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It is shown that the determinant of the tangent stiffness matrix has a maximum in the prebuckling
regime if and only if the determinant of a specific linear combination of the first and the third derivative
of this matrix with respect to a dimensionless load factor vanishes. The mathematical tool for this proof is
the so-called consistently linearized eigenproblem in the frame of the Finite Element Method. The phys-
ical meaning of the mentioned maximum is the one of a minimum of the percentage bending energy of
the total strain energy. The paper provides mathematical and physical background knowledge on numer-
ical results that were obtained 35 years ago.
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1. Introduction In contrast to Eq. (1), the exact physical meaning of
The vanishing of the determinant of the tangent stiffness matrixeK T , i.e.

Det eK T ¼ 0; ð1Þ

is an indispensable ingredient of academic teaching of computa-
tional structural stability with emphasis on the Finite Element
Method (FEM). Eq. (1) represents a necessary and sufficient condi-
tion for loss of static stability of structures subjected to conservative
loading k P

�
, where P

�
denotes the vector of node forces, in the con-

text of the FEM, that are work-equivalent to the actual loading,
and k is a dimensionless load factor. In general, eK T depends on
the vector of node displacements q(k), i.e.

eK T :¼ eK TðqðkÞÞ: ð2Þ

The tilde in eK T serves the purpose of distinguishing the tangent
stiffness matrix from tensor functions KT which refer to internal
forces that are not in equilibrium with the external forces [1].
d
dk
ðDetðeK TÞÞ ¼ 0;

d2

dk2 ðDetðeK TÞÞ < 0; ð3Þ

in the prebuckling regime seems to be unknown. This would ex-
plain why mathematical conditions, alternative to (3), analogous
to the alternative condition

eK T � v ¼ 0 ð4Þ

to (1), where v is the eigenvector of eK T , could not be found in the
literature.

The mathematical definition of

d
dk
ðDetAÞ; ð5Þ

where each element of DetA which is of order n is a differentiable
function of k, reads as follows [2]: The derivative of DetA with re-
spect to k is equal to the sum of n derivatives, the ith one of which
is identical with DetA except for the ith row, which consists of the
derivatives of the elements of the ith row of DetA. This definition
is not very helpful, because normally the elements of DetA are
numerical quantities that are obtained in the frame of incremen-
tal-iterative nonlinear Finite Element Analysis (FEA).

The objective of this work is to derive mathematical conditions
for (3) and to explain the physical meaning of a maximum of Det eK T

in the prebuckling regime. The tool for this derivation is the so-
called consistently linearized eigenproblem (CLE) [3].
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In Section 2, a brief summary of the CLE will be given. In Sec-
tion 3, the aforementioned conditions will be derived, and in Sec-
tion 4 the physical meaning of these conditions will be
explained. Section 5 is devoted to a numerical example. Conclu-
sions drawn from this work will be given in Section 6.

2. Consistently linearized eigenproblem

The formulation of the CLE for the first eigenpair
k�1ðkÞ � k;v�1ðkÞ
� �

reads as follows [3]:

A1ðkÞ � v�1ðkÞ ¼ 0; A1 :¼ eK T þ k�1 � k
� � _eK T ; v�1

�� �� ¼ 1; ð6Þ

where _eK T is the first derivative of eK T with respect to k along a direc-
tion parallel to the primary path, i.e.

_eK T ¼
d

dk
eK TðqðkÞÞ :¼ d

da

����
a¼0

eK TðqðkÞ þ a _qðkÞÞ: ð7Þ

In contrast to the matrix eK T , which is positive definite in the pre-
buckling regime, _eK T is an indefinite matrix. Apart from one special
case [4], v�1ðkÞ does not become an eigenvector of _eK T in the pre-
buckling regime. Hence, the eigenvalue k�1 � k remains finite.
Fig. 1 illustrates a typical function k�1ðkÞ for bifurcation buckling
from a nonlinear load–displacement path. At the starting point A,
k = 0. At the stability limit S:

k�1 � kS ¼ 0) k�1 ¼ k ¼ kS; _k�1 ¼ 0; ð8Þ

[3] and

v�1ðkÞ :¼ v1: ð9Þ

(For snap-through, k is a nonmonotonic function of the displace-
ments. This suggests replacing k by a suitable parameter n.)

In order to derive the mathematical conditions for a maximum
of Det eK T , the first three derivatives of (6.1) with respect to k are
needed. They are obtained as follows [4]:

_A1 � v�1 þ A1 � _v�1 ¼ 0; ð10Þ

€A1 � v�1 þ 2 _A1 � _v�1 þ A1 � €v�1 ¼ 0; ð11Þ

vA1 � v�1 þ 3€A1 � _v�1 þ 3 _A1 � €v�1 þ A1 � v
:::�

1 ¼ 0; ð12Þ

where

_A1 ¼ _k�1
_eK T þ k�1 � k

� � €eK T ; ð13Þ

€A1 ¼ €k�1
_eK T þ 2 _k�1 � 1

� �
€eK T þ k�1 � k

� �
; eK::: T ; ð14Þ
Fig. 1. k�1 versus k, with k�1ðkÞ � k as a typical eigenvalue function for bifurcation
buckling [4].
vA1 ¼ vk�1
_eK T þ 3€k�1

€eK T þ 3 _k�1 � 2
� �eK::: T þ k�1 � k

� � eK::: T ; ð15Þ

and

_v�1 ¼
XN

j¼2

c1jv�j with c1j ¼ �
k�1 � k
k�1 � k�j

v�j �
€eK T � v�1

v�j �
_eK T � v�j

; ð16Þ

€v�1 ¼
XN

j¼2

_c1jv�j þ c1j _v�j
� �

; ð17Þ

v
:::�

1 ¼
XN

j¼2

€c1jv�j þ 2 _c1j _v�j þ c1j €v�j
� �

; ð18Þ

where k�1 � k�j represents the difference of the first and the jth eigen-
value and v�j denotes the jth eigenvector. Following from normali-
zation of v�1 according to (6.3):

v�1 � _v�1 ¼ 0; ð19Þ

_v�1 � _v�1 þ v�1 � €v�1 ¼ 0; ð20Þ

3 _v�1 � €v�1 þ v�1 � v
:::�

1 ¼ 0: ð21Þ

Substitution of (8.1) into (16.2) and insertion of the result into
(16.1) gives

_v�1ðkSÞ ¼ 0: ð22Þ
3. Derivation of mathematical conditions for a maximum of
DeteKT

Premultiplication of (11) by v�1 and use of (6.1) gives

v�1 � €A1 � v�1 þ 2v�1 � _A1 � _v�1 ¼ 0: ð23Þ

Substitution of (13) and (14) into (23) yields

v�1 � €k�1
_eK T þ ð2 _k�1 � 1Þ €eK T þ k�1 � k

� � eK::: T

� �
� v�1 þ 2v�1

� _k�1
_eK T þ k�1 � k

� � €eK T

� �
� _v�1

¼ 0: ð24Þ

Substitution of (16) into the bilinear form v�1 �
_eK T � _v�1 in (24), con-

sideration of the orthogonality relations

v�j �
_eK T � v�1 ¼ 0; j ¼ 2;3; . . . ;N; ð25Þ

following from (6.1), and use of v�1 � _A1 � v�1 ¼ 0, following from
premultiplication of (10) by v�1 and consideration of (6.1), gives

€k�1 k�1 � k
� �

� _k�1 _k�1 � 1
� �

k�1 � k
� �2 ¼ � 1

v�1 �
_eK T � v�1

� 2v�1 �
€eK T � _v�1 þ

v�1 � eK::: T � v�1� �
v�1 �

_eK T � v�1
� �

� v�1 �
€eK T � v�1

� �2

v�1 �
_eK T � v�1

0B@
1CA:
ð26Þ

Substitution of (8) into

d
dk

_k�1
k�1 � k

 !
¼

€k�1ðk
�
1 � kÞ � _k�1ð _k�1 � 1Þ

k�1 � k
� �2 ; ð27Þ

and
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d2

dk2

_k�1
k�1�k

 !

¼
ðvk�1 k�1�k
� �

� _k�1
€k�1Þ k�1�k
� �2�2 €k�1 k�1�k

� �
� _k�1ð _k�1�1Þ

� �
k�1�k
� �

ð _k�1�1Þ

k�1�k
� �4 ;

ð28Þ

and use of de l’Hopital’s rule yields

d
dk

_k�1
k�1 � k

 !�����
k¼kS

¼ �1
2

€k�21 þ
vk�1

� �
; ð29Þ

and

d2

dk2

_k�1
k�1 � k

 !�����
k¼kS

¼ �1
6

15€k�1
vk�1 þ 2vk�1

� �
; ð30Þ

respectively. For a general stress state, resulting from a combination
of membrane and non-membrane action, in addition to (8):

d2

dk2

_k�1
k�1 � k

 !�����
k¼kS

¼ 0; ð31Þ

indicating a point of inflection of the function k�1= k�1 � k
� �

at k = kS

(see the situation at point S in Fig. 2b). Substitution of (31) into
(30) gives

15€k�1
vk�1 þ 2vk�1 ¼ 0: ð32Þ

For the limiting case of buckling from a state of pure bending (lat-
eral torsional buckling):

vk�1 ¼
vk�1 ¼ 0: ð33Þ

For the limiting case of buckling from a membrane stress state, in
addition to (31):

d
dk

_k�1
k�1 � k

 !�����
k¼kS

¼ 0; ð34Þ

indicating a saddle point of the function k�1= k�1 � k
� �

at k = kS. Substi-
tution of (34) into (29) gives

€k�21 þ
vk�1 ¼ 0: ð35Þ

Substitution of (35) into (32) yields

�15€k�31 þ 2vk�1 ¼ 0; ð36Þ

For a maximum of Det eK T in the prebuckling regime:
Fig. 2. (a) k�1 versus k, with k�1ðkÞ � k as an eigenvalue function for bifurcation buckling th
corresponding to (a).
d
dk

_k�1
k�1 � k

 !�����
k¼kR

¼ 0;
d2

dk2

_k�1
k�1 � k

 !�����
k¼kR

< 0; ð37Þ

indicating a maximum of the function _k�1= k�1 � k
� �

at k = kR (see the
situation at point R in Fig. 2b). The rationale of this assertion
becomes evident from substitution of (37.1) into (27), resulting in

€k�1 k�1 � k
� �

� _k�1 _k�1 � 1
� �

¼ 0: ð38Þ

This relation indicates a disintegration of (26), analogous to the dis-
integration of (26) at the stability limit, albeit one of a different
kind. As will be shown later:

_k�1
��
k¼kR
¼ 1

2
; ð39Þ

(see the situation at point R in Fig. 2a).
Representing part of the solution of the CLE, the eigenvalue

k�1 � k is known for all values of k in the prebuckling regime. In or-
der to determine the two unknown quantities _k�1 and €k�1, at k = kR, in
(38), an additional condition is needed. As part of a disintegration
of (12), this condition is obtained as

€A1 � _v�1 ¼ 0: ð40Þ

In this context, it is worthy of note that (12) also disintegrates at the
stability limit, albeit differently from the disintegration at point R.

Substitution of (14) into (40) gives"
€k�1

_eK T þ 2 _k�1 � 1
� �

€eK T þ k�1 � k
� � eK::: T

#
� _v�1 ¼ 0: ð41Þ

Elimination of €k�1 in (41) by means of (38) yields

_k�1 _k�1 � 1
� �
k�1 � k

_eK T þ 2 _k�1 � 1
� �

€eK T þ k�1 � k
� � eK::: T

24 35 � _v�1 ¼ 0: ð42Þ

Substitution of (16) into (42) and premultiplication by v�1 results in

v�1 �
_k�1 _k�1 � 1
� �
k�1 � k

_eK T þ 2 _k�1 � 1
� �

€eK T þ k�1 � k
� � eK::: T

24 35
�
XN

j¼2

c1jv�j

 !
¼ 0: ð43Þ

Consideration of the orthogonality condition (25) in (43) gives

v�1 � 2 _k�1 � 1
� �

€eK T þ k�1 � k
� � eK:::

T

h i
�
XN

j¼2

c1jv�j

 !
¼ 0: ð44Þ
at contains point R, kR < kS, referring to a maximum of Det eK T , (b) _k�1=ðk
�
1 � kÞ versus k,
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Substitution of (38) into (26) yields

2v�1 �
€eK T � _v�1

þ ðv
�
1 � eK::: T � v�1Þðv�1 � _eK T � v�1Þ � ðv�1 �

€eK T � v�1Þ
2

v�1 �
_eK T � v�1

¼ 0: ð45Þ

Hence:

v�1 �
€eK T � v�j – 0; j ¼ 2;3; . . . ;N: ð46Þ

Consequently, satisfaction of (44) requires that

2 _k�1 � 1 ¼ 0; ð47Þ

which confirms (39), and that

v�1 � eK::: T � v�j ¼ 0; j ¼ 2;3; . . . ;N: ð48Þ

Substitution of (47) into (42) gives
_eK T � 4 k�1 � k

� �2 eK::: Th i
� _v�1 ¼ 0; ð49Þ

which shows that the sign of the eigenvalue k�1 � k has no influence
on this relation. Thus:

Det _eK T � 4 k�1 � k
� �2 eK::: T

h i
¼ 0; ð50Þ

which is a necessary and sufficient condition for a maximum of
Det eK T in the prebuckling regime.

4. Physical interpretation of a maximum of DeteKT

For the special case of a linear stability problem:

€eK T ¼ 0 8 k; ð51Þ

which implies that

eK TðkÞ ¼ K0 þ kK
�

r ð52Þ

where K0 is the constant small-displacement stiffness matrix and
K
�

r is the constant initial stress matrix, evaluated after the first step
of incremental FEA [5]. Substitution of (52) into (6) gives

K0 þ k�1K
�

r

� �
� v�1 ¼ 0; ð53Þ

resulting in

k�1 ¼ kS; v�1 ¼ v1 8 k: ð54Þ

Hence:

_k�1 ¼ 0; _v�1 ¼ 0 8 k: ð55Þ

This permits interpretation of _k�1= k�1 � k
� �

(see Fig. 2b) as the in-
crease of the aggregate nonlinearity of the underlying stability
problem, normalized with respect to the eigenvalue. Conse-
quently, point R in Fig. 2b indicates a maximum of such an
increase.

Linear stability problems are a special case of buckling from
a membrane stress state [4]. To obtain a mathematical condi-
tion for buckling from such a stress state, (11) is premultiplied
by €v�1:

€v�1 � €A1 � v�1 þ 2 _A1 � _v�1 þ A1 � €v�1
� �

¼ 0: ð56Þ

For buckling from a membrane stress state, (56) disintegrates into

€v�1 � €A1 � v�1 ¼ 0 and €v�1 � 2 _A1 � _v�1 þ A1 � €v�1
� �

¼ 0: ð57Þ

Eq. (57.1) indicates that v�1 is orthogonal to €A1 � €v�1 for all values of k
in the prebuckling regime. Disintegration of (56) into (57) does not
imply disintegration of (11), as was originally assumed [6]. Compar-
ing (57) with (40) reveals that buckling from a membrane stress
state precludes the possibility of a maximum of Det eK T in the pre-
buckling regime.

Buckling from a state of pure bending (lateral torsional buck-
ling) is characterized by [4]

v�1 ¼ v1 8 k: ð58Þ

Hence:

_v�1 ¼ 0 8 k: ð59Þ

Substitution of (59) into (10) and consideration of (58) yields

_A1 � v1 ¼ 0: ð60Þ

Comparing (60) with (40) shows that also buckling from a state of
pure bending precludes the possibility of a maximum of Det eK T in
the prebuckling regime.

Consequently, such a maximum is only possible for buckling
from a general stress state, characterized by

0 <
UB

UM þ UB
< 1 8 k; ð61Þ

where UM denotes the membrane energy and UB stands for the com-
plement of UM to the total strain energy. For convenience’s sake, UB

is termed as the bending energy. Recalling that a maximum of
Det eK T in the prebuckling regime correlates with a maximum of
the function _k�1= k�1 � k

� �
, i.e. with a maximum increase of the aggre-

gate normalized nonlinearity of the underlying stability problem,
such a maximum must correspond to a minimum percentage bend-
ing energy of the total strain energy, characterized by

d
dk

UB

UM þ UB

� �
¼ 0 ) _UBUM � UB

_UM ¼ 0; ð62Þ

and

d2

dk2

UB

UM þ UB

� �
> 0 )

€UBUM � UB
€UM

ðUM þ UBÞ2
> 0; ð63Þ

(It is worthy of note that a maximum of UB/(UM + UB) occurs at the
stability limit [4].) As follows from (62.2), for k = kR:

_UB

_UM

¼ dUB

dUM
¼ UB

UM
: ð64Þ

Substitution of (64) into (63) gives

d2

dk2

UB

UM þ UB

� �
¼ ð

€UB
_UM � _UB

€UMÞ
ðUM þ UBÞ2

UM

_UM

: ð65Þ

Insertion of (65) into

d2UB

dU2
M

¼
€UB

_UM � _UB
€UM

_U3
M

ð66Þ

yields

d2UB

dU2
M

¼ d2

dk2

UB

UM þ UB

� �
ðUM þ UBÞ2

UM
_U2

M

: ð67Þ

Fig. 3 elucidates the physical meaning of a maximum of Det eK T in
the prebuckling regime. According to (64), the tangent to the curve
UB(UM) at point R is equal to the chord. As follows from (63) and
(67), the curvature of this curve at point R is positive. Analogous
to the situation at R, the tangent to the curve UB(UM) at the stability
limit S is also equal to the chord. However, at S, in contrast to the
situation at R:

d2UB

dU2
M

¼ d3UB

dU3
M

¼ 0;
d4UB

dU4
M

< 0; ð68Þ



Fig. 3. UB versus UM for a situation characterized by a maximum of Det eK T at point R
in the prebuckling regime.

Fig. 4. Buckled test specimen of a pressure vessel head subjected to internal
pressure [7].

Fig. 5. Geometrical details of a cylindrical pressure vessel with a torispherical head
[8].

Fig. 6. Circumferential membrane force na due to internal pressure
�p ¼ 703:8 kN=m2, in the meridional (axial) direction [8].

Fig. 7. Normalized determinant of a reduced form of the tangent stiffness matrixeK T versus the load factor k [8].
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indicating a planar point of the curve UB(UM) at the stability
limit.
5. Numerical example

Following the failure of a large cylindrical fluid coker with a
shallow spherical bottom head while undergoing its hydrostatic
proof test at Avon, California, in 1956, interest in the problem of
buckling of such pressure vessels under internal pressure was
growing. Fig. 4 shows a buckled test specimen of a pressure vessel
head that was subjected to internal pressure [7].

Fig. 5 illustrates geometrical details of a pressure vessel head
that was investigated by means of the FEM 35 years ago by Kano-
dia, Gallagher, and the senior writer [8].

Fig. 6 shows the distribution of the circumferential membrane
force na due to internal pressure in the meridional (axial) direction
b and s/D, respectively, where s denotes the axial coordinate of the
cylinder and D stands for its diameter. Fig. 7 shows a plot of the
normalized determinant of a reduced form of the tangent stiffness
matrix eK T , containing the small-displacement stiffness matrix K0

and the so-called first-order (linear) geometric stiffness matrix
kN1, versus the load factor k. Normalization is performed with re-
spect to Det eK 0. It is seen that the determinant increases up to a va-
lue of the internal pressure close to the buckling pressure,
indicating the initial load-hardening nature of the behavior of the
structure. The conjecture that the vanishing of the determinant
of €eK T is the condition for a maximum of the determinant of eK T

[9] is falsified by (50), according to which such a maximum occurs
if the determinant of a specific linear combination of _eK T and eKv T

vanishes.
6. Conclusions

1. The determinant of the tangent stiffness matrix has a maximum
in the prebuckling regime if and only if the determinant of a
specific linear combination of the first and the third derivative
of the tangent stiffness matrix vanishes.

2. A necessary condition for a maximum of the determinant in the
prebuckling regime is a general stress state, resulting from a
combination of membrane and bending action.

3. The physical meaning of a maximum of the determinant of the
tangent stiffness matrix in the prebuckling regime is the one of
a minimum of the percentage bending energy of the total strain
energy.

4. The present work is a good example of the lasting usefulness of
mathematical and physical background knowledge about
numerical results that were obtained long ago.
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