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Abstract

We show that each directed graph (with no parallel arcs) on n vertices, each with indegree
and outdegree at least n/t where t =2.888997... contains a directed circuit of length at most 3.
© 2003 Elsevier B.V. All rights reserved.
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In this paper, directed graphs have no loops or parallel arcs. It is an intriguing
conjecture of Cacetta and Haggkvist [2] that any directed graph on n vertices, each with
outdegree at least [n/k| contains a directed circuit of length at most k. Surprisingly,
the special case for k =3 is still open.

Instead of proving the conjecture, one may look for values of s so that any directed
graph on 7 vertices with minimum outdegree at least n/s, contains a directed triangle.
The highest value of s is due to Shen [6], who obtained the value

1
5= —2.8228757... 1
37 (1)

Shen’s result improved approximations by Cacetta and Haggkvist [2] and Bondy [1].

It is not even known whether any directed graph on n vertices, each with both
indegree and outdegree at least n/3, contains a directed triangle. Again, one may look
for values of ¢ so that any directed graph on n vertices, each with both indegree and
outdegree at least n/t contains a directed triangle. The best result on this problem is in
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[3], where using (1) it is shown that 7 = (22 —2VT+ (1+V7) V45 — 17\ﬁ> /6 ~
2.875. This improved the results obtained by Cacetta and Haggkvist [2] and Li and
Brualdi [4].

In this note we use Shen’s approximation (1) to show the following:

Theorem 1. Any directed graph on n vertices, each with both indegree and outdegree
at least n/ty where

th= =% (241 — 17V7 + 21/ 4064 — 1522f7> cos o,

where o = %arctan(lS\/12624Z8404\ﬁ — 1131 169991/1367549) contains a directed
triangle.

Note that 7y ~ 2.8889971.

The theorem is proved by extending the approach of [3]. Before doing so, we intro-
duce some notation. For each v€ V' let E;/ and E, denote the sets of outneighbours
and inneighbours of v, respectively. For u, v, we V' let

El,=ElNEfE,=E; NE,.

v > uv

Moreover let

e =IESL e =BT e =IELl en = Egl

We recapitulate a number of earlier results in the following proposition.

Proposition 2 (de Graaf et al. [3]). Let D= (V,A) be a directed graph on n vertices
with no directed triangle, where for each vertex veV &f >k and ¢/ > k, such that
deletion of any arc would violate this assumption. Then

(1) there exists a vertex v’ with both indegree and outdegree equal to k,
2) if (w,v), (v,w), (u,w)E€A then e, + ¢, = 4k — n,
(3) for each arc (u,v) of D: ¢, = (3k —n)s and &}, = 3k — n)s.

Now we are in a position to prove Theorem 1. With respect to [3], the stronger
inequality in this paper is obtained because instead of showing that the total number
of arcs in one of the graphs induced by E, E, exceeds k?/2, we use the lower
bound on the number of triangles in an undirected graph established by Moon and
Moser [5].

Theorem 3 (Moon and Moser [5]). Let G=(V,E) be an (undirected) graph with |V |=
n, |[E| =m. Then G contains at least m(4m — n*)/3n (undirected)-triangles.

Proof of Theorem 1. Suppose D = (V,A) is a directed graph with |V'| = n, each with
both indegree and outdegree at least k = [n/fy|, and without any directed triangle. We
may assume that deleting any arc would give a vertex of indegree or outdegree less
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than k. Let t = n/k. For future reference we note that

2 1
- —<s<t<tHy<3——
0 ~° 0 10°
where the lower bound for ¢ follows from (1).
According to Proposition 2 there is a vertex with both indegree and outdegree equal
to k. Let v’ be such a vertex. Let u’ be a vertex of minimum indegree in the subgraph
induced by E; and let w’ be a vertex of minimum outdegree in the subgraph induced

(2)

by E. So ¢, <e,, forall ucE, and ¢/, , <g,, for all weE). By Shen’s result
we have

e,y <k/s and &}, <k/s. (3)
Without loss of generality we may assume that ¢ := min{e,, ¢/, } =¢,,. Next, we
consider the subgraph induced by E.

By Proposition 2 we know that for all we E/,, we have

e, =4k —n—¢,, =4k —n—e. 4)
For all other k — ¢, , vertices in E; we have

e, =eh, = (5)

As n <3k and ¢ < k/s it follows that 4k — n — ¢ > k — ¢ > ¢. By removing arcs if
necessary, we may assume that in (4) and (5) equality holds.
For the number of arcs in Et we find, using n =k,

ehy(dk—n—e)+(k—¢h,)e
&b (4 — 0k — 2¢) + ¢k.

Using Theorem 3 it follows that the number of transitive triangles 7 in the graph
induced by E, is bounded from below according to

—(1/3k)(e(k — 2&},,) — k(t — 4)e,,,
x(—de(k — 2&5,) + k(k + 4(—4 + Deb ). (6)

Let Tiow(e, 81/1,/’[) denotes the lower bound for the number of transitive triangles given

by the right-hand side of (6).
The number of transitive triangles is bounded from above by

Z( )

dk —n—c¢ . . I
+( _8u’v’) 5

< deh (A= 0k —e)f + 3k —¢f,)e (7)
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Let Ty(&,),,1) denote the upper bound for the number of transitive triangles given

)

by (7). Let U(e,&,0,1) = Tiow(&, 8, 1) — Tup(e, 6,/, 7). We obtain
U(e,e),t) =co+ i), + ca(eh, ) (8)

with co=e(5e—2k)k/6, c;=(2e+k(t—4))(k(14—3t)—16¢)/6 and c;=4(2e+k(t—4))*/3k.
To conclude the proof, we will show that U(e, &, ,,¢) > 0 for all (3 —1t)ks < & < kfs

u' v’

and (3 — 1)ks < ¢, <k/s and for ¢ in the interval defined by (2). This is simplified
by the following lemma.

Lemma 4. For (3—t)ks < ¢ < k/s and (3—1t)ks < &, < k/s, and with t in the interval
defined by (2), it holds that U(e,¢),,,t) = U((3 — t)ks, (3 — t)ks,1).

This lemma will be proved at the end of this article. Using Lemma 4 we obtain the
following inequality:

Ue,e),1) = U((B—1)ks, 3—t)ks,t)=1ks(3 — 1)
X ((—5846755—14405°+864s> ) +(26—4835+12485> —864s° )t
+ (—3+1105—3525+2885% )r>+(—85+3252—325°)1).
Multiplying by 3/s*k>(3 — t) and substituting s = 1/(3 — v/7) leads to

——— (U3 — t)ks,(3 — t)ks,t
o UG~ 0k G~ Dks.0)
=(8V7 — 32)> + (361 — 103V/7)¢* + (383V/7 — 1254)t + 1062 — 319V/7.
)
As ty is a zero of the polynomial defined by (9), and, moreover, this polynomial is

strictly positive on the interval for ¢ defined by (2), it follows that Tiow(e, e, 1) >
Tywp(e,€),,,1). This contradiction finishes the proof of Theorem 1. [J

v’

Proof of Lemma 4. We first show that U(e,¢/,,,,¢) (for fixed ¢ and 7) is an increasing
function of ¢/, ,, by showing that the derivative with respect to &}, is strictly positive
on the interval mentioned in Lemma 4.

dU(e,&),,1) _ 2e+k(t—4)

def 6k

P(eepyst), (10)

where

P(e ey t) = —16a(k — 265,) + k(k(14 — 3¢) + 16( — 4)eh,,).
As ¢ < k/s and ¢ < 3 the first term in (10) is negative. We proceed by showing that
also p(e,e),,,t) <0. As &/, <k/s the coefficient of ¢ in p(e,e},,,7) is negative. So
p(e.eh,. 1) < p((3 — t)ks, e, 1) which is equal to

K2(14 — 31) — 16k25(3 — ) + 16(2ks(3 — t) + k(t — 4))e (11)

u' v’
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As the coefficient of ¢/, in (11) is negative, we obtain: p((3 — ?)ks,&) 1) <
p((3 — t)ks,(3 — t)ks,t) where the latter equals

169 9 325 -3 \\’
234 7 47 es(2s—1)(r—(3- 22— .
k ( 3430 6as Toas T DU B3 G
As 3 — (325 — 3)/(64s*> —325) <3 —2/10 <t <3 — 1/10, we obtain

1 1 77 6V7
ﬁp((:’) — ks, (3 — t)ks,t) < %(265 +8s(2s — 21)) = o5 < 0.

This shows that U(s,&,,,,t) = U(e,(3—1)ks, t). Next, taking the derivative with respect
to ¢ yields
dU(e, (3 — t)ks,t)
k =
de

where ¢(t) only depends on ¢. As the coefficient of ¢ is negative on the considered
interval for ¢, we find that the right-hand side of (12) is minimized when ¢ = k/2,
which is a relaxation of ¢ < k/s. This leads to

6kdU(e, (3 —t)ks,t)

de

where the latter inequality follows by straightforward numerical evaluation using (2).
This shows that

Ue,(3 — t)ks,t) = U((3 — t)ks, (3 — t)ks, 1)

6 k(10 4 64s(t — 3) + 64s%(t — 3)%) + 2k3q(1), (12)

> k33 + 25(t — 3)(—30 4 165(=3 + £)* + 111)) > 0,

which finishes the proof of Lemma 4. [J
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