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Abstract

Application of complex socio-technical systems theory to optimization of clinical processes in hospitals highlights the
importance of the acceptance and promotion of responsible autonomy among health professionals. Therefore the independent
ability for clinicians to search for answers to questions which are outside the scope of pre-made reports is important. However,
the ad-hoc data querying process is slow and error prone due to inability of health professionals to access data directly without
involving IT experts. The problem lies in the complexity of means used to query data. We propose a new natural language- and
star ontology-based ad-hoc data querying approach which reduces the steep learning curve required to be able to query data. The
proposed approach would significantly decrease the time needed to master the ad-hoc data querying and to obtain direct access to
data by health professionals.
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1. Responsible autonomy for healthcare professionals

Successful management of large multispecialty hospitals requires managerial, organizational, technological and
clinical approaches to be linked together. Failure to have a joined optimization of the technical system and social
system could lead to paradoxical fall in the productivity and an increased absenteeism despite the significant
improvements of technology which have been described in a widely used socio-technical systems theory!'.

One of the major technological improvements in hospitals — the change from paper based recording of clinical
processes to electronic records with the possibility for relatively easy traceable data on the patient flow - can also
create a certain tension in the social system of a hospital. Hospital operations thus become more transparent for
managers with the possibility of enhanced managerial control on clinical process. On the other hand, the
management efforts to make clinical process more effective can be perceived by physicians as a threat to their
professional autonomy!?>®l. It is widely recognized that clinicians performance is the best when “being invited,
empowered and nurtured rather than directed, micromanaged and controlled through a hierarchy”. It is the
physician, not the manager that remains responsible for the results of the treatment of the concrete patient, including
decisions regarding the use of medical technologies, treatment modalities, localization and duration which also drive
the distribution of limited resources of the whole organization!'®!. The fact that so far there has been little evidence
that implementation of the health information technologies (HIT) has led to healthcare cost savings!!!! partially
could be attributed to violation of some principles essential for the optimization of complex socio-technical systems.

No single model exists for optimizations of socio-technical systems. However, some universal principles could
be underlined: acceptance and promotion of responsible autonomy so that individuals take responsibility for the
performance and outcomes of concrete decisions; development of the ability to adapt at the individual level in order
to distribute optimization; performers themselves set performance indicators; improved performers awareness of the
ultimate systemic goal of the task!!-!2714],

Thus, applying these principles to the introduction of HIT in hospitals at a clinical level “dominated by
individuals with professional backgrounds, valuing self-governance and autonomy”™! could lead to a situation that
health professionals feel more empowered in their daily work. Some authors have argued that empowered self-
regulated work groups can be a complement, or even a substitute of traditional management in those situations
when there is a lack of efficiency!'*'®l. However, the application of the mentioned principles for optimizations of
complex socio-technical systems have been limited in healthcare, and “a bottom-up strategy led by clinicians is
badly needed to balance the predominantly top-down approaches which frequently result in only modest
improvements which are difficult to sustain®!.

To support the bottom-up strategy, a particular interest is to use HIT in order to provide health professionals with
systemic knowledge about their work with concrete patients. This includes focused and process oriented analysis,
including a possibility to clarify particularities and patterns by querying data accumulated in hospital informational
systems. Consequently, an increased transparency of clinical processes, which is not limited to managers, increases
the autonomy and responsibility of clinicians.

Compared to managers, health professionals until now have had considerably less possibilities to explore the
information stored in databases and search for answers to questions which are outside the scope of pre-made reports.
The complexity of hospital databases and data heterogeneity demands either advanced programming and data
processing skills, or available, directly subordinated data professionals to query data. Currently these two options
refer to managers rather than physicians.

The proposed solution which would allow medical professionals to widen their responsible autonomy also would
enhance the effectiveness of hospital as a complex socio-technical system.

2. State of the art in ad-hoc data querying for non-programmers

Direct access to data by medical professionals would be a solution, but why there are no ad-hoc data querying
tools for them (non-programmers)? The problem is that non-programmers do not possess the required skills to
formulate queries by themselves, because of the complexity of query languages used to retrieve answers from data
stores. There are three main problems: how to describe data to be easily perceived by non-programmers; how to
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query data simply enough for non-programmers; how to perform query efficiently enough in order to get an answer
in a reasonable time.

The SQL (SEQUEL) language is the de facto standard of querying relational databases where most of data are
stored at the moment. However, it turned out that the way data are stored and retrieved in the relational databases
was too complicated for non-programmers. There are similar languages to SQL, e.g. SPARQL for RDF ontologies.
They require a very precise formulation of the textual query (both syntax and semantics) and deep knowledge of the
underlying technology, thus making them too sophisticated to learn and use. Therefore there have been attempts to
make wrappers for these languages, e.g. graphical query builders like Graphical Query Designer for SQL Server,
ViziQuer" for SPARQL and RDF databases, or form-based tools using wizards and standard GUI elements (e.g.
tables and lists) like SAP Quick Viewer SQVI. There are also other proposals which provide the means for direct
data access. One of the most well-known approaches is Self-Service Business Intelligence (SSBI) which was
proposed by Microsoft?”), It provides a rich set of tools (Power BI) allowing the end-user to build sophisticated data
visualizations and make data analysis mainly through spreadsheet applications. IBM Watson Analytics is another
giant which attacks this problem. Yet, there is a significant drawback of the mentioned approaches, namely, a steep
learning curve shall be overcome in order to learn a new query language and to understand the way data are stored.

A viable option to query data for medical professionals is a natural language, more precisely, natural language
interfaces to databases (NLIDB-s). A lot of work has been done in this areal?'-?l. However, formulation of the
precise query itself is a hard problem for users without mathematical background, and there are lots of problems in
the understanding of complex queries. In order to make an NLIDB system usable by non-programmers it is
necessary to solve the problem of linguistic coverage. It is very important to explain to users what the database
“knows” and what can be asked. Database schemas used by IT experts (like ER models) are too complex and contain
too many technical details to be useful for the explanation of the underlying data. Computers, on the other hand,
cannot properly understand what users mean by their queries because of richness and ambiguity of the natural
language. In order to achieve a consensus between the user and the computer an intermediate representation of data
schema is needed. Ontologies define concepts, their properties and relationships which can be used by user.
Although an ontology conceals some technical details, it requires the understanding of basic entity-relationship
model principles. Thus, the traditional NLIDB approaches have not reached wide usage, at least not for deep
querying with nontrivial calculations. Therefore other approaches have to be studied.

3. Constructing easily understandable data ontologies

When thinking about the platform on which data storage is to be based, IT specialists often propose a relational
database as a way of storing the data and the SQL as a query language. This is, indeed, a very natural solution if we
keep in mind that the ontology will have to be implemented later. Therefore, the ontology is represented in the form
of ER model. However, the ER model is hardly ever granular, and, therefore, it is not the best way to depict the data
in the manner that is understandable for end-users who are not IT specialists.

In the case of hospital data the problem with more understandable data storage format may be simpler, because
the data are naturally stored in the so-called patient cards which are filled in by hand. We can say that all hospital
data are sliced in slices, where each slice represents a particular patient together with his/her related data (his/her
episodes in hospital, movements, diagnoses, operations, etc.) that are laid out in a hierarchical structure. Such a
division is clearly understandable by domain experts. Therefore it is the most natural way of representing data sets
which can be naturally divided in hierarchical slices this way. We call such ontologies, whose data can be divided in
hierarchical slices, star ontologies. The concept of the star ontology is already introduced by J. Barzdins et al.[26-28]
where it is shown that a star ontology can serve as a very good format for storing data in a user-friendly manner.
Concepts of the star ontology (classes and attributes) in case of hospital data are directly linked to the concepts of a
hospital patient card. Thus it would be much more understandable to clinicians and managers of hospital than the
traditionally-used ER model where these concepts are mixed together. A version of the star ontology corresponding
to the hospital patient card can be seen in Fig. 1.

Of course, some doubt could arise whether this is a case of good coincidence that happened only in this particular
example, or the same pattern could be found in other similar cases too. Our experience shows that the composition-
like structure is an intrinsic feature of such type of documents themselves, and therefore the star data ontologies must
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be one of the most natural ways of depicting such documents in general, not just in this particular case. Star
ontologies can be useful also in those cases when there are no paper-format input forms in a company (all
information is entered electronically via input dialogs). Quite a wide class of ontologies can be reduced to star
ontologies, which are much more understandable for end-users than the real underlying ER model.

AdmissionDiagnosis DischargeDiagnosis
diagnosis :CDiagnosis * |diagnosis :CDiagnosis cP —
nr -Integer nr ‘Integer hysician
\j—/ personCade :String
= name :String
Paﬂ_enjt HospitalEpisode T_"eamnm_ard surnama :String
person_gtode String referringPhysician :CPhysician gt;?dmgPhysmlan .
gﬁm:rﬁerjg?rmg * |responsiblePhysician :CPhysician * wardyss‘?r?nng
- admissionTime :DateTime L g ] B 5
E?hdért.{mslet, female} dischargeTime -DateTime ?rrlva:cIT\_Fe .D?)T:et'l'l_?rje cgz'%gt%(m's
fl | SE' a'EPh dischargeReason {healthy, deceased, other} raqs LS8 B name-'Strir?
amilyDoctor - ysician totalCost -Decimal nr -Integer - g
* caseRecordNr -Integer .
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visitDate -Date = 3 - =k : : code :String
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. diagnosis :CDiagnosis starting lime :Diate Time _ -
visitCost -Decimal nr Integer endingTime -DateTime cost :Decimal
physician :CPhysician -nteg

Fig. 1. A simplified star ontology used in Riga Children’s Clinical University Hospital (RCCUH).

Since star ontologies are granular (meaning — they can be naturally divided in slices?’?%), they provide a
possibility for us to develop a new kind of querying language that is very easily understandable by domain experts
who want to formulate their ad-hoc queries. We demonstrate this language in Section 4. Although it is not as
powerful as SQL, it possesses three very important features, namely, simplicity, coverage of a sufficiently wide class
of queries and a very efficient implementation.

4. Towards a natural language-based query language

One of the benefits of storing data in a star ontology is the ability to depict the data scheme in such a way that can
be understood by domain experts. Another benefit is a possibility of developing such a language for querying data
that can also be understood by the same domain experts. If data were stored in a relational database, they would
typically be queried by the SQL language that is very technical. In case of star ontologies we have developed a
natural language-based query language, thus it is more convenient for everyday use by non-IT specialists. We have
based the language on several typical constructs of a natural language, and we have then supplemented those
constructs with some foreign parts like expressions and variables in some cases. Our main goal here is to minimize
the steep learning curve that is typically needed when learning a new query language. We assume that a natural
language would be the best solution here, because users are already familiar with it, and we try to come as close to
the natural language as possible. Our query language is still quite controlled, of course, but we believe it is
nevertheless much more suitable for clinicians and managers of hospital than SQL.

Now let us introduce an example query — count Patients, who have at least one HospitalEpisode, which has
Manipulation with manipul.code=02078. This natural language sentence is understandable by domain expert. Let us
now inspect a bit more complicated query: count Patients, who have at least one HospitalEpisode, which has at
least one TreatmentWard, which has at least one Manipulation with manipul.code=02078. This sentence may cause
a certain ambiguity as it is not clear whether the asked Manipulation refers to HospitalEpisode, or to
TreatmentWard. It could be used in both meanings. In other words, relative pronouns such as “who” and “which”
not always give us accurate understanding of what we relate to. To cope with such situations we introduce a concept
of so-called short name in our controlled natural language. Formally, the short name is a variable over instances of
the given class — count Patients p, where exists p.HospitalEpisode e, where exists e.TreatmentWard t, where exists
e.Manipulation m, where m.manipul.code=02078. We have also unified other components of the natural language,
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e.g. we use the keyword “where” instead of “who”, “which” and “with”, and the keyword “exists” instead of
“have/has at least one”. The dot notation after the short name must be perceived as the “of” relation — count Patient
p, where exists HospitalEpisode e of Patient p, where...

Let us now introduce some basic notations that we will use to describe the query language. We will use the terms
parent class and child class to refer to classes that are higher or lower in the “have” hierarchy. For example, the
class “TreatmentWard” has two parent classes — “HospitalEpisode” (direct parent) and “Patient” (further ancestor)
and one child class “Manipulation”. If X is an instance of the class “TreatmentWard”, then its parent instances will
be denoted as x.HospitalEpisode and x.Patient. In both cases they denote exactly one instance, i.e. that of the class
“HospitalEpisode” and of the class “Patient”, respectively. We use the same dot notation also for accessing instances
of child classes, but in this case we obtain a set of instances. For example, x.Manipulation would be a set of
manipulations reachable from the given treatment ward X.

If AClass is an arbitrary class of the ontology, we will use the term AClass attribute expression to denote attribute
expressions of both AClass itself and all of its parent classes (we assume here that parents and children share no
common attribute names). Since there can be many children’s instances for the given AClass instance, we will be
able to access these instances by introducing quantors exists/notexists later.

Queries are to be written in a controlled natural language and are based on seven sentence constructs which we
call templates. The main part of the templates is the so-called selection condition which is a selection condition over
instances of the given class. We assume that selection conditions are written in a natural language. The sentence
templates described in this section can be understood without knowing the precise syntax of selection conditions.

T1. COUNT AClass [x] WHERE <selection condition>

Semantics: counts instances of AClass, which satisfy the selection condition. Example:

- COUNT Patients, WHERE EXISTS HospitalEpisode, WHERE referringPhysician=familyDoctor (count of
patients who have been referred to hospital by their family doctors);

T2. {SUM/MAX/MIN/AVG/MOST} <attribute expression> FROM AClass [x] WHERE <selection condition>

Semantics: selects instances of AClass, which satisfy the selection condition, calculates the attribute expression
for each of these instances obtaining a list to which the specified aggregate function is then applied. Example:

- SUM totalCost FROM HospitalEpisodes, WHERE dischargeReason=healthy AND birthDate.year()=2012 (how
much successful treatments of patients born in 2012 have cost);

T3. SELECT FROM AClass [x] WHERE <selection condition> ATTRIBUTE <attribute expression> ALL
DISTINCT VALUES

The semantics is obvious. Example:

- SELECT FROM HospitalEpisodes, WHERE dischargeReason=deceased, ATTRIBUTE
responsiblePhysician.surname ALL DISTINCT VALUES;

T4. SHOW [n/ALL] AClass WHERE <selection condition>

The semantics: shows n or all instances of AClass which satisfy the selection condition.

T5. FULLSHOW [n/all] AClass WHERE <selection condition>

The semantics: the same as “show”, but shows also the child class instances attached to the selected AClass
instances.

T6. SELECT AClass x WHERE <selection condition>, DEFINE TABLE <x-expr’1> [(COLUMN C1], ..., <x-
expr’'n> [(COLUMN Cn)] [, KEEP ROWS WHERE <Ci selection condition>] [, SORT
[ASCENDING/DESCENDING] BY COLUMN Ci] [, LEAVE [FIRST/LAST] n ROWS]

The semantics: selects all instances of AClass, which satisfy the selection condition, then makes a table with
columns C1 to Cn, which for every selected AClass instance x contains an individual row, which in column C1
contains the value of the <x-expr’1>, ..., in column Cn contains the value of the <x-expr’n>. Then it is possible to
perform some basic operations with the table like filtering out unnecessary rows, sorting the rows by values of some
column and then taking just the first or the last n rows from the table. Example:

- SELECT HospitalEpisodes x, WHERE dischargeReason=deceased, DEFINE TABLE x.surname
(COLUMN Surname), x.dischargeTime.date() (COLUMN Death_date), (COUNT x.Manipulation, WHERE
manipul.code=02078) (COLUMN Count_02078), (SUM manipul.cost FROM x.Manipulation, WHERE
manipul.code=02078) (COLUMN cost_02078);
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T7. There are two more cases in the definition of the table, where table rows come from some other source, not
being instances of some class. Being very similar, these two cases form two subtemplates of the last template:

a)  SELECT FROM AClass [a] WHERE <selection condition> ATTRIBUTE <attribute expression> ALL
DISTINCT VALUES x, DEFINE TABLE...

b) SELECT FROM INTERVAL (start-end) ALL VALUES x, DEFINE TABLE...

The semantics of both cases is obvious. Examples:

- SELECT FROM TreatmentWards ATTRIBUTE ward ALL DISTINCT VALUES x, DEFINE TABLE x
(COLUMN Ward), (SUM manipul.cost FROM Manipulations, WHERE ward=x) (COLUMN Cost);

- SELECT FROM INTERVAL (1-12) ALL DISTINCT VALUES x, DEFINE TABLE x (COLUMN
Month), (COUNT HospitalEpisodes, WHERE admissionTime.month()=x) (COLUMN Episode count) (MOST
diagnosis.code FROM AdmissionDiagnoses, WHERE nr=1 AND admissionTime.month()=x) (COLUMN
Most_frequent main_diagnosis).

5. Proof of concepts

We showed in Section 3 that star ontologies cover quite a wide spectrum of practically important data ontologies
including hospital data schemas from the point of view of patients and physicians. In this section we will inspect
other important aspects of the proposed query language, namely, whether it is expressive enough for practical usage
and simple enough for understanding by domain experts and whether it has sufficiently efficient implementation.

The first aspect consists of two parts. The expressiveness of the query language was demonstrated by turning it
into a working language for RCCUH when annual reports had to be generated. It turned out to be expressive enough
for this task. During the two year period, when it was used for report generation, the language underwent a
continuous improvement process. It was important to achieve such a level that managers of wards are able to
formulate themselves all the necessary queries without referring to a programmer with every 5th or 10th query to
write the desired query in SQL. Results of such queries were either single numbers or data fields, or tables of data
fields. In case of tables, our aim was to generate a table containing all the necessary data that can then be exported to
a spreadsheet or an R tool (a tool for statistical analysis).

The second part of the first abovementioned aspect regards the possibility for domain experts to learn the
language. To test this aspect we performed both individual experiments with potential end-users and group tests.
General situation from the language teaching point of view was best demonstrated in an experiment with
experienced nurses who study to obtain Master’s Degree at the Faculty of Medicine, University of Latvia. We
presented a two hour long lecture about the language and the tool for querying the data. One third of that time was
devoted to explanation of the underlying data ontology (what is a class, an attribute, etc.). Afterwards the language
was explained on examples, and homework was given to test the level of understanding. The homework consisted of
two parts. Firstly, students had to understand sentences written in our controlled natural language and to write them
in a good really natural language. Secondly, they had to do the task in the opposite direction — changing natural
language sentences into our formal language. The results obtained from this experiment can be seen in Table 2.
Main conclusion is that another two hour long lecture after the completion of homework would be beneficial for a
better understanding of the proposed query language.

Table 1. The results of the experiment.

Number of students succeeded (n=15)

Task execution level (%) >90 >75<90 >50<75 >25<50 <25
Understanding of queries 9 2 2 1 1
Writing of queries 3 5 2 3 2

A very important factor related to the teaching process is the fact that the underlying data ontology was
anonymized (from the point of view of patients, physicians and wards), but real. Our experience shows that students
being domain experts of this ontology rapidly got very interested in the querying process and started to perceive this
as a game. This fact had a beneficial impact on the learning process.
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Finally, let us talk a bit about the ability to implement the language efficiently. To test the performance of our
implementation we gathered 120 typical query examples from real annual report analysis of intensive care ward and
from discussions with managers of other wards. The complexity of these queries is similar to those demonstrated in
Section 4. The volume of data over the period of year 2015 was the following — there were about 35’000 hospital
episodes and 70’000 outpatient episodes in RCCUH (in total the less than 2GB RAM). The performance on such
queries and data volume is seen in Fig. 2, where queries are sorted in an increasing order by their execution time.
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Fig. 2. Performance of the query execution.

We can see that the vast majority of these 120 queries executes in less than 0.3 seconds. According to statistics
there are about 350’000 hospital episodes altogether in all hospitals in Latvia per year (about ten times more than in
RCCUH). It means that all these data would take up less than 20 GB RAM. Since the star data ontology is
granularl?’-?%], the query execution can be done in parallel on all four cores of a quad-core computer thus improving
the execution time four times (our experiment seen in Fig. 2 was performed on only one core). We can conclude that
the performance of the query execution over data of all the hospitals in Latvia would only be 2.5-3 times slower than
it is now providing the ability to answer a vast majority of queries in less than one second.

We are, of course, not limited by only one computer. We can also use several computers connected via high
throughput Ethernet thus reducing the waiting time even more (e.g. one second on ten year data of all Latvian
hospitals). Acceptable performance on very large data volumes is another research topic requiring more studies.

By working on the proof of concepts we can conclude that practical testing of our approach has demonstrated that
the proposed language can be successfully used at least for the scope of the health system in Latvia.

6. Conclusions and future work

Health professionals consider that clinical governance shall be effective only if financial control, service
performance and clinical quality is integrated so that clinicians are engaged and service improvements are
generated®). An integral part of this engagement is also the ability to understand how the data representing clinical
process are collected and integrated, and what the numerous data elements mean. Learning of the proposed query
tool naturally fits in a larger set of activities aimed to foster self-regulation ability of health professionals necessary
for joint optimization of both technical and social aspects towards the goal — a more effective hospital.
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In this paper we have proposed a query language that is based on the natural language principles. Thus it is easier
to use than traditional query languages for querying data from databases (like SQL). Practical experiments with our
query language have shown that there are yet at least two important features that must be added to increase its
usability — the subset definition feature (DEFINE InfectiousDisease = SELECT ...) and the attribute definition
feature (DEFINE HospitalEpisode.duration = dischargeTime-admissionTime). These and similar features are
currently under development and require some technical work to be implemented. Another useful feature would be
to obtain the event distribution in time which could further be analyzed in MS Excel using its time axis component.

The formal natural language sketched in this paper is still quite a bit controlled. Our future goals include reducing
the level of control, so that the language would become even more usable for domain experts being non-
programmers. Queries would be formulated very inaccurately (perhaps providing only some basic keywords), and
the system could then try to understand the query the user has wanted to formulate and offer the resulting query (or
more than one potential queries) back to the user for affirmation. This would be the next step towards a really user-
friendly query language.
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