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Directed triangles in directed graphs
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Abstract

We show that each directed graph (with no parallel arcs) on n vertices, each with indegree
and outdegree at least n=t where t = 2:888997 : : : contains a directed circuit of length at most 3.
c© 2003 Elsevier B.V. All rights reserved.
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In this paper, directed graphs have no loops or parallel arcs. It is an intriguing
conjecture of Cacetta and H4aggkvist [2] that any directed graph on n vertices, each with
outdegree at least �n=k� contains a directed circuit of length at most k. Surprisingly,
the special case for k = 3 is still open.
Instead of proving the conjecture, one may look for values of s so that any directed

graph on n vertices with minimum outdegree at least n=s, contains a directed triangle.
The highest value of s is due to Shen [6], who obtained the value

s=
1

3 − √
7
= 2:8228757 : : : (1)

Shen’s result improved approximations by Cacetta and H4aggkvist [2] and Bondy [1].
It is not even known whether any directed graph on n vertices, each with both

indegree and outdegree at least n=3, contains a directed triangle. Again, one may look
for values of t so that any directed graph on n vertices, each with both indegree and
outdegree at least n=t contains a directed triangle. The best result on this problem is in

E-mail address: mauritsdegraaf@euronet.nl (M. de Graaf).

0012-365X/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2003.11.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82688302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mauritsdegraaf@euronet.nl


220 M. de Graaf / Discrete Mathematics 280 (2004) 219–223

[3], where using (1) it is shown that t =
(
22 − 2

√
7 +

(
1 +

√
7
)√

45 − 17
√
7
)
=6 ≈

2:875. This improved the results obtained by Cacetta and H4aggkvist [2] and Li and
Brualdi [4].
In this note we use Shen’s approximation (1) to show the following:

Theorem 1. Any directed graph on n vertices, each with both indegree and outdegree
at least n=t0 where

t0 = 1
72

(
241 − 17

√
7 + 2

√
4064 − 1522

√
7
)
cos �;

where � = 1
3 arctan

(
18
√
1262428404

√
7 − 1131169991=1367549

)
contains a directed

triangle.

Note that t0 ≈ 2:8889971.
The theorem is proved by extending the approach of [3]. Before doing so, we intro-

duce some notation. For each v∈V let E+
v and E−

v denote the sets of outneighbours
and inneighbours of v, respectively. For u, v, w∈V let

E+
uv = E

+
u ∩ E+

v ; E
−
uv = E

−
u ∩ E−

v :

Moreover let

�+v = |E+
v |; �−v = |E−

v |; �+uv = |E+
uv|; �−uv = |E−

uv|:
We recapitulate a number of earlier results in the following proposition.

Proposition 2 (de Graaf et al. [3]). Let D = (V; A) be a directed graph on n vertices
with no directed triangle, where for each vertex v∈V �+v ¿ k and �+v ¿ k, such that
deletion of any arc would violate this assumption. Then

(1) there exists a vertex v′ with both indegree and outdegree equal to k,
(2) if (u; v), (v; w), (u; w)∈A then �−uv + �

+
vw¿ 4k − n,

(3) for each arc (u; v) of D: �−uv¿ (3k − n)s and �+uv¿ (3k − n)s.

Now we are in a position to prove Theorem 1. With respect to [3], the stronger
inequality in this paper is obtained because instead of showing that the total number
of arcs in one of the graphs induced by E+

v′ , E
−
v′ exceeds k2=2, we use the lower

bound on the number of triangles in an undirected graph established by Moon and
Moser [5].

Theorem 3 (Moon and Moser [5]). Let G=(V; E) be an (undirected) graph with |V |=
n, |E| = m. Then G contains at least m(4m− n2)=3n (undirected)-triangles.

Proof of Theorem 1. Suppose D = (V; A) is a directed graph with |V | = n, each with
both indegree and outdegree at least k = �n=t0�, and without any directed triangle. We
may assume that deleting any arc would give a vertex of indegree or outdegree less
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than k. Let t = n=k. For future reference we note that

3 − 2
10
¡s¡t¡ t0¡ 3 − 1

10
; (2)

where the lower bound for t follows from (1).
According to Proposition 2 there is a vertex with both indegree and outdegree equal

to k. Let v′ be such a vertex. Let u′ be a vertex of minimum indegree in the subgraph
induced by E−

v′ and let w′ be a vertex of minimum outdegree in the subgraph induced
by E+

v′ . So �
−
u′v′ 6 �−uv′ for all u∈E−

v′ and �+v′w′ 6 �+v′w for all w∈E+
v′ . By Shen’s result

we have

�−u′v′ ¡k=s and �+v′w′ ¡k=s: (3)

Without loss of generality we may assume that � := min{�−u′v′ ; �
+
v′w′} = �−u′v′ . Next, we

consider the subgraph induced by E+
v′ .

By Proposition 2 we know that for all w∈E+
u′v′ we have

�+v′w¿ 4k − n− �−u′v′ = 4k − n− �: (4)

For all other k − �+u′v′ vertices in E+
v′ we have

�+v′w¿ �+v′w′ ¿ �: (5)

As n¡ 3k and �¡k=s it follows that 4k − n − �¿ k − �¿ �. By removing arcs if
necessary, we may assume that in (4) and (5) equality holds.
For the number of arcs in E+

v′ we Ind, using n= tk,

m= �+u′v′(4k − n− �) + (k − �+u′v′)�

= �+u′v′((4 − t)k − 2�) + �k:

Using Theorem 3 it follows that the number of transitive triangles T in the graph
induced by E+

v′ is bounded from below according to

T ¿−(1=3k)(�(k − 2�+u′v′) − k(t − 4)�+u′v′)

×(−4�(k − 2�+u′v′) + k(k + 4(−4 + t)�+u′v′)): (6)

Let Tlow(�; �+u′v′ ; t) denotes the lower bound for the number of transitive triangles given
by the right-hand side of (6).
The number of transitive triangles is bounded from above by

T 6
∑
w∈E+

v′

(
�+v′w

2

)

= �+u′v′

(
4k − n− �

2

)
+ (k − �+u′v′)

(
�

2

)

6 1
2 �

+
u′v′((4 − t)k − �)2 + 1

2 (k − �+u′v′)�
2: (7)
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Let Tup(�; �+u′v′ ; t) denote the upper bound for the number of transitive triangles given
by (7). Let U (�; �+u′v′ ; t) = Tlow(�; �

+
u′v′ ; t) − Tup(�; �+u′v′ ; t). We obtain

U (�; �+u′v′ ; t) = c0 + c1�
+
u′v′ + c2(�

+
u′v′)

2 (8)

with c0=�(5�−2k)k=6, c1=(2�+k(t−4))(k(14−3t)−16�)=6 and c2=4(2�+k(t−4))2=3k.
To conclude the proof, we will show that U (�; �+u′v′ ; t)¿ 0 for all (3− t)ks6 �¡k=s

and (3 − t)ks6 �+u′v′ ¡k=s and for t in the interval deIned by (2). This is simpliIed
by the following lemma.

Lemma 4. For (3−t)ks6 �¡k=s and (3−t)ks6 �+u′v′ ¡k=s, and with t in the interval
de6ned by (2), it holds that U (�; �+u′v′ ; t)¿U ((3 − t)ks; (3 − t)ks; t).

This lemma will be proved at the end of this article. Using Lemma 4 we obtain the
following inequality:

U (�; �+u′v′ ; t)¿U ((3−t)ks; (3−t)ks; t)=1
6 k

3s(3 − t)
×((−58+675s−1440s2+864s3)+(26−483s+1248s2−864s3)t

+(−3+110s−352s2+288s3)t2+(−8s+32s2−32s3)t3):

Multiplying by 3=s4k3(3 − t) and substituting s= 1=(3 − √
7) leads to

3
s4k3(3 − t) (U ((3 − t)ks; (3 − t)ks; t))

=(8
√
7 − 32)t3 + (361 − 103

√
7)t2 + (383

√
7 − 1254)t + 1062 − 319

√
7:

(9)

As t0 is a zero of the polynomial deIned by (9), and, moreover, this polynomial is
strictly positive on the interval for t deIned by (2), it follows that Tlow(�; �+u′v′ ; t)¿
Tup(�; �+u′v′ ; t). This contradiction Inishes the proof of Theorem 1.

Proof of Lemma 4. We Irst show that U (�; �+u′v′ ; t) (for Ixed � and t) is an increasing
function of �+u′v′ , by showing that the derivative with respect to �+u′v′ is strictly positive
on the interval mentioned in Lemma 4.

dU (�; �+u′v′ ; t)
d�+u′v′

=
2�+ k(t − 4)

6k
p(�; �+u′v′ ; t); (10)

where

p(�; �+u′v′ ; t) = −16�(k − 2�+u′v′) + k(k(14 − 3t) + 16(t − 4)�+u′v′):

As �¡k=s and t ¡ 3 the Irst term in (10) is negative. We proceed by showing that
also p(�; �+u′v′ ; t)¡ 0. As �+u′v′ ¡k=s the coeLcient of � in p(�; �+u′v′ ; t) is negative. So
p(�; �+u′v′ ; t)6p((3 − t)ks; �+u′v′ ; t) which is equal to

k2(14 − 3t) − 16k2s(3 − t) + 16(2ks(3 − t) + k(t − 4))�+u′v′ : (11)
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As the coeLcient of �+u′v′ in (11) is negative, we obtain: p((3 − t)ks; �+u′v′ ; t)6
p((3 − t)ks; (3 − t)ks; t) where the latter equals

k2
(

−3 +
169

32 − 64s
+

9
64s

+ 16s(2s− 1)
(
t −
(
3 − 32s− 3

64s2 − 32s

))2)
:

As 3 − (32s− 3)=(64s2 − 32s)¡ 3 − 2=10¡t¡ 3 − 1=10, we obtain

1
k2
p((3 − t)ks; (3 − t)ks; t)6 1

50
(265 + 8s(2s− 21)) =

77
50

− 6
√
7

5
¡ 0:

This shows that U (�; �+u′v′ ; t)¿U (�; (3−t)ks; t). Next, taking the derivative with respect
to � yields

6k
dU (�; (3 − t)ks; t)

d�
= �k2(10 + 64s(t − 3) + 64s2(t − 3)2) + 2k3q(t); (12)

where q(t) only depends on t. As the coeLcient of � is negative on the considered
interval for t, we Ind that the right-hand side of (12) is minimized when � = k=2,
which is a relaxation of �¡k=s. This leads to

6k
dU (�; (3 − t)ks; t)

d�
¿ k3(3 + 2s(t − 3)(−30 + 16s(−3 + t)2 + 11t))¿ 0;

where the latter inequality follows by straightforward numerical evaluation using (2).
This shows that

U (�; (3 − t)ks; t)¿U ((3 − t)ks; (3 − t)ks; t)
which Inishes the proof of Lemma 4.
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