

Let $T_{\text {up }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$ denote the upper bound for the number of transitive triangles given by (7). Let $U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)=T_{\text {low }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)-T_{\text {up }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$. We obtain

$$
\begin{equation*}
U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)=c_{0}+c_{1} \varepsilon_{u^{\prime} v^{\prime}}^{+}+c_{2}\left(\varepsilon_{u^{\prime} v^{\prime}}^{+}\right)^{2} \tag{8}
\end{equation*}
$$

with $c_{0}=\varepsilon(5 \varepsilon-2 k) k / 6, c_{1}=(2 \varepsilon+k(t-4))(k(14-3 t)-16 \varepsilon) / 6$ and $c_{2}=4(2 \varepsilon+k(t-4))^{2} / 3 k$.
To conclude the proof, we will show that $U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)>0$ for all $(3-t) k s \leqslant \varepsilon<k / s$ and ($3-t) k s \leqslant \varepsilon_{u^{\prime} v^{\prime}}^{+}<k / s$ and for t in the interval defined by (2). This is simplified by the following lemma.

Lemma 4. For $(3-t) k s \leqslant \varepsilon<k / s$ and $(3-t) k s \leqslant \varepsilon_{u^{\prime} v^{\prime}}^{+}<k / s$, and with t in the interval defined by (2), it holds that $U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right) \geqslant U((3-t) k s,(3-t) k s, t)$.

This lemma will be proved at the end of this article. Using Lemma 4 we obtain the following inequality:

$$
\begin{aligned}
U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{\prime}, t\right) \geqslant & U((3-t) k s,(3-t) k s, t)=\frac{1}{6} k^{3} s(3-t) \\
& \times\left(\left(-58+675 s-1440 s^{2}+864 s^{3}\right)+\left(26-483 s+1248 s^{2}-864 s^{3}\right) t\right. \\
& \left.+\left(-3+110 s-352 s^{2}+288 s^{3}\right) t^{2}+\left(-8 s+32 s^{2}-32 s^{3}\right) t^{3}\right) .
\end{aligned}
$$

Multiplying by $3 / s^{4} k^{3}(3-t)$ and substituting $s=1 /(3-\sqrt{7})$ leads to

$$
\begin{align*}
& \frac{3}{s^{4} k^{3}(3-t)}(U((3-t) k s,(3-t) k s, t)) \\
& \quad=(8 \sqrt{7}-32) t^{3}+(361-103 \sqrt{7}) t^{2}+(383 \sqrt{7}-1254) t+1062-319 \sqrt{7} . \tag{9}
\end{align*}
$$

As t_{0} is a zero of the polynomial defined by (9), and, moreover, this polynomial is strictly positive on the interval for t defined by (2), it follows that $T_{\text {low }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)>$ $T_{\text {up }}\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$. This contradiction finishes the proof of Theorem 1.

Proof of Lemma 4. We first show that $U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right.$) (for fixed ε and t) is an increasing function of $\varepsilon_{u^{\prime} v^{\prime}}^{+}$, by showing that the derivative with respect to $\varepsilon_{u^{\prime} v^{\prime}}^{+}$is strictly positive on the interval mentioned in Lemma 4.

$$
\begin{equation*}
\frac{\mathrm{d} U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{\prime}, t\right)}{\mathrm{d} \varepsilon_{u^{\prime} v^{\prime}}^{+}}=\frac{2 \varepsilon+k(t-4)}{6 k} p\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right), \tag{10}
\end{equation*}
$$

where

$$
p\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)=-16 \varepsilon\left(k-2 \varepsilon_{u^{\prime} v^{\prime}}^{+}\right)+k\left(k(14-3 t)+16(t-4) \varepsilon_{u^{\prime} v^{\prime}}^{+}\right) .
$$

As $\varepsilon<k / s$ and $t<3$ the first term in (10) is negative. We proceed by showing that also $p\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)<0$. As $\varepsilon_{u^{\prime} v^{\prime}}^{+}<k / s$ the coefficient of ε in $p\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$ is negative. So $p\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right) \leqslant p\left((3-t) k s, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right)$ which is equal to

$$
\begin{equation*}
k^{2}(14-3 t)-16 k^{2} s(3-t)+16(2 k s(3-t)+k(t-4)) \varepsilon_{u^{\prime} v^{\prime}}^{+} . \tag{11}
\end{equation*}
$$

As the coefficient of $\varepsilon_{u^{\prime} v^{\prime}}^{+}$in (11) is negative, we obtain: $p\left((3-t) k s, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right) \leqslant$ $p((3-t) k s,(3-t) k s, t)$ where the latter equals

$$
k^{2}\left(-3+\frac{169}{32-64 s}+\frac{9}{64 s}+16 s(2 s-1)\left(t-\left(3-\frac{32 s-3}{64 s^{2}-32 s}\right)\right)^{2}\right)
$$

As $3-(32 s-3) /\left(64 s^{2}-32 s\right)<3-2 / 10<t<3-1 / 10$, we obtain

$$
\frac{1}{k^{2}} p((3-t) k s,(3-t) k s, t) \leqslant \frac{1}{50}(265+8 s(2 s-21))=\frac{77}{50}-\frac{6 \sqrt{7}}{5}<0 .
$$

This shows that $U\left(\varepsilon, \varepsilon_{u^{\prime} v^{\prime}}^{+}, t\right) \geqslant U(\varepsilon,(3-t) k s, t)$. Next, taking the derivative with respect to ε yields

$$
\begin{equation*}
6 k \frac{\mathrm{~d} U(\varepsilon,(3-t) k s, t)}{\mathrm{d} \varepsilon}=\varepsilon k^{2}\left(10+64 s(t-3)+64 s^{2}(t-3)^{2}\right)+2 k^{3} q(t) \tag{12}
\end{equation*}
$$

where $q(t)$ only depends on t. As the coefficient of ε is negative on the considered interval for t, we find that the right-hand side of (12) is minimized when $\varepsilon=k / 2$, which is a relaxation of $\varepsilon<k / s$. This leads to

$$
6 k \frac{\mathrm{~d} U(\varepsilon,(3-t) k s, t)}{\mathrm{d} \varepsilon} \geqslant k^{3}\left(3+2 s(t-3)\left(-30+16 s(-3+t)^{2}+11 t\right)\right)>0
$$

where the latter inequality follows by straightforward numerical evaluation using (2). This shows that

$$
U(\varepsilon,(3-t) k s, t) \geqslant U((3-t) k s,(3-t) k s, t)
$$

which finishes the proof of Lemma 4.

References

[1] J.A. Bondy, Counting subgraphs: a new approach to the Cacetta-Häggvist conjecture, Discrete Math. 165/166 (1997) 71-80.
[2] L. Cacetta, R. Häggkvist, On minimal digraphs with given girth, in: F. Hoffman et al. (Eds.), Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 21, Utilitas Math., Winnipeg, 1978, pp. 181-187.
[3] M. de Graaf, A. Schrijver, P.D. Seymour, Directed triangles in directed graphs, Discrete Math. 110 (1992) 279-282.
[4] Q. Li, R.A. Brualdi, On minimal regular digraphs with girth 4, Czechoslovak Math. J. 33 (1983) 439-447.
[5] J.W. Moon, L. Moser, On a problem of Turán, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962) 283-286.
[6] J. Shen, Directed triangles in digraphs, J. Combin. Theory Ser. B 74 (1998) 405-407.

[^0]: E-mail address: mauritsdegraaf@euronet.nl (M. de Graaf).

