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Abstract

We give a new proof that every linear fractional map of the unit ball induces a bounded composition
operator on the standard scale of Hilbert function spaces on the ball, and obtain new norm bounds analogous
to the standard one-variable estimates. We also show that Cowen’s one-variable spectral radius formula
extends to these operators. The key observation underlying these results is that every linear fractional map
of the ball belongs to the Schur–Agler class.
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1. Introduction

1.1. Background

Given a set Ω , a collection of functions F :Ω → C and a map ϕ :Ω → Ω , one can define a
composition operator

Cϕ :f → f ◦ ϕ.

Often Ω is a domain in C or C
m, ϕ is a holomorphic map and F is a Banach space of holo-

morphic functions. Broadly, one is interested in extracting properties of Cϕ acting on F (bound-
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edness, spectral properties, etc.) from function theoretic or dynamical properties of ϕ. The most
studied case is that of Ω = D (the open unit disk in C) and F the Hardy space H 2. In this case
it follows from the Littlewood subordination principle that every holomorphic self-map ϕ of D

induces a bounded composition operator on H 2. A theorem of C. Cowen [7] computes the spec-
tral radius of Cϕ . The purpose of the present paper is to extend Cowen’s theorem to the class
of linear fractional composition operators acting on the standard scale of holomorphic spaces on
the open unit ball B

m ⊂ C
m.

The primary difficulty in studying composition operators on the ball is that not every holomor-
phic self-map ϕ induces a bounded composition operator on the standard spaces. Moreover, in
many cases even when boundedness can be established, it is difficult to obtain useful norm esti-
mates. In [11] we showed that every self-map ϕ of the ball belonging to the Schur–Agler class Sm

(defined below) induces a bounded composition operator on the standard scale of spaces, and
moreover obeys a norm estimate analogous to the one-variable case. Since every self-map of the
unit disk belongs to the Schur–Agler class, one’s intuition is that the maps ϕ ∈ Sm should have
more behavior in common with self-maps of the disk than do generic self-maps of the ball.

In this paper we show that the linear fractional maps of Bm introduced by Cowen and Mac-
Cluer [8] belong to the Schur–Agler class and obtain norm bounds. We then use this result
together with an explicit parametrization of the non-elliptic linear fractional maps obtained by
Bracci et al. [6] to obtain a formula for the spectral radius, which extends Cowen’s result to linear
fractional maps in higher dimensions. Moreover we conjecture that this formula should hold for
all maps in the Schur–Agler class.

The paper is organized as follows: we conclude this introductory section by defining the
Schur–Agler class Sm and describing its relevant properties. In Section 2 we prove that every
linear fractional map of B

m belongs to Sm and obtain a norm estimate for the induced composi-
tion operators; from the norm estimate we deduce a prototype expression for the spectral radius.
In Section 3 we prove the spectral radius formula for linear fractional maps and describe some
of the geometric difficulties (absent in the one-variable case) encountered in trying to extend the
formula to all Schur–Agler mappings.

1.2. The Schur–Agler class

Let B
m denote the open unit ball of C

m. We will write 〈·,·〉 for the standard Hermitian inner
product on C

m and |z| = √〈z, z〉 for the Euclidean length. It will often be convenient to write
points of C

m in the form z = (z1, z
′) with z1 ∈ C and z′ = (z2, . . . , zm) ∈ C

m−1.

Definition 1. The Schur–Agler class Sm is the set of all holomorphic mappings ϕ : Bm → B
m for

which the Hermitian kernel

kϕ(z,w) = 1 − 〈ϕ(z),ϕ(w)〉
1 − 〈z,w〉 (1.1)

is positive semidefinite.

The kernel (1.1) will be called the de Branges–Rovnyak kernel associated to ϕ. When m = 1
these are the classical de Branges–Rovnyak kernels [9,15]. The functions ϕ for which kϕ is
positive are precisely those admitting a representation as a transfer function of a multivariate
linear system [3], but we will not use this representation explicitly.

It is an elementary but important fact that Sm is closed under composition:
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Theorem 2. If ϕ,ψ ∈ Sm then so is ϕ ◦ ψ .

Proof. The kernel kϕ◦ψ may be factored as

kϕ◦ψ(z,w) = kϕ
(
ψ(z),ψ(w)

) · kψ(z,w)

which is a pointwise product of positive kernels and hence positive. �
In particular iterates of Schur–Agler mappings remain in the Schur–Agler class. It will be

proved in the next section that every linear fractional map of Bm belongs to Sm. Since every
automorphism of the ball is a linear fractional map, it follows that the Schur–Agler class is
closed under conjugation by automorphisms.

Definition 3. Let m,β be positive integers. The space H 2
m,β is the space of holomorphic functions

on the unit ball B
m with reproducing kernel

kβ(z,w) = 1

(1 − 〈z,w〉)β .

When β = 1 this is the Drury–Arveson space, which is strictly smaller than the classical
Hardy space on the ball but often the more appropriate setting for multivariable operator theory;
see e.g. [1,2]. When β = m we obtain the classical Hardy space and β = m+1 gives the Bergman
space. This scale of spaces can be extended to non-integral values of β via Calderon interpolation,
and all of the results of this paper are valid for this larger scale. However since the primary values
of interest are β = 1,m and m + 1, we omit the details.

It was shown in [11] that every ϕ ∈ Sm induces a bounded composition operator on each of
the spaces H 2

m,β , satisfying a “one-variable style” norm estimate, in particular an estimate which
depends only on the value of ϕ at 0. In fact when m = 1 this is precisely the “classical” norm
estimate for composition operators on the standard scale of Hilbert function spaces. In higher
dimensions, a related upper bound was obtained by Bayart [4, Theorem 4.1], which applies to
certain univalent mappings (not necessarily in Sm) but which depends both on ϕ(0) and on global
estimates for derivatives of ϕ.

Theorem 4. If ϕ ∈ Sm then Cϕ is bounded on H 2
m,β and

(
1

1 − |ϕ(0)|2
)β/2

� ‖Cϕ‖ �
(

1 + |ϕ(0)|
1 − |ϕ(0)|

)β/2

. (1.2)

Proof. The upper bound is proved in [11]; the lower bound is generic for composition operators
acting on reproducing kernel Hilbert spaces: since kβ(·,0) ≡ 1,

∥∥C∗
ϕ

∥∥ �
∥∥C∗

ϕkβ(·,0)
∥∥ = ∥∥kβ

(·, ϕ(0)
)∥∥ =

(
1

1 − |ϕ(0)|2
)β/2

. �
We obtain immediately an expression for the spectral radius of Cϕ . In what follows we let ϕn

denote the nth iterate of ϕ, and observe that Cn = Cϕn . Also, given two sequences of positive
ϕ
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numbers an, bn, we write an ∼ bn to mean that there exist strictly positive constants C1,C2 such
that

C1 � an

bn

� C2

for all n.

Corollary 5. If ϕ ∈ Sm then the spectral radius of Cϕ acting on H 2
m,β is

lim
n→∞

(
1 − ∣∣ϕn(0)

∣∣)−β/2n
. (1.3)

Proof. Since Sm is closed under composition, we may iterate the norm inequality (1.2) to obtain

∥∥Cn
ϕ

∥∥ = ‖Cϕn‖ ∼ (
1 − ∣∣ϕn(0)

∣∣)−β/2
.

Since r(Cϕ) = lim‖Cn
ϕ‖1/n, the corollary follows. �

The expression (1.3) should not really be regarded as a formula for the spectral radius, unless
some method of evaluating the limit is available. In one dimension (for maps without interior
fixed points), the limit can be evaluated in terms of the angular derivative at the Denjoy–Wolff
point. The evaluation of this limit for linear fractional mappings in higher dimensions is the
purpose of the next section; we obtain a result analogous to the one-variable case, where the
dilatation coefficient (defined below) plays the role of the angular derivative.

Intuitively, one may expect that Schur–Agler mappings of B
m may exhibit a stronger affinity

with self-maps of D than do generic self-maps of B
m. The reason for this is that every self-map

of D belongs to S1, while for m > 1 Sm is always a proper subset of the self-maps of B
m. In

particular any fact about self-maps of D which can be proved using only the positivity of the de
Branges–Rovnyak kernel ought to have an analogue for the Schur–Agler class; though of course
this analogy cannot be taken too literally.

2. Linear fractional maps

We now prove that the linear fractional maps of B
d introduced by Cowen and MacCluer [8]

belong to Sm. By the theorem and its corollary we obtain a new proof of the boundedness of linear
fractional composition operators on the standard spaces, as well as the norm estimate (1.2).

Following Cowen and MacCluer [8], a linear fractional map on B
m is defined to be a function

of the form

ϕ(z) = Az + B

〈z,C〉 + D
(2.1)

where A is a m × m matrix, B,C are column vectors in C
m, and D is a complex number.

Here 〈·,·〉 denotes the standard inner product on C
m. Clearly, the parameters A,B,C,D are not

uniquely determined, since they may all be multiplied by a fixed scalar without changing ϕ.
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It is shown in [8] that such map takes B
m into itself if and only if for some choice of A,B,C,D

representing ϕ, the (m + 1) × (m + 1) matrix

T =
(

A B

C∗ D

)
(2.2)

is contractive with respect to the indefinite bilinear form on C
m+1 defined by

[v,w] = 〈Jv,w〉 (2.3)

where J is the matrix

J =
(

Im 0
0 −1

)
. (2.4)

That is, T must satisfy

[T v,T v] � [v, v]
for all v ∈ C

m+1. This contractivity condition is satisfied if and only if the matrix J − T ∗JT is
positive semidefinite. We will make use of the condition in this latter form.

It is then proved in [8] that every such map induces a bounded composition operator on the
standard scale of spaces (at least when β � m), though this proof is indirect and in particular
does not provide an estimate for the norm of Cϕ . We will prove that Cϕ is bounded by appeal to
Theorem 4, and prove that the de Branges–Rovnyak kernel kϕ is positive by exhibiting an explicit
factorization, which we obtain from a factorization of the (assumed positive) matrix J − T ∗JT .
We can now state the factorization result.

Theorem 6. Every linear fractional map ϕ : Bm → B
m belongs to the Schur–Agler class Sm.

Proof. Let T be an (m + 1) × (m + 1) matrix which is contractive with respect to [·,·] and has
the form

T =
(

A B

C∗ D

)
(2.5)

and let ϕ denotes the associated linear fractional transformation. (By the remarks preceding the
proof, every linear fractional self-map of B

m arises in this way.) Factor J − T ∗JT as

J − T ∗JT = X∗X (2.6)

with

X =
(

X11 X12
X∗

21 X22

)
. (2.7)

Now define a function L : Bm → C
m+1 by

L(z) = X

(
z

1

)
=

(
X11z + X12

〈z,X 〉 + X

)
. (2.8)
21 22



2392 M.T. Jury / Journal of Functional Analysis 254 (2008) 2387–2400
We now claim that the de Branges–Rovnyak kernel can be factored as

kϕ(z,w) = 1

〈z,C〉 + D

(
1 + L(z)L(w)∗

1 − 〈z,w〉
)

1

〈w,C〉 + D
(2.9)

from which it is apparent that kϕ is positive. To verify (2.9), we first write out kϕ(z,w) as

kϕ(z,w) = 1

〈z,C〉 + D

1

〈w,C〉 + D

× (〈z,C〉 + D)(〈w,C〉 + D) − 〈Az + B,Aw + B〉
1 − 〈z,w〉 . (2.10)

Working with the factor on the second line, we verify that its numerator is equal to 1 − 〈z,w〉 +
L(z)L(w)∗, which proves (2.9):

1 − 〈z,w〉 + L(z)L(w)∗

= 1 − 〈z,w〉 +
〈
X∗X

(
z

1

)
,

(
w

1

)〉

= 1 − 〈z,w〉 +
〈
J − T ∗JT

(
z

1

)
,

(
w

1

)〉

= −
〈
JT

(
z

1

)
, T

(
w

1

)〉

= (〈z,C〉 + D
)(〈w,C〉 + D

) − 〈Az + B,Aw + B〉. �
3. Spectral radii

We begin with some basic definitions and results about the iteration of self-maps of the ball,
and then describe some known results on the spectral radii of linear fractional composition oper-
ators. Suppose that ϕ : Bm → B

m is a holomorphic mapping which does not fix any point of B
m.

MacCluer [12] showed that an analogue of the Denjoy–Wolff theorem holds: there exists a unique
point ζ ∈ ∂B

m such that the iterates of ϕ converge uniformly to ζ on compact subsets of B
m. This

point will be called the Denjoy–Wolff point of ϕ. Moreover, it follows from [12, Theorem 1.3]
that

0 < lim inf
z→ζ

1 − |ϕ(z)|2
1 − |z|2 = α � 1

and hence by the Julia–Carathéodory theorem on the ball [14, Theorem 8.5.6] the complex di-
rectional derivative Dζ ϕ has a radial limit2 α at ζ ; this number is called the dilatation coefficient
of ϕ. (When m = 1, α is the angular derivative of ϕ at ζ .) The following is then a special case of
Julia’s theorem on the ball ([12, Theorem 1.3] and [14, Theorem 8.5.3]).

2 In fact this limit exists in the wider sense of restricted K-limit (or hypoadmissible limit) but we will not require this
notion at the moment.
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Theorem 7. Let ϕ : Bm → B
m with Denjoy–Wolff point ζ ∈ ∂B

m and dilatation coefficient α.
Then for all z ∈ B

m,

|1 − 〈ϕ(z), ζ 〉|2
1 − |ϕ(z)|2 � α

|1 − 〈z, ζ 〉|2
1 − |z|2 . (3.1)

We now divide the self-maps of B
m into three classes.

Definition 8. A holomorphic self-map ϕ of Bm will be called:

• elliptic if ϕ fixes a point of B
m,

• parabolic if ϕ has no fixed point and dilatation coefficient 1, and
• hyperbolic if ϕ has no fixed point and dilatation coefficient α < 1.

In one dimension, Cowen [7] obtained the following formula for the spectral radius of com-
position operators on H 2(D).

Theorem 9. Let ϕ : D → D. If ϕ is elliptic then the spectral radius of Cϕ is 1; if ϕ is non-elliptic
then the spectral radius is α−1/2.

For linear fractional maps in higher dimensions, MacCluer [13] obtained the full spectrum
for automorphic symbols ϕ acting on the Hardy space (our case β = m); it follows from these
results that the spectral radius is 1 for elliptic automorphisms and α−m/2, otherwise. More re-
cently Bayart [4] obtained the full spectrum for certain parabolic maps conjugate to generalized
Heisenberg translations of the Siegel half-space; for these parabolic maps the spectral radius is 1.

The spectral radius formulae we obtain will be valid for all elliptic and parabolic maps in
the Schur–Agler class; it is only in the hyperbolic case that we restrict to linear fractional maps.
Indeed in the elliptic and parabolic cases the proof we now give is identical to Cowen’s in di-
mension 1.

Theorem 10. Let ϕ ∈ Sm. If ϕ is elliptic or parabolic, then the spectral radius of Cϕ on H 2
m,β

is 1.

Proof. If ϕ is elliptic, then Cϕ is similar (via conjugation by an automorphism) to a composition
operator Cψ with ψ ∈ Sm and ψ(0) = 0. Since Sm is automorphism invariant, ψ ∈ Sm and hence
‖Cψn‖ = 1 for all n by Theorem 4, and thus r(Cϕ) = r(Cψ) = 1.

Now assume ϕ is parabolic with Denjoy–Wolff point ζ ∈ ∂B
m. If zn is a sequence in B

m such
that zn → ζ , ϕ(zn) → ζ , and the limit

M = lim
n→∞

(
1 − |ϕ(zn)|

1 − |zn|
)

exists, then M � 1. It follows that

lim inf
n→∞

(
1 − |ϕn(0)|

1 − |ϕn−1(0)|
)

� 1.

Therefore
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lim
n→∞

(
1 − ∣∣ϕn(0)

∣∣)−1/2n = lim
n→∞

(
n−1∏
k=0

1 − |ϕk(0)|
1 − |ϕk−1(0)|

)1/2n

� lim sup
n→∞

(
1 − |ϕn−1(0)|
1 − |ϕn(0)|

)1/2

� 1.

Thus r(Cϕ) � 1 by Corollary 5, and since 1 is an eigenvalue r(Cϕ) = 1. �
The evaluation of the limit (1.3) in the hyperbolic case requires a more detailed analysis of the

orbit {ϕn(0)}, which can be carried out explicitly in the case of linear fractional maps. The proof
exploits a parametrization of non-elliptic linear fractional maps (conjugated to the Siegel half-
space) obtained by Bracci, Contreras and Diaz-Madrigal [6, Lemma 4.1 and Proposition 4.2].

Theorem 11. Let ϕ be a hyperbolic linear fractional map of B
m with dilatation coefficient α < 1.

Then

lim
n→∞

(
1 − ∣∣ϕn(0)

∣∣2)1/n = α. (3.2)

Proof. Conjugating ϕ by a rotation of C
m, we may assume the Denjoy–Wolff point is e1 =

(1,0, . . . ,0); clearly (3.2) is unchanged.
It will be convenient to move the problem to the Siegel right half-space

H
m = {

(w1,w
′) ∈ C × C

m−1: Rew1 > ‖w′‖2}
which is biholomorphically equivalent to B

m via the generalized Cayley transform

ψ(z1, z
′) =

(
1 + z1

1 − z1
,

z′

1 − z1

)

and its inverse

ψ−1(w1,w
′) =

(
w1 − 1

w1 + 1
,

2w′

w1 + 1

)
.

This correspondence extends continuously to identify ∂Bm with the one-point compactification
of ∂H

m, with e1 taken to the point at infinity.
In particular one may calculate that for any z = (z1, z

′) ∈ B
m, if w = ψ(z) then

1 − |z|2 = 4

|w1 + 1|2
(
Rew1 − ‖w′‖2).

By [6, Lemma 4.1] a map ϕ satisfying our hypotheses is conjugate to a map ϕ̃ : Hm → H
m of the

form

ϕ̃(w1,w
′) = 1 (

w1 + c + 〈w′, b〉,Aw′ + d
)

(3.3)

α
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for suitable scalar c ∈ C, vectors b, d ∈ C
m−1 and (m − 1) × (m − 1) matrix A. Of course these

parameters satisfy a number of relations, determined by the condition that ϕ̃ maps H
m into itself;

the only one we will require explicitly is the fact that ‖A‖ � α1/2 < 1 [6, Lemma 4.1(i)]. Let us
now write

ϕ̃n(1,0) = (un, vn)

with un ∈ C, vn ∈ C
m−1. Our goal is now to show that

lim
n→∞

(
4

|un + 1|2
(
Reun − ‖vn‖2))1/n

= α. (3.4)

Since ϕ̃ has Denjoy–Wolff point ∞, it follows in particular that |un| → ∞ and hence |un| ∼
|un + 1|. Thus, to establish (3.4) it suffices to show

|un| ∼ 1

αn
(3.5)

and

(
Reun − ‖vn‖2) ∼ 1

αn
. (3.6)

Let us first consider (3.6); we must show that αn(Reun −‖vn‖2) is bounded above and below,
independently of n. To prove boundedness from below, we return momentarily to the ball. By
induction on Julia’s theorem (3.1),

|1 − 〈ϕn(0), e1〉|2
1 − |ϕn(0)|2 � αn

for all n. Transferring this inequality to H
m we obtain

αn
(
Reun − ‖vn‖2) � 1

for all n.
On the other hand, we have for all n

0 � αn
(
Reun − ‖vn‖2) � αn|un|.

So to establish (3.6) it suffices to show that αn|un| is bounded independently of n. Since this fact
is also required for the proof of (3.5), it remains only to prove (3.5). For this we will obtain fairly
explicit expressions for un and vn; we first introduce some notation.

For each integer n � 0 define

βn =
n∑

αk
k=0
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and polynomials

pn(z) =
n∑

k=0

βn−kz
k, qn(z) =

n∑
k=0

αn−kzk.

It is straightforward to verify the following recurrence relations:

βn+1 = αβn + 1, (3.7)

pn+1(z) = αpn(z) +
n+1∑
k=0

zk, (3.8)

qn+1(z) = zqn(z) + αn+1. (3.9)

Using these one may also deduce

qn(z) + pn−1(z) = pn(z). (3.10)

With these identities established and

ϕ̃(1,0) = 1

α
(1 + c, d)

one can verify by induction that for all n � 2

ϕ̃n(1,0) = 1

αn

(
1 + βn−1c + 〈

pn−2(A)d, b
〉
, qn−1(A)d

)
.

So in particular

un = 1

αn

(
1 + βn−1c + 〈

pn−2(A)d, b
〉)
.

Now define

xn := αnun = 1 + βn−1c + 〈
pn−2(A)d, b

〉
.

We observe that the real part of xn must always be strictly positive, and we will show that xn → x

with Rex � 1. This will establish the claimed asymptotic behavior of |un|.
The convergence of xn depends upon the convergence of the polynomials pn; in particular the

following fact holds.

Claim 12. The sequence of polynomials pn converges to

1

1 − α

1

1 − z

uniformly in the disk |z| � √
α.
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Proof of claim. Let ‖ · ‖∞ denote the supremum norm over the closed disk of radius
√

α. Then
for every n

∥∥∥∥∥(1 − α)pn −
n+1∑
k=0

zk

∥∥∥∥∥∞
=

∥∥∥∥∥
n+1∑
k=0

αn−k+1zk

∥∥∥∥∥∞
(3.11)

� αn+1

∥∥∥∥∥
n+1∑
k=0

α−kzk

∥∥∥∥∥∞
(3.12)

� αn+1 α−(n+2)/2 − 1

α−1/2 − 1
(3.13)

which tends to 0 as n → ∞. Since
∑n

k=0 zk → (1 − z)−1 uniformly in this disk, the claim is
proved. �

Using now the crucial fact that ‖A‖ � √
α, we conclude that xn converges to

x = 1 + 1

1 − α

(
c + 〈

(I − A)−1d, b
〉)
. (3.14)

Now define

u = (I − A)−1d

and observe that Au + d = u. Since ϕ̃ maps the closure of H
m into itself, it follows that

ϕ̃(‖w′‖2,w′) ∈ Hm for all w′ ∈ Cm−1; that is,

α‖w′‖2 + α Re〈w′, b〉 + α Re c � ‖Aw′ + d‖2.

Applying this with w′ = u gives

Re〈u,b〉 + Re c � 1 − α

α
‖u‖2 � 0

and hence Rex � 1. �
Corollary 13. If ϕ is a hyperbolic linear fractional map of B

m with dilatation coefficient α, then
the spectral radius of Cϕ acting on H 2

m,β is α−β/2.

Proof. Combine Theorem 11 and Corollary 5. �
To summarize, combining the two spectral radius results we have extended Cowen’s spectral

radius formula to linear fractional maps in higher dimensions:

Theorem 14. Let ϕ be a linear fractional self-map of B
m. The spectral radius of Cϕ acting

on H 2
m,β is 1 if ϕ is elliptic; if ϕ is non-elliptic with dilatation coefficient α the spectral radius

is α−β/2.
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Conjecture 15. The spectral radius formulae of Theorem 14 are valid for all ϕ ∈ Sm.

By Theorem 10 the conjecture is true for elliptic and parabolic maps.
In the hyperbolic case, one may try to prove the conjecture by a method analogous to Cowen’s

proof in the disk [7], namely, by proving that the iterates ϕn(0) converge to the Denjoy–Wolff
point sufficiently well so that

lim
n→∞

1 − |ϕn(0)|2
1 − |ϕn−1(0)|2 = α.

In one variable, this is accomplished by showing that when α < 1, the iterates ϕn(0) con-
verge nontangentially to the Denjoy–Wolff point; the above limit then follows from the Julia–
Carathéodory theorem. In the ball, one needs restricted convergence in order to invoke the
corresponding version of Julia–Carathéodory: to define this, fix a point ζ ∈ ∂B

n and consider
a curve Γ : [0,1) → B

n such that Γ (t) → ζ as t → 1. Let γ (t) = 〈Γ (t), ζ 〉ζ be the projection
of Γ onto the complex line through ζ . The curve Γ is called special if

lim
t→1

|Γ − γ |2
1 − |γ |2 = 0 (3.15)

and restricted if it is special and in addition

|ζ − γ |
1 − |γ |2 � A (3.16)

for some constant A > 0. We say that a function f : Bn → C has restricted K-limit L at ζ

if limz→ζ f (z) = L along every restricted curve. Now, if ϕ is a non-elliptic self-map of B
m

with Denjoy–Wolff point ζ and dilatation coefficient α, it follows from the Julia–Carathéodory
theorem that the function

1 − |ϕ(z)|2
1 − |z|2

has restricted K-limit α at ζ . Thus the conjecture is true for any hyperbolic ϕ for which
ϕn(0) → ζ restrictedly. However the following shows that in general we need not have restricted
convergence, even for linear fractional maps.

Proposition 16. Let ϕ be a hyperbolic linear fractional map with Denjoy–Wolff point e1 and
dilatation coefficient α, and let ϕ̃ be the conjugate mapping of H

m given by (3.3). If ϕn(0) → e1
restrictedly, then

∥∥qn−1(A)d
∥∥2 = o

(
αn

)
. (3.17)

Proof. If ϕn(0) → e1 restrictedly then

lim
|ϕn(0) − 〈ϕn(0), e1〉|2

2
= 0.
n→∞ 1 − |〈ϕn(0), e1〉|
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Under the Cayley transform, this is equivalent to

lim
n→∞

‖v2
n‖

Reun

= 0

which is in turn the same as

lim
n→∞

1

αn

‖qn−1(A)d‖2

Rexn

= 0.

Since Rexn ∼ 1, this proves the theorem. �
Using the parametrization (3.3) it is straightforward to construct hyperbolic linear fractional

maps for which the condition (3.17) does not hold.3 To do this, fix 0 < α < 1 and let A be
the diagonal matrix with each diagonal entry equal to

√
α. Let d be any unit vector in C

m−1

and define b = 2α−1/2d , c = α−1. Then ϕ̃ defined by (3.3) is a conjugate to a hyperbolic linear
fractional map for which (3.17) is violated: we calculate

α−n
∥∥qn−1(A)d

∥∥2 = αn

(
n∑

k=0

α−k/2

)2

=
(

1 − α(n+1)/2

1 − α1/2

)2

which is greater than 1 for all n.
Even though the orbit ϕn(0) need not approach the Denjoy–Wolff point restrictedly, it can be

shown (at least when m = 2) that when ϕ is a linear fractional map, the limit

lim
n→∞

1 − |ϕn(0)|2
1 − |ϕn−1(0)|2

exists and equals α. We do not know if this is true of general Schur–Agler mappings.

Question 17. If ϕ ∈ Sm is hyperbolic with dilatation coefficient α, is it true that

lim
n→∞

1 − |ϕn(0)|2
1 − |ϕn−1(0)|2

exists and equals α?

An affirmative answer to this question would prove the conjecture. If on the other hand the
limit exists for some ϕ but has a value different from α (necessarily larger) then the conjecture
would be false. One may try to answer the question by looking for a stronger form of the Julia–
Carathéodory theorem in the ball (valid for Schur–Agler mappings). Some results in this direction
are obtained in [10], but so far these results are not sufficient to answer the question.

3 The corresponding “big O” condition is always satisfied.
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Finally, we mention a recent result of Bracci, Gentili and Poggi-Corradini [5] which proves a
Valiron-type conjugacy theorem; the conclusion of their theorem can be used to establish Con-
jecture 15 for hyperbolic self-maps of B

m satisfying two hypotheses. One is that the expression

1 − 〈ϕ(z), ζ 〉
1 − 〈z, ζ 〉

has a finite K-limit as z → ζ . This is always the case for hyperbolic Schur–Agler mappings [10].
The other hypothesis is that some orbit of ϕ converges restrictedly to the Denjoy–Wolff point ζ ,
but it is not clear which Schur–Agler maps satisfy this condition.
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