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Abstract

In this paper, we investigate properties of generalized convexities based on algebraic operations intro-
duced by Ben Tal [A. Ben Tal, On generalized means and generalized convex functions, J. Optim. Theory
Appl. 21 (1977) 1–13] and relations between these generalized convexities and generalized monotonicities.
We also discuss the (h,ϕ)-generalized directional derivative and gradient, and explore the relation between
this gradient and the Clarke generalized gradient. Definitions of some generalized averages of the values
of a generalized convex function at n equally spaced points based on the algebraic operations are also pre-
sented and corresponding results are obtained. Finally, the (ϕ, γ )-convexity is defined and some properties
of (ϕ, γ )-convex functions are derived.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Convexity plays a central role in many aspects of mathematics including sufficient condi-
tions and duality theory of mathematical programming [1,6,15], inequality, and monotonicity of
various averages of the values of a function at n equally spaced points [3]. Convex functions
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have many nice properties. However, these convexity assumptions must be weakened in order
to handle practical problems. In recent years, many authors have been interested in generalized
convexities and their properties. Several generalized convexities have been obtained and cor-
responding results in optimization have been derived, for instance, in [5,7–14,16–18]. Several
authors [4,19,20] have introduced generalized convexities based on some algebraic operations
introduced by Ben Tal [4]. In this paper, we consider these generalized convexities and investi-
gate their further properties.

We first present the algebraic operations introduced by Ben Tal [1,4].

Definition 1. Let E ⊆ R
N , h :E → R

N be a continuous vector function. Suppose that the inverse
function h−1 of h exists. Then the h-vector addition of x ∈ E and y ∈ E is defined by

x ⊕ y = h−1(h(x) + h(y)
)

and the h-scalar multiplication of x and λ ∈ R is defined by

λ � x = h−1(λh(x)
)
.

Similarly, algebraic operations for scalar valued functions can be defined as follows.

Definition 2. Let A ⊆ R and ϕ :A → R be a continuous and scalar valued function. Suppose that
the inverse function ϕ−1 of ϕ exists. Then the ϕ-addition of α ∈ A and β ∈ A is defined by

α[+]β = ϕ−1(ϕ(α) + ϕ(β)
)

and the ϕ-scalar multiplication of α ∈ A and λ ∈ R is defined by

λ[·]α = ϕ−1(λϕ(α)
)
.

Finally, we have left one more operation to define.

Definition 3. The (h,ϕ)-inner product of x ∈ E and y ∈ E is defined by(
xT y

)
(h,ϕ)

= ϕ−1(h(x)T h(y)
)
.

From the above definitions, the corresponding subtractions can be defined easily as follows:

– The h-vector subtraction of x ∈ E and y ∈ E:

x � y = x ⊕ (
(−1) � y

) = h−1(h(x) − h(y)
)
.

– The ϕ-subtraction of α ∈ A and β ∈ A:

α[−]β = α[+]((−1)[·]β) = ϕ−1(ϕ(α) − ϕ(β)
)
.

Ben Tal [4] obtained some properties of (h,ϕ)-convex functions [1,4] based on the above gen-
eralized algebraic operations. These results were also applied to some problems in statistical
decision theory. Xu and Liu [19] later introduced (h,ϕ)-generalized invex functions and estab-
lished efficiency conditions and duality theorems for semi-infinite multiobjective programming
under the generalized invexity assumptions. Zhang [20] have also generalized the concept of
(h,ϕ)-convexity and have obtained some optimality conditions and several duality results for a
class of nonsmooth programming under the generalized convexity assumptions.



D. Yuan et al. / J. Math. Anal. Appl. 321 (2006) 675–690 677
Let f be a Lipschitz and real-valued function defined on R
N . For all x, d ∈ R

N , the (h,ϕ)-
generalized directional derivative of f with respect to direction d and the (h,ϕ)-generalized
gradient of f at x, denoted by f ∗(x;d) and ∂∗f (x), respectively, are defined as follows:

f ∗(x;d) = lim
y→x
μ↓0

sup
1

μ
[·](f (y ⊕ μ � d)[−]f (y)

)
,

∂∗f (x) = {
ξ∗ ∣∣ f ∗(x, d) �

(
ξ∗T d

)
(h,ϕ)

, ∀d ∈ RN
}
.

We note that the above definitions can be seen as generalizations of the definitions introduced by
Zhang [20].

Following Ben Tal [4], we use the notations:[
m∑

i=1

]
ai = a1[+]a2[+] · · · [+]am and

m⊕
i=1

ξi = ξ1 ⊕ · · · ⊕ ξm,

where ai ∈ A, ξi ∈ E, i = 1,2, . . . ,m.
We also denote Clarke generalized gradient by ∂f (x) [6] and Clarke directional derivative by

f ◦(x;d) [6].
This paper is organized as follows. In Section 2, we give some definitions which will be used

in the rest part of the paper. Then we explore the relation between (h,ϕ)-generalized directional
derivative and Clarke directional derivative in Section 3. We show that many properties of (h,ϕ)-
generalized gradient can be conveniently derived based on this result in the section. We obtain
relations between (h,ϕ)-generalized monotonicity and (h,ϕ)-generalized convexity in Section 4.
In Section 5, we consider monotonicity of some averages based on the algebraic operations under
the ϕ-convexity assumption. In the final section, (ϕ, γ )-convex functions are introduced and their
properties are discussed.

2. Preliminaries

In this section, we consider a generalized convexity, namely (h,ϕ)-convexity [1,4], and some
generalizations of the generalized convexity.

Definition 4. A function f :E → R defined on E ⊆ R
N is said to be (h,ϕ)-convex, if for all

x1, x2 ∈ E, the relation

f
(
λ � x1 ⊕ (1 − λ) � x2

)
� λ[·]f (x1)[+](1 − λ)[·]f (x2), ∀λ ∈ [0,1],

holds. If, for all x1, x2 ∈ E and x1 �= x2, the relation

f
(
λ � x1 ⊕ (1 − λ) � x2

)
< λ[·]f (x1)[+](1 − λ)[·]f (x2), ∀λ ∈ (0,1),

holds, then f is said to be (h,ϕ)-strictly convex on E.

Next, we present the following extension of (h,ϕ)-convexity involving a scalar.

Definition 5. A function f :E → R defined on E ⊆ R
N is said to be (h,ϕ,α)-strongly convex,

if there exists α > 0 such that, for all x1, x2 ∈ E, x1 �= x2,

f (x2)[−]f (x1) �
(
(x2 � x1)

T ξ∗)
(h,ϕ)

[+]α[·](‖x2 � x1‖2)
(h,ϕ)

, ∀ξ∗ ∈ ∂∗f (x1).
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Since (h,ϕ)-convex and (h,ϕ,α)-strongly convex functions have been defined, the concepts
of (h,ϕ)-pseudoconvex [20] and (h,ϕ,α)-strongly pseudoconvex functions can also be defined.

Definition 6. A function f :E → R defined on E ⊆ R
N is said to be (h,ϕ)-(strictly) pseudocon-

vex if, for any x1, x2 ∈ E (x1 �= x2),

f (x2)[−]f (x1) < (�)0 ⇒ (
(x2 � x1)

T ξ∗)
(h,ϕ)

< 0, ∀ξ∗ ∈ ∂∗f (x1),

holds.

Definition 7. A function f :E → R defined on E ⊆ R
N is said to be (h,ϕ,α)-strongly pseudo-

convex, if there exists α > 0 such that, for all x1, x2 ∈ E, x1 �= x2,

∀ξ∗ ∈ ∂∗f (x1),
(
(x2 � x1)

T ξ∗)
(h,ϕ)

� 0 ⇒ f (x2)[−]f (x1) � α[·](‖x2 � x1‖2)
(h,ϕ)

holds.

Therefore, the concept of generalized monotonicity is easily defined as follows.

Definition 8. A set-valued function F :E → 2R
N

defined on E ⊆ R
N is said to be (h,ϕ)-

(strictly) monotonic if, for all x1, x2 ∈ E (x1 �= x2), the relation(
(x2 � x1)

T (η � ξ)
)
(h,ϕ)

� (>)0, ∀ξ ∈ F(x1), η ∈ F(x2),

holds.

Definition 9. A set-valued function F :E → 2R
N

defined on E ⊆ R
N is said to be (h,ϕ,α)-

strongly monotonic if there exists α > 0 such that, for all x1, x2 ∈ E,(
(x2 � x1)

T (η � ξ)
)
(h,ϕ)

� α[·](‖x2 � x1‖2)
(h,ϕ)

, ∀ξ ∈ F(x1), η ∈ F(x2),

holds.

Definition 10. A set-valued function F :E → 2R
N

defined on E ⊆ R
N is said to be (h,ϕ)-

(strictly) pseudomonotonic if, for any x1, x2 ∈ E (x1 �= x2),(
(x2 � x1)

T η
)
(h,ϕ)

< (�)0, ∀η ∈ F(x2) ⇒ (
(x2 � x1)

T ξ
)
(h,ϕ)

< 0, ∀ξ ∈ F(x1),

holds.

Definition 11. A set-valued function F :E → 2R
N

defined on E ⊆ R
N is said to be (h,ϕ)-

strongly pseudomonotonic if, for any x1, x2 ∈ E,(
(x2 � x1)

T ξ
)
(h,ϕ)

� 0, ∀ξ ∈ F(x1)

⇒ (
(x2 � x1)

T η
)
(h,ϕ)

� α[·](‖x2 � x1‖2)
(h,ϕ)

, ∀η ∈ F(x2),

holds.

When ϕ(α) = α for all α ∈ R and h(x) = x for all x ∈ R
N , real valued functions defined

by Definitions 4–7 are (strictly) convex, strongly convex, pseudoconvex, strongly pseudocon-
vex, respectively; set valued functions defined by Definitions 8 to 11 are (strictly) monotone,
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strongly monotone, pseudomonotone and strongly pseudomonotone [6], respectively. Hence
(h,ϕ)-generalized convex and monotone functions are generalizations of generalized convex and
monotone functions, respectively. In particularly, we have the following definition when N = 1
and h = ϕ.

Definition 12. A real valued function f :A → R defined on A ⊆ R is said to be ϕ-convex func-
tion, if for all α,β ∈ A ⊆ R, and ∀λ ∈ [0,1], the relation

f
(
λ[·]α[+](1 − λ)[·]β)

� λ[·]f (α)[+](1 − λ)[·]f (β)

holds.

The following proposition can be derived easily from the definition motivated by Jensen’s
inequality [4].

Proposition 1. Let f be a ϕ-convex function on A ⊆ R, αi ∈ A, λi ∈ [0,1], i = 1, . . . ,m, and∑m
i=1 λi = 1. Then

f

([
m∑

i=1

]
λi[·]αi

)
�

[
m∑

i=1

]
λi[·]f (αi).

3. Generalized gradients and directional derivatives

In this section, some relations between (h,ϕ)-directional derivative and Clarke directional
derivative as well as relations between (h,ϕ)-generalized gradient and Clarke generalized gradi-
ent will be discussed.

In order to present a theorem about the relation between (h,ϕ)-generalized directional deriv-
ative and Clarke directional derivative we consider the following lemma.

Lemma 1. Let ϕ(t) be strictly increasing and continuous on R, and h be a continuous vector
function on R

N . Then

lim
y→x
μ↓0

supϕ−1
(

1

μ

(
f̂ (y + μd) − f̂ (y)

)) = ϕ−1
(

lim
y→x
μ↓0

sup
1

μ

(
f̂ (y + μd) − f̂ (y)

))
.

Proof. Let us denote

A = lim
y→x
μ↓0

supϕ−1
(

1

μ

(
f̂ (y + μd) − f̂ (y)

))

and

B = lim
y→x
μ↓0

sup
1

μ

(
f̂ (y + μd) − f̂ (y)

)
.

It is enough to prove that ϕ(A) = B . Therefore, we prove only that ϕ(A) � B since the part
ϕ(A) � B can be proved in the similar way. By the definition of upper limit, for any i, there exist
yi and μi such that

1 (
f̂ (yi + μid) − f̂ (yi)

)
� B − 1

, ∀i ∈ N,

μi i
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and the sequence {yi}+∞
i=1 converges to x and {μ}+∞

i=1 ↓ 0.
Since ϕ is strictly increasing on R, we can write that

ϕ−1
(

1

μi

(
f̂ (yi + μid) − f̂ (yi)

))
� ϕ−1

(
B − 1

i

)
, ∀i ∈ N.

Consequently,

lim
i→+∞ϕ−1

(
1

μi

(
f̂ (yi + μid) − f̂ (yi)

))
� lim

i→+∞ϕ−1
(

B − 1

i

)
= ϕ−1(B).

By definition of upper limit, we have

A � lim
i→+∞ϕ−1

(
1

μi

(
f̂ (yi + μid) − f̂ (yi)

))
or ϕ(A) � B . �

The relation between (h,ϕ)-generalized directional derivative and Clarke directional deriva-
tive can be given by the following theorem.

Theorem 1. Let f be a real valued function, ϕ(t) be strictly increasing and continuous on R,
and let f̂ (t) � ϕf h−1(t). Then

f ∗(x;d) = ϕ−1(f̂ ◦(h(x),h(d)
))

.

Proof. Note that

f ∗(x;d) = lim
y→x
μ↓0

sup
1

μ
[·](f (y ⊕ μ � d)[−]f (y)

)

= lim
y→x
μ↓0

supϕ−1
(

ϕf h−1(h(y) + μh(d)) − ϕf h−1(h(y))

μ

)

= ϕ−1
(

lim
y→x
μ↓0

sup
f̂ (h(y) + μh(d)) − f̂ (h(y))

μ

)

= ϕ−1(f̂ ◦(h(x),h(d)
))

.

Here, the third equality is due to Lemma 1. �
Therefore, we can give a similar theorem as Theorem 1 about the relation between the gener-

alized gradients.

Theorem 2. Let f be a real valued function, ϕ(t) be strictly increasing and continuous on R,
and let f̂ (t) � ϕf h−1(t). Then

∂∗f (x) = h−1(∂f̂
(
h(x)

))
�

{
h−1(ξ)

∣∣ ξ ∈ ∂
(
f̂ (t)|t=h(x)

)}
.

Proof. We prove only that ∂∗f (x) ⊆ h−1(∂f̂ (h(x))) since ∂∗f (x) ⊇ h−1(∂f̂ (h(x))) can be
proved in the similar way. Let ξ∗ ∈ ∂∗f (x), then

f ∗(x, d) �
(
ξ∗T d

)
, ∀d ∈ R

N.

(h,ϕ)
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According to Theorem 1, it follows that

ϕ−1(f̂ ◦(h(x),h(d)
))

� ϕ−1(h(ξ∗)T h(d)
)
, ∀d ∈ R

N,

or

f̂ ◦(h(x),h(d)
)
�

(
h(ξ∗)T h(d)

)
, ∀d ∈ R

N.

Taking y = h(d) and noting that h is one to one mapping, we can conclude that

f̂ ◦(h(x), y
)
�

(
h(ξ∗)T y

)
, ∀y ∈ R

N.

The last inequality shows that h(ξ∗) ∈ ∂f̂ (h(x)) or ξ∗ ∈ h−1(∂f̂ (h(x))) which completes the
proof. �

Note that Theorems 1 and 2 are very important results. Based on these theorems, we can easily
show that many important properties of Clarke generalized directional derivative and gradient in
[6] are valid for (h,ϕ)-generalized directional derivative and gradient. For instance, we can give
Propositions 2–5.

Proposition 2. Let f be a real valued function defined on R
N . Suppose that f̂ (t) � ϕf h−1(t) be

Lipschitz near x. Then, we have:

(1) the function x → f ∗(x;d) is well defined and, for λ ∈ R
+, satisfies the following:

f ∗(x;λ � d) = λ[·]f ∗(x;d), f ∗(x; (−1) � d
) = (

(−1)[·]f )∗
(x;d);

(2) f ∗(x;d1 ⊕ d2) � f ∗(x;d1)[+]f ∗(x;d2);
(3) ∂∗f (x) is nonempty and, for every v ∈ R

N , the following holds:

f ∗(x;v) = max
{(

ξ∗T v
)
(h,ϕ)

∣∣ ξ∗ ∈ ∂∗f (x)
}
.

Proof. These properties can be easily obtained using Theorems 1, 2 and the properties of Clarke
directional derivative [6]. �

Let us consider some classical derivatives with respect to the function f̂ (t) � ϕf h−1(t) and
the following definition.

Definition 13. Let f be a real valued function defined on R
N and let f̂ (t) � ϕf h−1(t). f is

said to be (h,ϕ)-Gâteaux (Hadamard, strict or Fréchet) differentiable at x if f̂ admits a Gâteaux
(Hadamard, strict or Fréchet) derivative Df̂ (t) at t = h(x). Here, D∗f (x) � h−1(Df̂ (t |t=h(x)))

denotes the corresponding (h,ϕ)-Gâteaux (Hadamard, strict or Fréchet) derivative at x.

Proposition 3. Let f be a real valued function defined on R
N and f̂ (t) � ϕf h−1(t) be Lipschitz

on R
N . If f admits a (h,ϕ)-Gâteaux (Hadamard, strict or Fréchet) derivative D∗f (x) at x, then

D∗f (x) ∈ ∂∗f (x).

Proof. According to Proposition 2.2.2 in [6], we have

Df̂ (t |t=h(x)) ∈ ∂f̂ (t |t=h(x)).

Therefore, by Theorem 2, we can write that

D∗f (x) = h−1(Df̂ (t |t=h(x))
) ∈ h−1(∂f̂ (t |t=h(x))

) = ∂∗f (x). �
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Definition 14. Let f be a real valued function defined on R
N and let f̂ (t) � ϕf h−1(t). f is said

to be (h,ϕ)-regular at x if f̂ is regular at t = h(x).

Proposition 4. Let f be a real valued function defined on R
N and let f̂i (t) � ϕfih

−1(t) (i =
1, . . . ,m) be Lipschitz on R

N . Then

(1) for any s1 ∈ R, ∂∗(s1[·]f1)(x) = s1 � ∂∗f1(x);
(2) for any si ∈ R(i = 1, . . . ,m), ∂∗([∑]mi=1si[·]fi)(x) ⊂ ⊕m

i=1 si � ∂∗fi(x);
(3) let fi be (h,ϕ)-regular at x, and si ∈ R+ (i = 1, . . . ,m), then

∂∗
([

m∑
i=1

]
si[·]fi

)
(x) =

m⊕
i=1

si � ∂∗fi(x).

Proof. By Propositions 2.3.1, 2.3.2 and Corollary 2 in [6] and Theorem 2 we can derive the
results directly. �
Proposition 5. Let f be a real valued function defined on R

N . Suppose that ϕf h−1(t) is Lipschitz
on an open set containing the line segment [h(x),h(y)]. Then there exists a point λ ∈ (0,1) such
that

f (y)[−]f (x) ∈ (
∂∗f

(
λ � x ⊕ (1 − λ) � y

)
, y � x

)
(h,ϕ)

.

Proof. Using Theorem 2 and Theorem 2.3.7 in [6], we can derive the result. �
4. Generalized convexity and monotonicity

In this section, we discuss the relations between (h,ϕ)-generalized convexity and (h,ϕ)-
generalized monotonicity. Throughout this section we assume that ϕ(t) is strictly increasing and
continuous on R and ϕ(0) = 0.

Theorem 3. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R
N . Then the following statements

are equivalent:

(1) f is (h,ϕ)-convex on R
N ;

(2) f̂ is convex on R
N ;

(3) ∂f̂ is monotonic on R
N ;

(4) ∂∗f is (h,ϕ)-monotonic on R
N .

Proof. We will prove that (1) ⇔ (2) ⇔ (3) ⇔ (4).
(1) ⇔ (2). This part can be checked very easily using the definition of the algebraic operations.
(2) ⇔ (3). The proof is due to [6, Proposition 2.2.9].
(3) ⇔ (4). If ∂f̂ is monotonic on R

N , then

(y2 − y1)
T (η − ξ) � 0, ∀ξ ∈ ∂f̂ (y1), η ∈ ∂f̂ (y2). (1)

Let x1 = h−1(y1) and x2 = h−1(y2). Then according to Theorem 2, (1) implies that(
h(x2) − h(x1)

)T (
h(η∗) − h(ξ∗)

)
� 0, ∀ξ∗ ∈ ∂∗f (x1), η∗ ∈ ∂∗f (x2),
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where ξ∗ = h−1(ξ), η∗ = h−1(η).
Therefore,(

(x2 � x1)
T (η∗ � ξ∗)

)
(h,ϕ)

� 0, ∀ξ∗ ∈ ∂∗f (x1), η∗ ∈ ∂∗f (x2).

Moreover, the above steps are invertible, so the result follows. �
Theorem 4. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R

N . Then the following statements
are equivalent:

(1) f is (h,ϕ,α)-strongly convex on R
N ;

(2) f̂ is ϕ(α)-strongly convex on R
N ;

(3) ∂f̂ is 2ϕ(α)-strongly monotonic on R
N ;

(4) ∂∗f is (h,ϕ,α)-monotonic on R
N .

Proof. (1) ⇔ (2) and (3) ⇔ (4) can be proved on simple lines as the corresponding parts of
Theorem 3. We now prove that (2) ⇔ (3).

If f̂ is ϕ(α)-strongly convex on R
N , then, for all y1, y2 ∈ R

N , we have

f̂ (y2) − f̂ (y1) � ξT (y2 − y1) + ϕ(α)‖y2 − y1‖2, ∀ξ ∈ ∂
(
f̂ (y1)

)
,

f̂ (y1) − f̂ (y2) � μT (y1 − y2) + ϕ(α)‖y2 − y1‖2, ∀μ ∈ ∂
(
f̂ (h2)

)
.

Adding the above inequalities together, we obtain

(y1 − y2)
T (ξ − η) � 2ϕ(α)(y1 − y2)

T (y1 − y2), ∀ξ ∈ ∂
(
f̂ (y1)

)
, μ ∈ ∂

(
f̂ (y2)

)
,

which shows ∂f̂ is 2ϕ(α)-strongly monotonic on R
N .

Conversely, for any pair of points y1, y2 ∈ R
N , let

ψ(λ) = f̂
(
(1 − λ)y1 + λy2

)
, λ ∈ [0,1].

Then ψ(λ) is Lipschitz and differentiable almost everywhere on R [2]. Let us denote the set of
nondifferentiable points of ψ(λ) by Δ, and define

ψ ′(λ) =
{

ψ ′(λ), λ ∈ Δ \ [0,1],
limλ′→λ,λ′∈Δ\[0,1] ψ ′(λ′), λ ∈ Δ.

According to [6, Theorem 2.5.1], we have

ψ ′(λ) ∈ ∂ψ(λ) ⊂ (y2 − y1)
T ∂f̂

(
(1 − λ)y1 + λy2

)
.

Since ∂f̂ is 2ϕ(α)-strongly monotonic on R
N , from the above, we can conclude that(

(1 − λ)y1 + λy2 − y1
)T

(ξλ − ξ) � 2ϕ(α)
∥∥(

(1 − λ)y1 + λy2
) − y1

∥∥2
,

for all ξ ∈ ∂f̂ (y1), ξλ ∈ ∂f̂ ((1 − λ)y1 + λy2).
We can rewrite the above as

(y2 − y1)
T ξλ � (y2 − y1)

T ξ + 2ϕ(α)‖y2 − y1‖2.

Therefore,
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f̂ (y2) − f̂ (y1) = ψ(1) − ψ(0) =
1∫

0

ψ ′(λ) dλ �
1∫

0

(
(y2 − y1)

T ξ + 2ϕ(α)‖y2 − y1‖2)dλ

� (y2 − y1)
T ξ + ϕ(α)

2
‖y2 − y1‖2.

This shows that f̂ is ϕ(α)-strongly convex on R
N . �

The properties in the above theorem can be kept for generalized pseudoconvex functions.
Next, we state the following theorems without proofs since they can be obtained similarly as that
in the previous theorem.

Theorem 5. Let f (x) and f̂ (x)=ϕf h−1(x) be Lipschitz on R
N . Then the following statements

are equivalent:

(1) f is (h,ϕ)-pseudoconvex on R
N ;

(2) f̂ is pseudoconvex on R
N ;

(3) ∂(f̂ ) is pseudomonotonic on R
N ;

(4) ∂∗f is (h,ϕ)-pseudomonotonic on R
N .

Theorem 6. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R
N . Then the following statements

are equivalent:

(1) f is (h,ϕ)-strictly convex on R
N ;

(2) f̂ is strictly convex on R
N ;

(3) ∂(f̂ ) is strictly monotonic on R
N ;

(4) ∂∗f is (h,ϕ)-strictly monotonic on R
N .

Theorem 7. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R
N . Then the following statements

are equivalent:

(1) f is (h,ϕ)-strictly pseudoconvex on R
N ;

(2) f̂ is strictly pseudoconvex on R
N ;

(3) ∂(f̂ ) is strictly pseudomonotonic on R
N ;

(4) ∂∗f is (h,ϕ)-strictly pseudomonotonic on R
N .

Lemma 2. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R
N . Then

(1) f is (h,ϕ,α)-strongly pseudoconvex on R
N if and only if f̂ is ϕ(α)-strongly pseudoconvex

on R
N ;

(2) ∂∗f is (h,ϕ)-strongly pseudomonotonic on R
N if and only if ∂(f̂ ) is ϕ(α)-strongly pseu-

domonotonic on R
N .

Theorem 8. Let f (x) and f̂ (x) = ϕf h−1(x) be Lipschitz on R
N . If ∂∗f is (h,ϕ)-strongly

pseudomonotonic on R
N , then f is (h,ϕ,α)-strongly pseudoconvex on R

N . Furthermore, sup-
pose that f̂ is differentiable on R

N . Then ∂∗f is (h,ϕ)-strongly pseudomonotonic on R
N if and

only if f is (h,ϕ,α)-strongly pseudoconvex on R
N .
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Theorems 6 and 7 can be proved on simple lines as Theorems 3 and 5, respectively. The proof
of Lemma 2 is analogous to the corresponding parts of Theorem 5. The first part of Theorem 8
can be proved similarly as (3) ⇒ (2) part of Theorem 4. Then applying Lemma 2 and the differ-
entiability assumption of f̂ , we can derive the second part.

5. Monotonic averages of ϕ-convex functions

The monotonicity of some averages of the values of a convex function at n equally spaced
points was studied by Bennett and Jameson in [3]. They obtained several interesting properties
of these averages and relations between them. In this section we consider these averages from
the viewpoint of generalized convex functions. In particularly, ϕ-convex functions are discussed.
Following Bennett and Jameson, we define four averages of the values of a function at n equally
spaced points based on the algebraic operations by Ben Tal [4] as follows.

Definition 15. Define

sn(f ) = 1

n
[·]

[
n−1∑
r=0

]
f

(
r

n

)
, Sn(f ) = 1

n
[·]

[
n∑

r=1

]
f

(
r

n

)
,

An(f ) = 1

n − 1
[·]

[
n−1∑
r=1

]
f

(
r

n

)
(n � 2),

Bn(f ) = 1

n + 1
[·]

[
n∑

r=0

]
f

(
r

n

)
(n � 0).

Obviously, if ϕ(α) = α, for all α ∈ R, then the above averages are the averages in [3] which
have many good properties under the convexity assumption of f . These properties include the
following.

Lemma 3. Let f be convex on [0,1], then An(f ) increases with n, and Bn(f ) decreases with n.

Theorem 9. Let f be convex on [0,1], then sn(f ) increases with n, and Sn(f ) decreases with n.

Bennett and Jameson [3] presented a detailed proof for Theorem 9. However, their proof was
quite lengthy. Now we give below a very simple proof for Theorem 9.

Proof of Theorem 9. When f is a monotonic and convex function, Theorem 3A in [3] gives us
the proof. So, we assume that f is nonmonotonic and convex. Then there exists x0 ∈ (0,1), such
that

f (x) � f (x0)

and f is decreasing on interval [0, x0] and increasing on interval [x0,1]. Furthermore, without
loss of generality, we can assume that f (x0) = 0 (if not we consider the function g(x) = f (x) −
f (x0)). Now we consider the following two functions:

f1(x) =
{

f (x), x ∈ [0, x0],
0 (x ,1], f2(x) =

{
0, x ∈ [0, x0],
f (x), x ∈ (x ,1].
0 0
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It is easy to verify that f1 and f2 are monotonic and convex. Furthermore, f1(x)+f2(x) = f (x)

when x ∈ [0,1]. Hence

sn(f ) = sn(f1) + sn(f2), Sn(f ) = Sn(f1) + Sn(f2).

Now applying [3, Theorem 3A], we obtain the result. �
Next, we show that the monotonicity of averages defined by Definition 15 will be kept under

the ϕ-convexity assumption.

Theorem 10. Let ϕ be increasing and convex on [0,1], and f be increasing and ϕ-convex on
[0,1]. Then Bn(f ) � An(f ).

Proof. Note that ϕ−1 is increasing. Since ϕ is convex on [0,1], we can write the following:

ϕ

(
r

n

)
= ϕ

((
1 − r

n

)
· 0 + r

n
· 1

)
�

(
1 − r

n

)
ϕ(0) + r

n
ϕ(1)

or

r

n
� ϕ−1

((
1 − r

n

)
ϕ(0) + r

n
ϕ(1)

)
=

(
1 − r

n

)
[·]0[+] r

n
[·]1.

Using this statement, we have

f

(
r

n

)
� f

[(
1 − r

n

)
[·]0[+] r

n
[·]1

]
�

(
1 − r

n

)
[·]f (0)[+] r

n
[·]f (1), r = 0,1, . . . , n.

Therefore,

f

(
r

n

)
[+]f

(
1 − r

n

)
� f (0)[+]f (1)

or

An(f ) � 1

2
[·](f (0)[+]f (1)

) = B1(f ).

Hence,

Bn(f ) = n − 1

n + 1
[·]An(f )[+] 2

n + 1
[·]B1(f ) � An(f ). �

Theorem 11. Let ϕ be increasing and convex on [0,1], and f be increasing and ϕ-convex on
[0,1]. Then, An(f ) increases with n, and Bn(f ) decreases with n.

Proof. Obviously,

r

n
= n − r

n

r

n + 1
+ r

n

r + 1

n + 1
, r = 1, . . . , n. (2)

Based on (2), we write that

f

(
r

n

)
� f

((
1 − r

n

)
[·] r

n + 1
[+] r

n
[·] r + 1

n + 1

)
�

(
1 − r

n

)
[·]ar [+] r

n
[·]ar+1,

where ar = f
(

r
n+1

)
, r = 1, . . . , n.

Therefore, it follows that
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An(f ) = 1

n − 1
[·]

[
n−1∑
r=1

]
f

(
r

n

)
= ϕ−1

(
1

n − 1
ϕ

([
n−1∑
r=1

]
f

(
r

n

)))

� ϕ−1

(
1

n − 1
ϕ

([
n−1∑
r=1

]((
1 − r

n

)
[·]ar [+] r

n
[·]ar+1

)))

= ϕ−1
(

r

n
ϕ
(
a1[+]a2[+] · · · [+]an

)) = An+1(f ).

Thus An(f ) increases with n. We also note that

r

n
= r

n

r − 1

n − 1
+

(
1 − r

n

)
r

n − 1
.

Then the rest part of the theorem can be proved similarly as that we have just done above. �
Theorem 12. Let ϕ be increasing and convex on [0,1] and ϕ(0) = 0. Moreover, let f be increas-
ing and ϕ-convex on [0,1]. Then sn(f ) increases with n, and Sn(f ) decreases with n.

Proof. Without loss of generality we can assume that f (0) = 0. If not, we simply consider the
function g(x) = f (x)[−]f (0), and it is easy to verify that g(x) is increasing and ϕ-convex on
[0,1], and g(0) = 0. Therefore, it follows that

sn(f ) =
(

1 − 1

n

)
[·]An(f ), Sn(f ) =

(
1 + 1

n

)
[·]Bn(f ).

By Theorem 11, the result is obtained. �
We note that the similar results as above can be obtained for (h,ϕ)-convex functions under

some additional assumptions.

6. (ϕ,γ )-Convexity and its properties

In this section, we introduce (ϕ, γ )-convexity, generalization of γ -convexity [9–11], on real
line and establish some properties of (ϕ, γ )-convex functions. Throughout this section we use
the following assumptions.

Let γ be a positive and fixed real number, D be an interval in R, ϕ be increasing on D,
ϕ(0) � 0 and supt1,t2∈D(ϕ(t2) − ϕ(t1)) � ϕ(γ ).

Definition 16. Let f be a real valued function defined on D. If, for all t1, t2 ∈ D, the relation

t2[−]t1 � γ ⇒ f
(
t1[+]γ )[+]f (

t2[−]γ )
� f (t1)[+]f (t2)

holds, then f is said to be (ϕ, γ )-convex on D.

The relation between ϕ-convexity and (ϕ, γ )-convexity is given by the following proposition.

Proposition 6. If f is ϕ-convex on D, then f is (ϕ, γ )-convex on D for any real number γ > 0.

Proof. Since f is ϕ-convex on D, we have

t2[−]t1 � γ ⇔ ϕ(t2) − ϕ(t1) � ϕ(γ ).
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Let λ � ϕ(γ )
ϕ(t2)−ϕ(t1)

. Then λ ∈ (0,1), and it is easy to verify that

t1[+]γ = λ[·]t2[+](1 − λ)[·]t1, t2[−]γ = (1 − λ)[·]t2[+]λ[·]t1.
Hence

f
(
t1[+]γ )

� λ[·]f (t2)[+](1 − λ)[·]f (t1) = ϕ−1(ϕ(
(1 − λ)ϕ(t1) + λϕ(t2)

))
, (3)

f
(
t2[−]γ )

� (1 − λ)[·]f (t2)[+]λ[·]f (t1) = ϕ−1(ϕ(
λϕ(t1) + (1 − λ)ϕ(t2)

))
. (4)

Combining (3), (4) with the monotonicity of ϕ and according to the algebraic operation, we have

f
(
t1[+]γ )[+]f (

t2[−]γ )
� f (t1)[+]f (t2). �

Theorem 13. Let γ be a positive real number and f be a real valued function defined on D.
Then the following statements are equivalent:

(1) f is (ϕ, γ )-convex on D;
(2) ϕf ϕ−1 is ϕ(γ )-convex [10] on ϕ(D), where ϕ(D) = {ϕ(x) | x ∈ D};
(3) let h

ϕ

(f,γ )(t) = 1
γ
[·](f (t[+]γ )[−]f (t)). Then h

ϕ

(f,γ )(t) is nondecreasing, i.e.,

h
ϕ

(f,γ )(t
′) � h

ϕ

(f,γ )(t
′′), if ∀t ′ � t ′′ and

{
t ′, t ′′[+]γ } ⊂ D.

Proof. (1) ⇔ (2). By the definition, f is (ϕ, γ )-convex on D if and only if

ϕ−1(ϕf (
ϕ−1(ϕ(t1) + ϕ(γ )

)) + ϕf
(
ϕ−1(ϕ(t2) − ϕ(γ )

)))
� ϕ−1(ϕf (

ϕ−1(ϕ(t1)
)) + ϕf

(
ϕ−1(ϕ(t2)

)))
.

Letting s1 = ϕ(t1) and s2 = ϕ(t2), we obtain the desired result.
(1) ⇔ (3). We can easily verify that

h(ϕf ϕ−1,ϕ(γ ))

(
ϕ(t)

) · ϕ(γ )

γ
= ϕ

(
h

ϕ

(f,γ )(t)
)
. (5)

By [9, Theorem 2.1], ϕf ϕ−1 is ϕ(γ )-convex on ϕ(D) iff h(ϕf ϕ−1,ϕ(γ )) is nondecreasing on ϕ(D).
Therefore, due to (5), ϕf ϕ−1 is ϕ(γ )-convex on ϕ(D) iff h

ϕ

(f,γ )(t) is nondecreasing. �
Definition 17. The set defined by

∂ϕ
γ f (t) �

{
ξ ∈ R

∣∣ ∃t ′, t ′′ ∈ [
t[−]γ, t

] ∩ D:

f
(
t ′[+]γ )[−]f (t ′) � γ [·]ξ � f

(
t ′′[+]γ )[−]f (t ′′)

}
is called (ϕ, γ )-subdifferential of f at t .

Next, we explore very important characterization of (ϕ, γ )-subdifferential by the following
theorem.

Theorem 14.

∂ϕ
γ f (t) = co

{
h

ϕ

(f,γ )(t
′)

∣∣ t ∈ [
t ′, t ′[+]γ ]}

�
{
λ[·]hϕ

(f,γ )(t1)[+](1 − λ)[·]hϕ
f,γ (t2)

∣∣ t ∈ [
t1, t1[+]γ ]

,

t ∈ [
t2, t2[+]γ ]

, ∀λ ∈ (0,1)
}
.
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Proof. We first prove that if ∀ξ1, ξ2 ∈ ∂
ϕ
γ f (t), then ⇒ λ[·]ξ1[+](1 − λ)[·]ξ2 ∈ ∂

ϕ
γ f (t). When

ξ1, ξ2 ∈ ∂
ϕ
γ f (t), there exist t1, t

′
1, t2, t

′
2 ∈ [t[−]γ, t] ∩ D such that

f
(
t1[+]γ )[−]f (t1) � γ [·]ξ1 � f

(
t ′1[+]γ )[−]f (

t ′1
)
,

f
(
t2[+]γ )[−]f (t2) � γ [·]ξ2 � f

(
t ′2[+]γ )[−]f (

t ′2
)
.

Hence,

ϕf (t1[+]γ ) − ϕf (t1)

γ
� ϕ(ξ1) �

ϕf (t ′1[+]γ ) − ϕf (t ′1)
γ

,

ϕf (t2[+]γ ) − ϕf (t2)

γ
� ϕ(ξ2) �

ϕf (t ′2[+]γ ) − ϕf (t ′2)
γ

. (6)

Let

a = min

{
ϕf (t1[+]γ ) − ϕf (t1)

γ
,
ϕf (t2[+]γ ) − ϕf (t2)

γ

}
and

b = max

{
ϕf (t ′1[+]γ ) − ϕf (t ′1)

γ
,
ϕf (t ′2[+]γ ) − ϕf (t ′2)

γ

}
.

Then, by the above inequalities, we can write that

a � λϕ(ξ1) + (1 − λ)ϕ(ξ2) � b or a � ϕ
(
λ[·]ξ1[+](1 − λ)[·]ξ2

)
� b.

Therefore,

λ[·]ξ1[+](1 − λ)[·]ξ2 ∈ ∂ϕ
γ f (t).

Next, we prove our that ∂
ϕ
γ f (t) = co{hϕ

(f,γ )(t
′) | t ∈ [t ′, t ′[+]γ ]} based on the above property

of ∂
ϕ
γ f (t). Consider ξ = h

ϕ
f,γ (t1) such that t ∈ [t1, t1[+]γ ] and t1 ∈ D. Then, taking t ′ = t ′′ = t1,

we can say that ξ ∈ ∂
ϕ
γ f (t) by Definition 16. Hence, due to the above property we just proved,

co{hϕ

(f,γ )(t
′) | t ∈ [t ′, t ′[+]γ ]} ⊆ ∂

ϕ
γ f (t).

On the other hand, let ξ1 ∈ ∂
ϕ
γ f (t). Then there exist t1, t

′
1 ∈ [t[−]γ, t]∩D such that (6) holds.

Therefore,

c1 � h
ϕ

(f,γ )(t1) � ξ1 � h
ϕ

(f,γ )

(
t ′1

)
� c2.

Denoting λ � ϕ(ξ)−ϕ(c1)
ϕ(c2)−ϕ(c1)

, we have

ξ = λ[·]c2[+](1 − λ)[·]c1 ∈ co
{
h

ϕ
f,γ (t ′)

∣∣ t ∈ [
t ′, t ′[+]γ ]}

. �
Theorem 15. Let γ be a positive real number and f be a real valued function on D. Then, the
following statements are equivalent:

(1) f is (ϕ, γ )-convex on D;
(2) ξ � η for all ξ ∈ ∂

ϕ
γ f (t), η ∈ ∂

ϕ
γ f (t[+]γ ) and {t, t[+]γ } ⊂ D.

Proof. Since {t, t[+]γ } ⊂ D, by Theorem 14, we have

∂ϕ
γ f (t) = co

{
h

ϕ
f,γ (t ′)

∣∣ t ′ ∈ [
t[−]γ, t

]}
,

∂ϕ
γ f

(
t[+]γ ) = co

{
h

ϕ
f,γ (t ′′)

∣∣ t ′′ ∈ [
t, t[+]γ ]}

.

These together with (5) and [9, Theorem 2.3] give the result. �
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