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a b s t r a c t

Video-on-Demand (VoD) services require frequent updates in file configuration on the
storage subsystem, so as to keep up with the frequent changes in movie popularity. This
defines a natural reconfiguration problem in which the goal is to minimize the cost of
moving from one file configuration to another. The cost is incurred by file replications
performed throughout the transition. The problem shows up also in production planning,
preemptive schedulingwith set-up costs, and dynamic placement ofWeb applications.We
show that the reconfiguration problem is NP-hard already on very restricted instances.
We then develop algorithms which achieve the optimal cost by using servers whose load
capacities are increased byO(1), in particular, by factor 1+δ for any small 0 < δ < 1when
the number of servers is fixed, and by factor of 2 + ε for arbitrary number of servers, for
some ε ∈ [0, 1). To the best of our knowledge, this particular variant of the data migration
problem is studied here for the first time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Video on Demand (VoD) services have become common in library information retrieval, entertainment and commercial
applications. In a VoD system, clients are connected through a network to a set of servers which hold a large library of video
programs. Each client can choose a program he wishes to view and the time he wishes to view it. The service should be
provided within a small latency and guaranteeing an almost constant transfer rate of the data. The transmission of a movie
to a client requires the allocation of unit load capacity (or, a data stream) on a server which holds a copy of the movie.

Since video files are typically large, it is impractical to store copies of all movies on each server. Moreover, as observed in
large VoD systems (see, e.g., [6,21]), the distribution of accesses tomovie files is highly skewed; indeed, only small fraction of
the movies are requested frequently, while the vast majority (i.e., more than 80%) of the movies are rarely accessed. Hence,
the number of copies held for each movie needs to reflect the frequency of accesses to this movie. The goal is to store the
movie files on the servers in a way which enables satisfying as many client requests as possible, subject to the storage and
load capacity constraints of the servers.

Formally, suppose that the system consists of M video program files and N servers. Each movie file i, 1 ≤ i ≤ M , is
associated with a popularity parameter p0i ∈ (0, 1], where

M
i=1 p

0
i = 1. Each server j, 1 ≤ j ≤ N , is characterized by (i)
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its storage capacity, Cj, that is the number of files that can reside on it,1 and (ii) its load capacity, Lj, which is the number
of data streams that can be read simultaneously from that server. For a given popularity vector {p01, . . . , p

0
M}, the broadcast

demand of file i is D0
i = p0i L, where L =

N
j=1 Lj is the total load capacity of the system.2 The data placement problem

is to determine a placement of file copies on the servers and the amount of load capacity assigned to each file copy, so as
to maximize the total amount of broadcast demand satisfied by the system. A solution for the placement problem can be
represented as twoM ×N matrices: (i) The placement matrix, A, a {0, 1}-matrix, Ai,j = 1 iff a copy of movie file i is stored on
server j. (ii) The broadcast matrix B. Bi,j ∈ {0, 1, . . . , Lj}. Bi,j is the number of broadcasts of movie i transmitted from server j.
A legal placement has to satisfy the following conditions:

• Ai,j = 0 ⇒ Bi,j = 0. Clearly, server j can transmit broadcasts of movie i only if it holds a copy of this movie.
• For each server j,


i Bi,j ≤ Lj, that is, the total number of broadcasts transmitted from server j does not exceed its load

capacity.
• For each server j,


i Ai,j ≤ Cj, that is, the number of files stored on server j does not exceed its storage capacity.

A placement is perfect if it satisfies the broadcast demands of all movie files. Formally, ∀i,


j Bi,j = D0
i . Under certain

conditions, it is known that a perfect placement always exists (see Section 1.2).
The above static data placement problem captures well the goal of maximizing throughput in periods of time where

broadcast requirements remain unchanged.3 However, in general, throughout the operation of a VoD system new movies
are released and may become most popular, while the popularity of the previously hotmovies drops. The system should be
able to support any change in the distribution on file popularities. Thus, in order to maintain high throughput, the system
needs to adjust the placement of file copies and the allocation of load capacity to these copies. This involves replications
and deletions of files. File replications incur significant cost as they require bandwidth and other resources on the source,
as well as the destination server. Minimizing this cost is crucial for optimizing system performance. This is the focus of our
paper.

Our dynamic data placement problem can be formalized as follows. Given a perfect placement of file copies on the servers,
with the popularity vector ⟨p01, . . . , p

0
M⟩, suppose that the popularity vector changes to ⟨p1, . . . , pM⟩, with the corresponding

broadcast demands ⟨D1, . . . ,DM⟩. The reconfiguration problem is to modify the initial data placement to a perfect placement
for ⟨D1, . . . ,DM⟩ at minimum total cost. In updating system configuration, the cost of storing a new copy of movie file i on
server j is given by si,j, while the assignment of load capacity to existing copy of file i on server j is free. We denote by ci,j the
cost of having a copy of movie i on server j after the reconfiguration. Given the initial placement matrix A, we denote by A′

the placement after reconfiguration. Then, by definition, ci,j = 0 if Ai,j = 1, and ci,j = si,j if Ai,j = 0 and A′

i,j = 1. In other
words, the cost of increasing the (i, j)-entry in the assignment matrix, A, is si,j while changes in the broadcast matrix B are
free. The total cost of switching from a placement A to a placement A′ is given by


i,j|A′

i,j=1 ci,j. Note that file deletions incur
no cost. Clearly, the new assignment must satisfy the three legal-placement conditions.

A VoD system is homogeneous if all servers have the same load capacities, i.e., L1 = · · · = LN = L, and the same storage
capacities, i.e., C1 = · · · = CN = C (see, e.g., [5,10]). In this paper we assume that the system is semi-homogeneous, i.e., all
servers have the same load capacities, but may have arbitrary storage capacities.
Example 1. Consider a systemof two serverswhichholds 6movies. Thepopularity vector is ⟨0.05, 0.6, 0.05, 0.15, 0.05, 0.1⟩.
Both servers have the same load capacity L1 = L2 = 10, while the storage capacities are C1 = 3, C2 = 4. HavingL = 20, the
demand vector is D0

= ⟨1, 12, 1, 3, 1, 2⟩. Fig. 1(a) presents a possible perfect placement for this instance. The assignment is
described by a bipartite graph, in which the left hand side nodes represent movie files and the right hand side nodes repre-
sent servers; an edge (i, j) implies that a copy of movie file i is stored on server j. The maximal degree of a server-node is its
storage capacity. Assume that the popularity vector is changed to ⟨0.1, 0.15, 0.05, 0.15, 0.45, 0.1⟩. Fig. 1(b) presents a new
placement, obtained from the previous one by adding (and deleting) copies of two files. The new placement is perfect for
the new demand vector D = ⟨2, 3, 1, 3, 9, 2⟩. The corresponding assignment and broadcast matrices are given in Table 1.
The reconfiguration cost is c1,2 + c5,1.
Applications: As mentioned above, a main motivation for this work comes from the constant need for dynamic data
placement in VoD systems. Our reconfiguration problem shows up also in production planning, as well as in machine
scheduling (see a survey in [17]). Suppose thatM tasks are processed by N machines. Each machine has a limited amount of
resources and a time interval in which it is active. The resource requirements of the tasks are changing over time. Tasks may
need to be reassigned to the machines in order to fit their new requirement. Reassignment of tasks incurs some cost due to
migration overheads and the set-up of the machines. The goal is to reassign the tasks to the machine so as to minimize the
transition cost. Finally, our problem naturally arises in dynamic placement of clusteredWeb applications (see, e.g., [8]). Web
applications are dynamically placed on server machines so as to adjust system configuration to the availability of resources.
The goal is tomaximize the amount of client demands that can be satisfied by the applicationswhileminimizing the number
of placement changes.

1 Unless specified otherwise, we assume that all files have the same size.
2 The broadcast demands are assumed to be integers. Rounded values can be obtained by standard solutions for the apportionment problem [22].
3 In VoD system design, this is also known as the static phase [20].
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Fig. 1. A perfect placement before (a) and after (b) the popularity change. Bold edges represent changes in storage assignment.

Table 1
The assignment and broadcast matrices of the placement before (left) and after (right) the
popularity change.

A s1 s2
1 1 0
2 1 1
3 1 0
4 0 1
5 0 1
6 0 1

B s1 s2
1 1 0
2 8 4
3 1 0
4 0 3
5 0 1
6 0 2

A′ s1 s2
1 0 1
2 1 1
3 1 0
4 0 1
5 1 0
6 0 1

B′ s1 s2
1 0 2
2 0 3
3 1 0
4 0 3
5 9 0
6 0 2

1.1. Our results

We first show (in Section 2) that the reconfiguration problem isNP-hard, alreadywhen the system consists of two servers,
with unit reconfiguration costs and very restricted changes in file popularity. In practical scenarios, it is often the case that
the new popularity vector has a perfect placement. This occurs, e.g., where the new vector is a permutation of the initial
vector, that is, the popularity distribution function remains unchanged. For such scenarios, we give in Sections 3 and 4
algorithms which solve the reconfiguration problem optimally, by using servers whose load capacities are increased by a
small constant factor. Specifically, for a fixednumber of servers,we give in Section 3 an algorithmwhich accepts as parameter
a value 0 < δ < 1 and achieves the optimal reconfiguration cost by using servers whose load capacities are L(1 + δ). The
running time of the algorithm depends on the value of δ. For more general inputs, in which the number of servers may be
arbitrarily large, we give in Section 4 an algorithm that achieves the optimal cost, by using servers whose load capacities are
increased by factor of 2 + ε, for some ε ∈ [0, 1).

Our main approximation technique, applied (in Section 4) to general instances of the reconfiguration problem, relies on
finding a linear programming relaxationwhose optimal (fractional) solution is a lower bound on the optimal solution for our
problem, and for which we can apply rounding without increasing the total cost. To find such a relaxation, we iteratively
modify the initial linear relaxation for our problem until we obtain a linear program which reduces our problem to job
scheduling on unrelated machines. It is worth noting that even though the optimal integral solutions for the programs in
this sequence cannot be related to the optimum cost for our problem, it holds that the optimal (fractional) solution for each
program is a lower bound for the optimum cost for our problem.

1.2. Related work

The data placement problem has been extensively studied (see, e.g., [20,2,5,10,18,8] and a comprehensive survey in [9]).
The paper [16] considers the problem of finding a perfect placement of movie files on the servers. The paper shows the
hardness of the perfect placement problem and that such a placement always exists, e.g., when

N
j=1 Cj ≥ M + N − 1.

The paper [16] also presents an algorithm for the data placement problem, for inputs in which the ratio Lj/Cj is equal for all
1 ≤ j ≤ N (uniform ratio servers). The paper shows that the algorithm achieves a ratio of 1 − 1/(1 + Cmin) to the optimal,
where Cmin = minj Cj. Golubchik et al. gave in [5] a tighter analysis of this algorithm and showed that it achieves the ratio
1 − 1/(1 +

√
Cmin)

2, and that this ratio is optimal for any algorithm for this problem. The paper [5] also presents a PTAS
for the data placement problem with uniform ratio servers. Later papers considered a generalized version of the problem,
where files may be of different sizes (see, e.g., [10,18]).

For the more realistic model, where file popularities may change over time, there has been some earlier work which
refers to the resulting data migration problem: Compute an efficient plan for moving data stored on devices (e.g., a set
of servers) in a network from one configuration to another. Since the servers are constrained in handling simultaneous
transmissions of files, data migration is done in rounds, where each round handles the delivery of a subset of the files to
their destinations. Common objective functions are minimizing the makespan of the migration schedule, or the sum of
completion times of the servers (see, e.g., [12,13]). The paper [11] considers a somewhat ‘dual’ reconfiguration problem: the
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goal is to convert the existing layout to a good new layout (that is part of the solution), using a limited number of migration
rounds. Surveys of known results for the data migration problem are given in [11,4]. The data migration problem differs
from our reconfiguration problem in several ways: (i) The final configuration is given as part of the input for data migration,
while it is part of the solution for our problem; (ii) in datamigration the output is amigration schedule, while no assignment
schedule is output when solving the reconfiguration problem, and finally; (iii) in data migration we measure the quality of
the migration schedule, while in our problem we measure the cost of the final configuration.

There has been some other work on reconfiguration of data placement, in which heuristic solutions were investigated
through experimental studies (e.g., [14,23,3,7]). The paper [8] studies a generalization of our reconfiguration problem,
in which file deletions incur unit costs, and the files are of arbitrary sizes. The paper presents experimental results for
greedy-based heuristics for the problem. We are not aware of earlier theoretical results for the reconfiguration problem.

2. Hardness result

We show that the reconfiguration problem is NP-hard even if the system consists of only two servers, and even if
popularity changes are limited such that the new popularity vector is a permutation of the previous one. In other words,
the popularity distribution function is preserved. We use a reduction from a variant of the subset-sum problem. For a set of
integers X , let SX denote the total size of elements in X .

Definition 2.1. The smallest subsets with a given difference problem is defined as follows. Given are two sets of non-negative
integers X = {x1, x2, . . . xnX } and Y = {y1, y2, . . . , ynY }, and an integer z. W.l.o.g, nX ≤ nY . It is known that there exists a
subset Y ′′

⊆ Y of size nX satisfying SX = SY ′′ + z. The goal is to find the smallest integer k ≥ 1 such that there exist X ′
⊆ X

and Y ′
⊆ Y , where |X ′

| = |Y ′
| = k, and SX ′ = SY ′ + z. Note that such an integer k must exist, since for k = nX , the sets

X ′
= X, Y ′

= Y ′′ form a solution.

Example 2. Let X = {2, 3, 4, 5}, Y = {1, 2, 3, 4, 5}, and z = 4. For Y ′′
= {1, 2, 3, 4} it holds that |Y ′′

| = nX = 4 and SX =

14 = SY ′′ + z. For this instance, the required k is 1 since there are two subsets of size 1, specifically, X ′
= {5}, Y ′

= {1}, such
that SX ′ = 5 = SY ′ + z.

Lemma 2.1. The smallest subsets with a given difference problem is NP-hard.

Proof. We show that the corresponding decision problem is NP-hard. That is, given X, Y , z, k, such that there exists a subset
Y ′′

⊆ Y of size nX satisfying SX = SY ′′ + z, the goal is to decide if there exist subsets X ′, Y ′, each having k elements and
SX ′ = SY ′ + z. It is easy to verify that the minimization problem is solvable in polynomial time if the decision problem is.

The reduction is from the cardinality subset-sumproblem,which is known to beNP-hard [1]. Given a setX = x1, x2, . . . xnX
of positive integers, a cardinality constraint k < nX , and a target integer w, the goal is to find a subset X ′

⊆ X such that
|X ′

| = k and SX ′ = w. W.l.o.g, we assume that (i) w > k (else, a solution can be found by checking if X contains k units),
(ii) the largest k elements in X have total size at least w (else, the answer is trivially negative), and (iii) all the elements in X
are integers larger than 1 (else, X, w can be scaled).

GivenX, k, w, an instance for cardinality subset-sum, construct the following instance for the decisionproblemof smallest
subsets with a given difference: k = k, z = w − k, X = X, Y consists of nX − 1 units, and a single element of value
SX − nX + 1 − w + k. Note that the instance is defined properly since, by assumption (i), z is positive, and by assumption
(ii), the last element in Y is positive. Also, as required, for Y ′′

= Y we get that Y has a subset of nX elements of total size
nX − 1 + SX − nX + 1 − w + k = SX − z.

Claim 2.1. The set X has a subset of k elements having total size w if and only if the answer to the above decision problem of
smallest subsets with a given difference is positive.

Proof. There are only two types of subsets of k elements in Y . The first one has k unit elements. For this type of subset, X
has a subset X ′ of k elements summing up tow iff SX ′ = w = k+ z = SY ′ + z, that is, iff the required subsets exist. The other
type of subset Y ′

⊆ Y of k elements consists of the last element and k − 1 units. The total size of elements in this subset is
SX − nX + 1 − w + k + (k − 1) = SX − nX − z + k. We show that no subset of k elements from X can sum to this value
plus z. Let X ′ be a subset of k elements from X . There are nX − k elements in X \ X ′, whose total size is at least 2(nX − k) (by
assumption (iii)). Thus, SX ′ ≤ SX − 2(nX − k), which is strictly smaller than SX − nX + k = SY ′ + z. �

This completes the proof of the lemma. �

Based on the hardness of the smallest subsets with a given difference problem, we can prove the following.

Theorem 2.2. The reconfiguration problem is NP-hard already for a system of two servers having identical load capacities, with
uniform replication costs, and even if popularity changes are restricted such that the new popularity vector is a permutation of
the previous one.
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a b c

Fig. 2. The reconfiguration problem induced by Example 2. (a) initial assignment, (b) reconfiguration having cost 8, and (c) an optimal reconfiguration
having cost 2.

Proof. We reduce the smallest subsets with a given difference problem to a particular instance of the reconfiguration problem.
We first show the hardness for two servers with different load capacities, and then extend it to two servers having the same
load capacity. Given X, Y , z, such that there exists a subset Y ′′

⊆ Y of size nX satisfying SX = SY ′′ + z, consider the following
instance of reconfiguration: M = nX + nY ; the demands are D0

= ⟨Y ′′, Y \ Y ′′
∪ X⟩, where Y ′′ is a vector consisting of the

nX elements of Y ′′, and Y \ Y ′′
∪ X is a vector of nY elements consisting of elements from Y \ Y ′′ followed by the elements

of X . The system has two servers with C1 = nX , L1 = SX − z, C2 = nY , L2 = SY + z. A possible perfect placement is to
store the first nX movie files on the first server, and the remaining nY movie files on the second server. The load capacities
of the servers satisfy exactly the broadcast demands. Assume further that the demands are changed to be the values of
the elements in X, Y . Specifically, D = ⟨x1, x2, . . . xnX , y1, y2, . . . , ynY ⟩. Note that the total demand of the first nX movies is
increased by z, while the total demand of the remaining nY movies is decreased by z. Finally, let si,j = 1 be the uniform
replication cost.

Fig. 2 depicts the reconfiguration problem induced by Example 2 above. The system consists of M = 9 movies and
two servers having parameters C1 = 4, L1 = 10, C2 = 5, L2 = 19. Fig. 2(a) shows a perfect assignment for the
demand vector D0

= ⟨1, 2, 3, 4, 5, 2, 3, 4, 5⟩. Assume that the popularity changes so that the new demand vector is
D = ⟨2, 3, 4, 5, 1, 2, 3, 4, 5⟩. The guaranteed Y ′′ implies the solution (b) having cost 8. An optimal solution (c) has cost 2.

Since the total storage capacity of the servers is exactly nX + nY , in any perfect placement there is exactly one copy of
each movie stored on one of the two servers. Thus, the reconfiguration in this case consists of swapping the storage of 2k
movie files. By definition of the subset problem, it is known that there exists a perfect assignment that can be achieved by
swapping 2nX movie files (of Y ′′ and X). An optimal reconfiguration swaps the minimal number of files. Thus, an optimal
solution for the reconfiguration problem specifies subsets X ′

⊆ X , and Y ′
⊆ Y such that |X ′

| = |Y ′
| = k, SX ′ = SY ′ + z, and k

is minimal. The storage capacity is clearly preserved by this swapping. Also, the total demand of the movies assigned to the
first server is now SX\X ′ + SY ′ = SX − z = L1. Similarly, the total demand of the movies assigned to the second server is now
SY\Y ′ + SX ′ = SY + z = L2. Therefore, the resulting assignment is perfect. In general, any reconfiguration that ends up with
a perfect assignment, corresponds to two subsets X ′, Y ′ of X, Y respectively, for which |X ′

| = |Y ′
| and the difference in the

total new demand of the corresponding movies is z. We conclude that a solution for the reconfiguration problem induces a
solution for the smallest subsets with a given difference problem, implying that the reconfiguration problem is NP-hard.

In order to extend the hardness result for two servers having the same load capacity, we add dummy movies whose de-
mand does not change and that are not reassigned in any optimal solution. Specifically, given X, Y , z, such that there exists
a subset Y ′′

⊆ Y of size nX satisfying SX = SY ′′ + z, consider the following instance of reconfiguration: LetW > SX + SY be a
large constant. ThenM = 2nX + nY + 2; the demands are D0

= ⟨W (nX + 1)+ SY − SX + 2z, Y ′′, Y \ Y ′′
∪X,W ,W , . . . ,W ⟩.

That is, we add nX + 2 dummy movies. We ‘wrap’ the vector D0 described in the reduction for servers with different load
capacitieswith a single firstmovie that has demandW (nX +1)+SY −SX +2z, and nX +1 lastmovies each having demandW .
In our example, letW = 100, then D0

= ⟨509, 1, 2, 3, 4, 5, 2, 3, 4, 5, 100, 100, 100, 100, 100⟩. The system has two servers
with C1 = nX + 1, C2 = nY + nX + 1, and L1 = L2 = W (nX + 1) + SY + z. In our example, C1 = 5, C2 = 10, L1 = L2 = 519.
A possible perfect placement is to store the first 1+ nX movie files on the first server, and the remaining nY + nX + 1 movie
files on the second server. The load capacities of the servers satisfy exactly the broadcast demands. Assume further that
the demands are changed to be D = ⟨W (nX + 1) + SY − SX + 2z, x1, x2, . . . xnX , y1, y2, . . . , ynY ,W ,W , . . . ,W ⟩. In our
example, let D = ⟨509, 2, 3, 4, 5, 1, 2, 3, 4, 5, 100, 100, 100, 100, 100⟩. We claim that for the new demand vector D, in any
optimal reconfiguration, none of the dummy movies are migrated. Indeed, W is big enough to assure that the only feasible
reassignment of the dummy movies is when the first dummy movie is assigned to the second server and all the nX + 1
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Reconfiguration Algorithm
For each storage and load allocation to the big movies satisfying (P1) do:

Let Lbj and Cb
j be the total load and storage allocation to big movies on server j.

For all 1 ≤ j ≤ N do Lj := L − Lbj + 2δL and Cj := Cj − Cb
j

Find a minimum cost placement of the small movies on the servers
assuming server j has load capacity Lj and storage capacity Cj (see below).

Select a configuration for the big movies which yields minimum total cost.

Fig. 3. Algorithm for updating data placement on a set of servers.

additional dummy movies are assigned to the first server. Such a reassignment leaves no storage on the first server, and is
therefore unfeasible. Therefore, none of the dummymovies is migrated and the problem reduces to the problem considered
for servers with variable load capacities. �

3. Minimal cost algorithm for fixed number of servers

In this sectionwepresent a polynomial time algorithm that finds aminimal-cost reconfiguration for a semi-homogeneous
system, assuming that the number of servers, N , is some fixed constant. Given an instance I with N servers of load capacity L
and arbitrary storage capacity Cj, 1 ≤ j ≤ N , denote by OPT (I) the minimum reconfiguration cost for I . Our Reconfiguration
algorithm (given in Fig. 3) outputs a placement whose cost is at most OPT (I), on servers of load capacities (1 + 2δ)L, for a
small parameter δ ∈ (0, 1].

Given the parameter 0 < δ ≤ 1, we say that a movie file i is big if Di ≥ δL; otherwise, movie i is small. Our algorithm
handles separately the two types of movies. It produces allocations with the following properties:

(P1) For any big movie i, and any server j, the broadcast allocation Bi,j of server j to movie i is an integral multiple of δ2L/N ,
i.e., Bi,j = kδ2L/N , where k is an integer in [1,N/δ2

].
(P2) Each small movie is stored on a single server, on which it is allocated all of its broadcast demand. Formally, for any

small movie i, for a single server j, Bi,j = Di, and for any j′ ≠ j, Bi,j′ = 0.

Note that the algorithm finds a minimum cost placement for small movies by initially solving a linear programming
relaxation of the problem (given by LP0). The optimal fractional solution is then rounded to an integral placement. This
integral placement has the guarantee that, if big movies are placed in correspondence with an optimal solution, then the
total cost of the computed placement for the whole instance is minimal, using servers with enlarged load capacities.4

Towards analyzing our Reconfiguration algorithm, we prove some technical lemmas. We first show that, by allowing a
slight increase in the load capacities, we can find in polynomial time a reconfiguration satisfying (P1) whose total cost is at
most OPT (I).

Lemma 3.1. Restricting the allocation of big movies to one that satisfies (P1) may require an increase of at most δL in the load
capacity of each server, with no change in the reconfiguration cost.

Proof. We show that any assignment of big movies in which the total broadcast allocation of each server is at most L can be
converted into one which satisfies (P1). The only changes are in the broadcast matrix, B. The assignment matrix, A, remains
unchanged, therefore, the reconfiguration cost is the same.

Consider the servers one after the other. For each server j and bigmovie i, round Bi,j up to the nextmultiple of δ2L/N . Note
that there are at most N/δ such movies in the system; thus, there are at most N/δ such movies on each server. It follows
that the additional load on each server due to rounding is at most N

δ
·

δ2

N L = δL. �

We now bound the reconfiguration cost for adding the small movies, once we have a ‘good’ configuration of the big
movies. Recall that, for any server 1 ≤ j ≤ N , Cb

j , L
b
j denote the total storage capacity and the total load capacity assigned to

big movies on server j, respectively.

Lemma 3.2. Given a configuration of the bigmovies that corresponds to an optimal solution, let Cj = Cj−Cb
j and Lj = L−Lbj +δL.

Then, there exists a polynomial time algorithm that finds for the small movies a placement satisfying property (P2), such that the
storage and load capacities used by small movies on server j are at most Cj and Lj + δL, respectively, and the total reconfiguration
cost is at most OPT (I).

Proof. Let R denote the set of small movies, and Mr = |R|. Index the small movies 1, . . . ,Mr . Denote by xi,j ∈ {0, 1} an
indicator variable for the assignment of movie i to server j, i ∈ R and 1 ≤ j ≤ N . The costs ci,j are the given replication costs.
Note that once the big movies have been assigned, the servers may have different residual load capacities. To simplify the
analysis of our algorithm, we describe a transformation of the residual load capacities, which yields identical load capacity
for all the servers.

4 We give the precise details in the proof of Claim 3.1.
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Let L̂ ≥ 1 be an integer. For a movie i and server j, let Di,j = Di · L̂/Lj be the broadcast demand of movie i if this movie is
assigned only to server j. We may now consider the problem of assigning movies with demands Dij, 1 ≤ i ≤ Mr , 1 ≤ j ≤ N ,
on servers whose load capacity is equal to L̂.

The assignment will be determined by rounding the solution for the following linear program, LP0, in which xij is the
fraction of movie i assigned to server j, 1 ≤ i ≤ Mr .

(LP0) : minimize
Mr
i=1

N
j=1

xi,j · ci,j

subject to:
Mr
i=1

xi,j · Di,j ≤ L̂ for 1 ≤ j ≤ N, (1)

Mr
i=1

xi,j ≤ Cj for 1 ≤ j ≤ N, (2)

N
j=1

xi,j = 1 for 1 ≤ i ≤ Mr , (3)

xi,j ≥ 0 for 1 ≤ j ≤ N, 1 ≤ i ≤ Mr .

We note that LP0 is a relaxation of our problem. Consider an assignment of the movies to the servers that corresponds to
an optimal solution. By Lemma 3.1, there exists such an assignment which satisfies (P1). Denote this assignment by SOPT (I).
Let OPTb(I) be the cost incurred by the big movies in SOPT (I), and denote by x∗

ij the fraction of Di, the total demand of small
movie i, assigned to server j. We argue that x∗

= {x∗

ij, 1 ≤ i ≤ Mr , 1 ≤ j ≤ N} is a feasible solution for LP0, whose cost
is at most OPT (I) − OPTb(I). Clearly, by the definition of Dij, constraints (1) are satisfied for the solution x∗. Constraints (2)
are also satisfied for x∗. Indeed, in SOPT (I), the allocation of a fraction x∗

ij > 0 of the demand of movie i to server j requires
one unit of storage, while in LP0 the amount of storage allocated is 0 < x∗

ij ≤ 1. Finally, since in SOPT (I) each movie is fully
assigned to the servers, constraints (3) are also satisfied. As for the cost of LP0 for the solution x∗, we note that, if x∗

ij > 0,
then the cost for assigning movie i to server j in SOPT (I) is cij ≥ x∗

ij · cij.
The following property of an optimal solution for LP0 will be useful in the rounding process.

Claim 3.1. Given an optimal solution for LP0 with cost C, there exists a polynomial time algorithm which finds an assignment of
the small movies, such that on each server at most one small movie cannot be allocated all of its load requirement. The total cost
of this assignment is at most C.

Proof. Given an optimal (fractional) solution for LP0, we use a rounding technique of Shmoys and Tardos [19]. Specifically,
we construct a bipartite graph in which server j is represented by at most Cj vertices, 1 ≤ j ≤ N . A solution for the fractional
matching problem on this graph induces an integral matching of the same cost with the same cardinality.

Formally, sort the small movies assigned to server j in non-increasing order by their load requirements on this server.
Let GB = (V ∪ U, E) be a bipartite graph, where U = {ui|1 ≤ i ≤ Mr} represents the set of small movies, and V is the set
of server vertices: V = {vj,k|1 ≤ j ≤ N, 1 ≤ k ≤ σj} where σj = ⌈

Mr
i=1 xi,j⌉ is the total number of small movies stored on

server j. Clearly, σj ≤ Cj. The vertices vj,1, . . . , vj,σj represent server j, 1 ≤ j ≤ N .
The set of edges E of GB is defined as follows. Given the values of xi,j for 1 ≤ i ≤ Mr , 1 ≤ j ≤ N , for any server j:

(i) If
Mr

i=1 xi,j ≤ 1 then there is a single vertex vj,1 ∈ V corresponding to server j. In this case, for any 1 ≤ i ≤ Mr such that
xi,j > 0, we add in GB an edge (ui, vj,1), and set its weight to be w(ui, vj,1) = xi,j.

(ii) If
Mr

i=1 xi,j > 1, find the minimum index i1 such that
i1

i=1 xi,j ≥ 1, then E contains all the edges (ui, vj,1), 1 ≤ i ≤ i1 −1
for which xi,j > 0. For each of these edges set w(ui, vj,1) = xi,j. Now, add to E an edge (ui1 , vj,1), whose weight is
w(ui1 , vj,1) = 1 −

i1−1
i=1 w(ui, vj,1). Thus, the sum of weights of the edges incident to vj,1 is exactly 1. If

i1
i=1 xi,j > 1

add an edge (ui1 , vj,2), whose weight is w(ui1 , vj,2) = (
i1

i=1 xi,j) − 1. Proceed next to movies with i > i1 i.e., those with
smaller broadcast requirements on server j. Similar to the above process for vj,1, add edges incident to vj,2, until a total
of exactly one movie is assigned to vj,2, and so on. Let i′ be the index of the last movie for which an edge is assigned this
way, i.e, i′ = iσj−1. Now, for any i > i′ for which xi,j > 0 add an edge (ui, vj,σj) and set w(ui, vj,σj) = xi,j.

The cost of an edge (ui, vj,k) is ci,j, for 1 ≤ i ≤ Mr , 1 ≤ j ≤ N , and 1 ≤ k ≤ σj. For each server vertex vj,k, let Dmax
j,k (Dmin

j,k )
denote the maximum (minimum) of the broadcast requirements Di,j corresponding to the edges (ui, vj,k) incident to vj,k.
Then, for all 1 ≤ j ≤ N and 1 ≤ k ≤ σj − 1,

Dmin
j,k ≥ Dmax

j,k+1. (4)
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Recall that a vector y on the edges of a graph is a fractional matching if, for each vertex w, the sum of entries of y
corresponding to the edges incident tow is atmost 1. The fractionalmatching exactlymatches a vertexw if the corresponding
sum is equal to 1. A fractional matching is a matching if each entry of y is in {0, 1}. We note that the weight function on the
edges of GB defines a fractional matching, in which all movie vertices ui, 1 ≤ i ≤ Mr , and all server vertices vj,k, 1 ≤ j ≤ N ,
1 ≤ k ≤ σj − 1, are exactly matched. Thus, there exists an integral matching of the same cost that matches all the movie
vertices (see, e.g., [15]).

We now summarize the steps of the rounding procedure which assigns the small movies to the servers.

1. Given an optimal solution for LP0, form the bipartite graph GB.
2. Find a min-cost (integer) matching H that exactly matches all movie vertices in GB.
3. For each edge (ui, vj,k) ∈ H place movie i on server j.

We show that the assignment obtained in Step 3. of the algorithm has cost C , and that the overall load capacity used on
any server is at most L̂ plus themaximum load generated by any small movie. By the above discussion, the integral matching
found in Step 2 has cost C . Since the cost of the assignment is equal to the cost of the matching, the solution output by the
algorithm has the optimal cost C .

Next, we bound the total load capacity used on any server. Consider the movies assigned to server j. For any 1 ≤ j ≤ N ,
there are σj ≤ Cj vertices representing server j in GB. Each of these vertices vj,k adds at most one movie file to server j (the
movie which corresponds to the edge selected for the matching H , among those incident to vj,k). Therefore, at most Cj small
movies are assigned to server j. It follows that the total broadcast requirement of the movies on server j is at most

σj
k=1

Dmax
j,k = Dmax

j,1 +

σj
k=2

Dmax
j,k ≤ Dmax

j,1 +

σj−1
k=1

Dmin
j,k

≤ Dmax
j,1 +

σj
k=1


{i|(ui,vj,k)∈E}

Di,j · w(ui, vj,k)

= Dmax
j,1 +

Mr
i=1

Di,jxi,j ≤ Dmax
j,1 + L̂.

The second inequality follows from (4). �

Transforming back the load on server j from the scaled value to the original one, we have that L̂ is converted to Lj; also,
since Dmax

j,1 ≤ maxi,j Di,j, we have that Dmax
j,1 is transformed to Dimax , for some 1 ≤ imax ≤ Mr . Thus, the total load on any server

j, 1 ≤ j ≤ N , is at most Lj + δL. �

The next lemma will be used to bound the running time of the Reconfiguration algorithm.

Lemma 3.3. The set of possible configurations of copies of the big movies, along with the corresponding allocations of load
capacities, has a polynomial size.

Proof. Consider the entries corresponding to big movies in the broadcast matrix B. We show that there is a polynomial
number ofways to fill these entries. For each server (column in B) there are atmostN/δ positive entries in the corresponding
column, each has a value kδ2L/N , for an integer k ∈ [1,N/δ2

]. Thus, there are at most (N/δ2)N/δ possible ways to fill each
column in B, and (N/δ2)N

2/δ possible ways to determine the allocation to big movies. This value is polynomial since N is
fixed. �

The main result of this section is the following.

Theorem 3.4. Let N ≥ 1 be a fixed constant. Given an instance I, with each server having load capacity L and arbitrary storage
capacities Cj ≥ 1, 1 ≤ j ≤ N, the Reconfiguration algorithm finds in polynomial time a placement of the files whose cost is at
most OPT (I), by using servers with load capacities L(1 + 2δ).

Proof. By Lemma 3.1, there exists an allocation of the movies whose total cost is at most OPT (I), which satisfies (P1), such
that the load allocated on each server is at most L(1 + δ). Let OPTb(I) be the reconfiguration cost for the big movies in this
allocation. Since the Reconfiguration algorithm performs exhaustive search over all possible allocations of the big movies
satisfying (P1), the algorithm will find the desired allocation, for which LP0 yields a cost at most OPT (I) − OPTb(I).

By Lemma 3.2, rounding an optimal solution, C ≤ OPT (I) − OPTb(I), for LP0 yields a feasible allocation for the small
movies of cost at most C , which requires on each server a total load at most L(1 + 2δ).

Finally, by Lemma 3.3, the overall running time of the algorithm is at most (N/δ2)N
2/δ multiplied by the time required

to solve the linear program LP0 (note that this dominates the running time of the minimum cost maximum matching
subroutine used in the rounding step for LP0). �



50 H. Shachnai et al. / Theoretical Computer Science 460 (2012) 42–53

4. Minimal cost algorithm for arbitrary number of servers

In this section we consider a system with arbitrary number of servers. We first show that when the number of movies is
fixed, our problem can be optimally solved for any number of servers.

Theorem 4.1. The reconfiguration problem is solvable in polynomial time when M, the number of movies, is fixed.

Proof. Number the collection of subsets of the M movies by 1, . . . , 2M , then the assignment of movie files to the N servers
can be represented as an assignment vector of length 2M , in which the kth entry gives the number of servers that contain
the kth subset of movies. The number of possible assignment vectors is

2M+N−1
2M−1


. It is possible to compute the cost of each

assignment vector as follows. Construct the bipartite graph GB = (U, V , E), in which |U| = |V | = N . Each vertex u ∈ U
corresponds to a server, and each vertex v ∈ V corresponds to a subset of movies for which there is a non-zero entry in the
assignment vector. In other words, if the kth entry in the vector is equal to h, 1 ≤ h ≤ N , then in GB there are h vertices
in V which correspond to the kth subset of movies. There is an edge (u, v) ∈ E if the server corresponding to u has storage
capacity larger than the number of movies in the subset that corresponds to v; the cost of (u, v) is the cost of assigning this
subset of movies on v. Next, solve the minimumweight perfect matching problem on GB. The cost of each perfect matching
(if one exists) is the cost of the corresponding assignment vector. Given a perfect matching of minimum cost, use a flow
network to test the feasibility of the given assignment vector, namely, to verify that each movie i can be allocated its load
requirement Di. Finally, among the feasible assignments, select the one having the smallest cost. �

For the casewhereM may be arbitrarily large, we present below a polynomial time algorithmwhich finds aminimal-cost
reconfiguration in a semi-homogeneous system. Given an instance I , our algorithm outputs a minimal-cost placement, by
using servers of load capacities (2 + ε)Lwhere

ε = max
{i|Di>L}

{Di/L − ⌊Di/L⌋} if max
i

Di > L, else ε = 0. (5)

4.1. The algorithm

The following is an overview of the algorithm. (i) Partition the movies to big and small; movie i is big if Di > L, else movie
i is small. (ii) Solve a linear programming relaxation to obtain a lower bound on the optimal solution for the reconfiguration
problem. (iii) Round the (fractional) solution of the linear program to obtain an integral solution of optimal cost. (iv) Use the
integral solution to assign movie copies to N servers, where server j has storage capacity Cj and load capacity (2 + ε)L, for
some ε ∈ [0, 1) (as defined in (5)).

Solving an LP Relaxation. In the following we show how a natural LP relaxation for our problem can be modified to obtain
another linear program, from which we derive an optimal integral solution. Let xij ∈ [0, 1] denote the fraction of the load
capacity L of server j allocated to big movie i. We denote by yij the fraction of Di allocated to small movie i on server j. Also,
ci,j is the given replication cost (which depends on the initial configuration). Consider the following linear programming
relaxation, LP1, for the reconfiguration problem.

(LP1) : minimize

i∈Big

N
j=1

xi,j · ci,j +


i∈Small

N
j=1

yi,j · ci,j

subject to:

i∈Big

xi,j · L +


i∈Small

yi,j · Di ≤ L for 1 ≤ j ≤ N (6)
i∈Big

xi,j +


i∈Small

yi,j ≤ Cj for 1 ≤ j ≤ N (7)

N
j=1

xi,j =
Di

L
for i ∈ Big (8)

N
j=1

yi,j = 1 for i ∈ Small (9)

0 ≤ xi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Big
0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small

Constraints (6) ensure that the total load capacity used by copies of the big movies and by the small movies on each
server is at most L. Constraints (7) ensure that the total storage required on server j is at most Cj. The constraints (8) and (9),
together with constraints (6), guarantee that each (big or small) movie is allocated Di broadcasts.
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Next, wemodify LP1 as follows. For any bigmovie i, let ki = ⌊Di/L⌋. Consider the linear program LP2. Note that constraints
(10) allow to assign to big movie i some fraction of Di/ki on server j; also, constraints (12) guarantee that big movie i is
allocated Di broadcasts.

(LP2) : minimize

i∈Big

N
j=1

xi,j · ci,j +


i∈Small

N
j=1

yi,j · ci,j

subject to:

i∈Big

xi,j ·
Di

ki
+


i∈Small

yi,j · Di ≤ L for 1 ≤ j ≤ N (10)
i∈Big

xi,j +


i∈Small

yi,j ≤ Cj for 1 ≤ j ≤ N (11)

N
j=1

xi,j = ki for i ∈ Big (12)

N
j=1

yi,j = 1 for i ∈ Small (13)

0 ≤ xi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Big
0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small

Now, we partition each big movie i to ki sub-movies. Thus, we replace the variables xi,j, 1 ≤ j ≤ N , i ∈ Big by the set
of variables xi,j,r , 1 ≤ r ≤ ki. Intuitively, we partition the load requirement of movie i to ki, so we can now consider ki
sub-movies, where each needs to be allocated D̂i =

Di
ki

broadcasts. We rewrite the linear programming relaxation as LP3.

Rounding the fractional solution. Note that LP3 can be viewed as the linear programming relaxation of an input for job
scheduling on unrelated machines, with costs and cardinality constraints, in which we need to schedule a set of jobs on
N unrelated machines. The set of jobs J corresponds to all the small movies and the collection of sub-movies for the big
movies, i.e., |J| = |Small| +


i∈Big ki. The processing time of a job corresponding to a small movie i on machine j is pij = Di,

and the processing time of any of the jobs corresponding to the ki sub-movies of big movie i on machine j is pij = ⌈Di/ki⌉.
Note that if ki = 1 then pij = Di < 2L. If ki > 1 then Di/ki < 1.5L implying (for all L > 1) ⌈Di/ki⌉ < 2L. In the reduction to
the scheduling problem, the cost of processing job i on machine j is cij, ∀ i and 1 ≤ j ≤ N . The makespan of any machine j
is at most L, and the maximal number of jobs that can be assigned to machine j is Cj.5 The goal is to schedule all jobs on the
machines, subject to the makespan and cardinality constraints, so as to minimize the total cost. The rounding technique in
[19] guarantees that, for given values C and T , a schedule of cost at most C and makespan at most 2T is generated, if there
exists a (fractional) solution to the scheduling problem of cost C and makespan T .

Given an optimal solution for LP3, we can apply the rounding technique of Shmoys and Tardos [19], as described in the
proof of Claim 3.1. The resulting integral solution can be used to determine the storage allocation. The assignment matrix
is given by the variables xi,j,r , yi,j and the broadcast matrix is given by the allocated processing time. Formally, for a small
movie i, assign a single copy of i on server j if yi,j = 1, i.e., Ai,j = 1 and Bi,j = Di. For any big movie i, note that each sub-

movie is allocated


Di
ki


> L broadcasts.6 Therefore, given that the makespan of the rounded solution is at most 2L, for all

i, j,
ki

r=1 xi,j,r ∈ {0, 1}. If
ki

r=1 xi,j,r = 1 then assign a copy of big movie i on server j, i.e., Ai,j = 1 and Bi,j =


Di
ki


.

4.2. Analysis

Let OPT (I) denote the cost of an optimal solution for an instance I of the reconfiguration problem.

Lemma 4.2. The optimal solution for LP3 is a lower bound for OPT (I).

Proof. Given an instance I , clearly, the optimal solution for LP1 is a lower bound for OPT (I). Also, any feasible solution for
LP1 is a feasible solution for LP2; therefore, an optimal solution for LP2 is a lower bound for the optimal solution of LP1. Now,

5 This is the cardinality constraint.
6 In case ki divides Di , we can view big movie i as ki small movies whose demands are equal to L. Thus, it is sufficient to consider here the case where

⌈Di/ki⌉ > L.
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(LP3) : minimize

i∈Big

ki
r=1

N
j=1

xi,j,r · ci,j +


i∈Small

N
j=1

yi,j · ci,j

subject to:

i∈Big

ki
r=1

xi,j,r ·
Di

ki
+


i∈Small

yi,jDi ≤ L 1 ≤ j ≤ N


i∈Big

ki
r=1

xi,j,r +


i∈Small

yi,j ≤ Cj 1 ≤ j ≤ N

N
j=1

xi,j,r = 1 for i ∈ Big, 1 ≤ r ≤ ki

N
j=1

yi,j = 1 for i ∈ Small

0 ≤ xi,j,r ≤ 1 for 1 ≤ j ≤ N, i ∈ Big, 1 ≤ r ≤ ki
0 ≤ yi,j ≤ 1 for 1 ≤ j ≤ N, i ∈ Small

consider a feasible solution for LP2. By setting in LP3 xi,j,r =
xi,j
ki
, for all i ∈ Big , 1 ≤ r ≤ ki, and 1 ≤ j ≤ N , we get a feasible

solution for LP3. It follows that the optimal solution for LP3 is a lower bound for the optimal solution of LP2. This completes
the proof. �

Theorem 4.3. The above algorithm outputs in polynomial time a solution of cost at most OPT (I). The movies can be stored on N
servers with storage capacities C1, . . . , CN and load capacities (2 + ε)L, where ε is defined in (5).

Proof. By Lemma 4.2, the cost of an optimal solution for LP3 is at most OPT (I). As shown in the proof of Claim 3.1, the
rounding procedure preserves the cost of the linear program. We now bound the extra amount of load capacity required
for the placement of the files on the servers in the solution output by the algorithm. The maximal broadcast demand of any
sub-movie of big movie i is at most L(1 + ε), where ε is defined in (5), and this is also the maximum processing time of
any job in the input for the scheduling problem. Hence, by using the rounding technique of Shmoys and Tardos [19], the
resulting assignment of files to server may require an increase of at most L(1 + ε) in the load capacity of any server.

Finally, the running time of the algorithm is dominated by the time required to solve the linear program LP3, which is
polynomial in the input size. �
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