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SUMMARY

Mice lacking the Jak tyrosine kinase member Tyk2
become progressively obese due to aberrant devel-
opment of Myf5+ brown adipose tissue (BAT). Tyk2
RNA levels in BAT and skeletal muscle, which shares
a common progenitor with BAT, are dramatically
decreased in mice placed on a high-fat diet and in
obese humans. Expression of Tyk2 or the constitu-
tively active form of the transcription factor Stat3
(CAStat3) restores differentiation in Tyk2�/� brown
preadipocytes.Furthermore,Tyk2�/�miceexpressing
CAStat3 transgene in BAT also show improved BAT
development, normal levelsof insulin, andsignificantly
lower bodyweights. Stat3 binds to PRDM16, amaster
regulator of BAT differentiation, and enhances the
stability of PRDM16 protein. These results define
Tyk2 and Stat3 as critical determinants of brown fat
lineage and suggest that altered levels of Tyk2 are
associated with obesity in both rodents and humans.

INTRODUCTION

Obesity occurs when caloric intake exceeds energy expenditure

with excess nutrients stored as fat. There are two functionally
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different types of fat: white adipose tissue (WAT) and brown

adipose tissue (BAT). WAT is the primary site of energy storage

and also synthesizes and releases a variety of cytokines and

hormones that modulate the actions of insulin. Obesity results

from excessive accumulation of WAT. In contrast to WAT, BAT

is responsible for energy expenditure in the form of thermogen-

esis. Uncoupling protein 1 (UCP1) is expressed only in BAT and

uncouples oxidative phosphorylation from ATP generation, re-

sulting in the production of heat instead of ATP. BAT deposits

are present in all mammals, but in humans these deposits were

believed to be nonfunctional except in newborns. However,

over the past 4 years, it has become evident that BAT has an

important role in human adults in the regulation of energy expen-

diture (Cypess et al., 2009; Nedergaard et al., 2007; Saito et al.,

2009; Virtanen et al., 2009; Zingaretti et al., 2009). These studies

indicate that BAT activity is inversely correlated with the severity

of the metabolic syndrome and that BAT is amajor contributor to

maintain a lean phenotype. Thus, intervention to increase BAT

activity and/or mass is a viable strategy to treat obesity.

Canonical activation of the Jak/Stat pathway involves cytokine

and growth factors binding to their cell surface receptors, result-

ing in activation of one or several Jak kinases that tyrosine phos-

phorylate specific residues in the cytoplasmic domains of the

receptors. Tyrosine phosphorylated receptors provide docking

sites for the Stats through their SH2 domains. The activated

Jaks also phosphorylate tyrosine on one or several Stats (Raz

et al., 1994; Stark et al., 1998). Tyrosine phosphorylated Stats
Inc.
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Figure 1. Tyk2–/– Mice Develop Metabolic Abnormalities

(A) Mice pictured at 12 months of age.

(B) Body weight of mice fed a normal chow diet at 16 weeks of age (n = 5–8 mice per group).

(C) Glucose tolerance test in Tyk2+/+ and Tyk2�/� mice. Sixteen-week-old mice were fasted for 16 hr and injected intraperitoneally (IP) with 2 mg glucose/g body

weight. Blood was collected from the tail vein and glucose was measured at the indicated times (n = 5–8 mice per group).

(D) Tyk2 RNA levels in BAT and skeletal muscle (SKM) are decreased in mice on a HFD. Five-week-old mice were placed on a normal chow or HFD for 12 weeks

and RNA was harvested from BAT, SKM, WAT, and liver. RNAs corresponding to Tyk2, Jak1, and Jak2 were measured by qPCR (n = 5 mice per group).

(E) Tyk2 RNA levels are decreased in muscle samples from obese patients with or without T2D (n = 10–15 subjects per group).

Data are expressed as means ± SEM. See also Figures S1 and S2 and Table S1.
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form homodimers or heterodimers, translocate to the nucleus,

and bind to regulatory elements in the promoters of cytokine-

stimulated early response genes (Decker et al., 1991; Pearse

et al., 1991). Activation of the Jak kinase Tyk2 leads to tyrosine

phosphorylation of Stat3 in response to different cytokines

including type I interferons, IL-12 and IL-23.

No evidence has existed that Tyk2, a Jak kinase family

member, has a role in the pathogenesis of obesity. In this study,

we identify a role for Tyk2 in differentiation ofMyf5+brown adipo-

cytes, and that Tyk2�/� mice become obese with age. Further-

more, Tyk2 levels are regulated by diet in mice, and Tyk2 levels

are decreased in obese humans. Expression of constitutively

active Stat3, (CAStat3) can restore BAT differentiation of Tyk2�/�

preadipocytes and reverse the obese phenotype in Tyk2�/�

mice. Moreover, rosiglitazone-induced stabilization of PRDM16

protein is absent in Stat3�/� brown preadipocytes under condi-

tions, where there is no change in levels of PRDM16 RNA, sug-

gesting another mechanism of Stat3 action. The data in this

proposal provide evidence for the role of Tyk2 and Stat3 in the

regulation of BAT differentiation and energy balance

RESULTS

Mice that Do Not Express Tyk2 Develop Obesity
We observed that Tyk2�/� mice weighed more than their wild-

type littermates. By 12 months of age, the Tyk2�/� animals
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were approximately 20 g heavier than Tyk2+/+ mice (Figure 1A).

However, increased weights were observed as early as 12–

16 weeks of age on normal chow diet (Figure 1B). Tyk2�/�

mice displayed abnormal glucose clearance suggestive of

insulin resistance (Figure 1C), as well as many other metabolic

abnormalities, including elevated plasma insulin, cholesterol

and free fatty acid levels (Table S1 available online). Due to

different susceptibilities of many mice strains to developing

obesity, we examined whether Tyk2�/� mice on C57BL/6 and

SV129 backgrounds became obese. Both Tyk2�/� mice on

a C57BL/6 and SV129 background showed augmented weights

on a normal chow diet. Furthermore, we observed the same

metabolic defects in B10.Q/J mice that have a spontaneous

mutation in Tyk2 (data not shown) (Shaw et al., 2003). A complete

metabolic profile was obtained on 12-week-old animals. When

normalized to lean bodymass (LBM) Tyk2�/�mice showed lower

energy expenditure (Figures S1A and S1B) and produced 20%

less heat (Figure S1C) during both day and night cycles. No

changes in food intake (Tyk2+/+, 13.4 ± 5.5 g/48 hr versus

Tyk2�/�, 12.9 ± 2.6 g/48 hr) or physical activity were detected

between Tyk2+/+ and Tyk2�/� mice.

Tyk2 Expression Is Reduced in Obese Mice and Humans
Tyk2 is a ubiquitously expressed protein, whose concentra-

tions vary between tissues (Strobl et al., 2011). The protein is

abundant in BAT, WAT and spleen and is present in lower
etabolism 16, 814–824, December 5, 2012 ª2012 Elsevier Inc. 815



Figure 2. Tyk2–/–Mice Display Impaired BAT

Function

(A) BAT-specific RNAs (UCP1, PRDM16, and

Cidea) are decreased in interscapular BAT isolated

from 16-week-old Tyk2�/� mice. RNAs highly ex-

pressed in BAT (PPARg and PGC1a) are not

significantly changed in BAT isolated from Tyk2�/�

mice (n = 5–8 mice per group).

(B) The amounts of BAT-selective proteins are

decreased in Tyk2�/�mice. Cell extracts from BAT

of individual Tyk2+/+ and Tyk2�/� mice were

analyzed by western blotting for the presence

of PRDM16, PPARu, PPARa, Cidea, and UCP1

(n = 5–8 mice per group). Intensity of signals were

quantified by Image J software and presented in

the table. All samples were normalized to tubulin.

The values represent mean fold decrease ± SE

over Tyk2+/+ set as 1.

(C) Hematoxylin and eosin staining of BAT from

16-week-old Tyk2+/+ and Tyk2�/�mice (n = 4 mice

per group).

(D) Oxygen consumption rates measured for iso-

lated brown adipose tissue mitochondria are

reduced in Tyk2�/� mice. Mitochondria were

incubated under conditions described in the

Experimental Procedures section. Data represent

five separate experiments.

(E) UCP1 RNA in BAT is elevated in Tyk2+/+ but not

Tyk2�/� mice upon cold exposure. Mice were

placed at 4�C for 12 hr prior to collection of RNA

from BAT (n = 5 mice per group).

(F) Body temperatures measured with a rectal

thermometer in Tyk2+/+ and Tyk2�/� mice placed

at 4�C (n = 5 mice per group).

Data are expressed as means ± SEM. See also

Figures S3 and S4.
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amounts in SKM and liver (Figure S2A). We examined whether

changes in energy expenditure might control the levels of Tyk2

expression in tissues. C57BL/6 Tyk2+/+ mice were placed on

a high-fat diet (HFD) for 12 weeks, and Tyk2, Jak1, and Jak2

RNAs were analyzed in liver, skeletal muscle (SKM), BAT,

and WAT. Tyk2 RNA was selectively decreased in BAT and

skeletal muscles by approximately 70% in mice on a HFD

compared to those on normal chow (Figure 1D), whereas

Tyk2 RNA levels in WAT or liver were not changed. The expres-

sion of Tyk2 protein was also significantly decreased by 56%

(p < 0.05) in BAT from mice placed on a HFD (Figure S2B).

Levels of Tyk2 protein in SKM from animals on a HFD were

decreased 50% (p < 0.05). Jak1 and Jak2 RNAs were not

altered in mice placed on a HFD (Figures S2C and S2D).

Similarly to mice fed a HFD, leptin-deficient mice (ob/ob) also
816 Cell Metabolism 16, 814–824, December 5, 2012 ª2012 Elsevier Inc.
displayed decrease in Tyk2, but not

Jak1 or Jak2 RNA in BAT (Figure S2E).

We also examined the levels of Tyk2

RNA from rectus abdominus muscle

samples obtained from obese humans

with or without type II diabetes (T2D).

Tyk2 RNA levels were 57% lower in the

obese subjects and 52% lower in the

obese-diabetic subjects, when com-

pared with lean control subjects (Fig-
ure 1E). There were no differences in Jak1 or Jak2 expression

between the groups (Figure S2F).

Tyk2–/– Mice Show Abnormal BAT Development
Reduced energy expenditure in Tyk2�/� mice suggested addi-

tional abnormalities in BAT-specific gene expression in Tyk2�/�

mice. Expression of UCP1, PRDM16, and Cidea (cell death-

inducing DFFA-like effector a) was diminished in BAT isolated

from 16-week-old Tyk2�/� mice compared with wild-type ani-

mals (Figure 2A). Additionally, Tyk2�/� mice showed a defect in

the expression of b oxidation enzymes AOX (acyl-CoA oxidase)

and LCAD (long chain acyl-CoA dehydrogenase) in BAT (Fig-

ure S1D). However, RNAs that are normally highly expressed in

BAT like PPARg and PGC1a were not different between Tyk2+/+

and Tyk2�/� animals. The protein levels corresponding to these



Table 1. Reduced Gene Expression in Tyk2-Deficient Adipocytes Is Restored by Reconstitution with CAStat3 and Partially with Tyk2

Tyk2+/+ Tyk2�/� Tyk2�/� + MSCV Tyk2�/� + Tyk2 Tyk2�/� + CAStat3

UCP1 1 0.1 ± 0.03* 0.1 ± 0.04* 0.5 ± 0.1 1.3 ± 0.4

PRDM16 1 0.1 ± 0.04* 0.2 ± 0.07* 0.3 ± 0.09* 1.1 ± 0.4

Cidea 1 0.2 ± 0.07* 0.2 ± 0.07* 0.4 ± 0.2* 2.3 ± 0.6

Elovl3 1 0.3 ± 0.17* 0.5 ± 0.2* 0.6 ± 0.4* 1.5 ± 0.5

PGC1a 1 0.1 ± 0.02* 0.1 ± 0.02* 0.2 ± 0.09* 1.7 ± 0.7

PPARa 1 0.3 ± 0.1* 0.3 ± 0.04* 0.2 ± 0.08* 1.2 ± 0.6

PPARu 1 0.2 ± 0.05* 0.2 ± 0.06* 0.3 ± 0.07* 1.8 ± 0.4

MCK 1 8.4 ± 2.0* 6.3 ± 1.4* 2.7 ± 0.5 3.4 ± 0.5*

MyoD 1 7.5 ± 1.7* 10 ± 2.2* 2.9 ± 0.5 4.3 ± 0.7*

Myg 1 12 ± 2.1* 29 ± 1.3* 2.6 ± 0.2 3.5 ± 1.7*

Total RNA was isolated from in vitro differentiated adipocytes and analyzed for selected RNA levels using qPCR. The values represent mean fold

change ± SEM over Tyk2+/+ set as 1, for n = 5 independent experiments. See also Figure S4.
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RNAs were also decreased in BAT of Tyk2�/� mice (Figure 2B).

Defects in the morphology of BAT from Tyk2�/� animals were

obvious by hematoxylin and eosin staining. Tyk2�/� BAT cells

contained large unilocular fat droplets, whereas Tyk2+/+ BAT

showed multilocular fat droplets (Figure 2C).

We also examined the mitochondrial morphology of BAT from

Tyk2+/+ and Tyk2�/� mice using transmission electron micros-

copy. The mitochondria of Tyk2�/� BAT and skeletal muscle

showed disorganized cristae, but no alterations in mitochondria

morphology was observed in the heart (Figure S3A).

Mitochondrial function and ultrastructure depend on the

proper fusion of the outer and inner membranes (Zick et al.,

2009). The fusion processes are governed by three large

GTPases: mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic

atrophy protein 1 (OPA1). Mfn1 and Mfn2 are involved in early

steps of outer membrane fusion, whereas OPA1 is associated

with inner membrane fusion and cristae remodeling (Chen and

Chan, 2010). Disorganization of mitochondrial cristae observed

in BAT and skeletal muscles from Tyk2-deficient mice correlated

with decreased OPA1 expression in these tissues (Figure S3B).

Reduced mRNA levels of OPA1 were not observed in the control

tissues, such as WAT or liver. The expression levels of Mfn1 in

SKM and Mfn2 in BAT were modestly changed (Figures S3C

and S3D). It is notable that elevated expression of these RNAs

is associated with an insulin-sensitive phenotype in humans (Li-

dell et al., 2011). Since BAT and skeletal muscles originate from

the same Myf5-positive progenitor cells (Seale et al., 2008), we

conclude that Tyk2 kinase may be important at an early stage

of development of these progenitors.

To further confirm a functional defect in Tyk2�/� BAT, we per-

formed oxygen consumption assays using isolatedmitochondria

from Tyk2+/+ or Tyk2�/�BAT (Figure 2D). Compared with Tyk2+/+

mitochondria, oxygen consumption was decreased in Tyk2�/�

mitochondria when pyruvate and malate were used as

substrates for complex I activity and succinate for complex II

activity. Addition of GDP, which inhibits the activity of UCP1,

decreased O2 consumption of Tyk2+/+, but not Tyk2�/�, mito-

chondria. The addition of DNP (an uncoupler of OXPHOS)

increasedO2 consumption of Tyk2+/+ and Tyk2�/�mitochondria.

The respiratory activities of Tyk2�/� mitochondria were compa-

rable to those reported in BAT mitochondria from UCP1-defi-

cient mice (Dlasková et al., 2010).
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Since BAT plays a central role in nonshivering thermogenesis,

which maintains body temperature during cold exposure, we

examined body temperature and the induction of UCP1 in

mice exposed to 4�C for 12 hr. There was a significant induction

in UCP1 RNA in BAT in Tyk2+/+ but not in Tyk2�/� mice (Fig-

ure 2E). Body temperatures were also significantly lower in

Tyk2�/� animals (Figure 2F). The mechanisms for enhanced

sensitivity to cold in Tyk2�/� mice may be due to dysfunctional

BAT, which controls nonshivering thermogenesis and/or from

a defect in skeletal muscle that is responsible for shivering

thermogenesis.

Constitutively Active Stat3 and PRDM16 Restore
Differentiation of Tyk2–/– Brown Adipocytes
Decrease in BAT-specific RNAs was also observed in in vitro

differentiated brown preadipocytes isolated from the interscap-

ular BAT of Tyk2�/� mice (Table 1). Tyk2�/� preadipocytes did

not differentiate as indicated with oil red O staining (Figure 3A).

Tyk2�/� preadipocytes were infected with retroviruses ex-

pressing Tyk2, constitutively active Stat3 (CAStat3) or the

empty vector (MSCV) and subjected to in vitro differentiation

(Tseng et al., 2004). Cells expressing Tyk2 or CAStat3, but

not the control vector, became oil red O positive (Figure 3A).

Levels of BAT-specific RNAs were completely restored by

expression of CAStat3 and were partially restored by Tyk2

(Table 1). The explanation as to why the expression of wild-

type Tyk2 failed to completely restore BAT-specific RNAs is

not clear.

Since BAT and skeletal muscle share a common progenitor,

and PRDM16 levels are diminished in Tyk2�/� preadipocytes

(Seale et al., 2008), we analyzed expression of skeletal muscle-

specific genes. The three muscle-selective markers MCK,

MyoD, and Myg were all elevated in Tyk2�/� compared with

Tyk2+/+ preadipocytes (Table 1, lower portion). Interestingly,

the expression of CAStat3 in Tyk2�/� preadipocytes was much

less effective than Tyk2 in decreasing the levels of muscle-

specific RNAs (Table 1). These results suggest that there are

two different functions of Tyk2: One is to induce the expression

of BAT-specific genes, which is effectively accomplished by the

expression of Tyk2 or CAStat3. The other is the repression of

skeletal muscle markers, which requires Tyk2 and is poorly

restored by the expression of CAStat3.
etabolism 16, 814–824, December 5, 2012 ª2012 Elsevier Inc. 817



Figure 3. Expression of Tyk2 and Stat3

Are Required for Differentiation of Brown

Adipocytes

(A) Expression of Tyk2 or CAStat3 in immortalized

Tyk2�/� preadipocytes restores lipid accumula-

tion. Cell lines were subjected to in vitro differenti-

ation and stained with working solution of oil red O.

(B) Stat3 protein level in Tyk2+/+ preadipocytes

infected with shRNA directed against Stat3 or

a scrambled control (SCR).

(C) Amount of brown adipose tissue-specific

(UCP1, Cidea) and adipogenic (PPARg, aP2)

RNAs in Stat3 shRNA- or SCR control shRNA-

expressing adipocytes (n = 4 independent exper-

iments). Data are expressed as means ± SEM.
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UCP1 and Cidea are expressed in BAT and their expression in

brown adipocytes is regulated by DNA methylation and chro-

matin remodeling (Karamanlidis et al., 2007; Karamitri et al.,

2009; Shore et al., 2010). Using bisulphite sequencing, we deter-

mined the methylation status of the CpGs in the promoters of

UCP1 and Cidea genes. We observed hypermethylation of

DNA within these promoters in Tyk2�/� preadipocytes (Fig-

ure S4A), especially at the regions containing the C/EBPb

binding sites, which are crucial for the expression of UCP1 and

Cidea (red frames in Figure S4A). Furthermore, the abundance

of trimethylated histone H3 at lysine 4 (H3K4me3), which is

a mark of transcriptionally active chromatin, was lower in the

UCP1 and Cidea promoters in Tyk2�/� differentiated brown

adipocytes (Figures S4B and S4C). As an internal control, we

examined the abundance of H3K4me3 at the p16 promoter,

which was the same in Tyk2+/+ and Tyk2�/� preadipocytes (Fig-

ure S4D). p16 expression and methylation are not affected by

BAT differentiation.

Since CAStat3 rescues differentiation in Tyk2�/� preadipo-

cytes, we examined whether Stat3 was required for brown

adipocyte differentiation. Stable preadipocyte lineswere created

using short hairpin RNA (shRNA) directed against Stat3 or

a scrambled control (SCR). Western blot analysis showed

complete loss of Stat3 protein (Figure 3B), which correlated

with decreases in BAT-specific gene expression (UCP1, Cidea)

but not in adipogenic markers (PPARg and aP2) (Figure 3C).

The normal levels of PPARg and aP2 in these cells is consistent

with the observation that they display normal adipogenesis and

become oil red O positive (data not shown).
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PRDM16 and C/EBPb control the

conversion of myoblastic precursors to

brown adipocytes and are sufficient to

induce differentiation of fully functional

brown adipocytes from nonadipogenic

embryonic fibroblasts (Seale et al., 2008;

Seale et al., 2007). Since PRDM16 is

a master regulator of BAT development,

we tested whether its overexpression

could induce differentiation in Tyk2�/�

preadipocytes. Tyk2�/� cells were in-

fected with retroviruses expressing

PRDM16 and/or C/EBPb. PRDM16

expression increased the differentiation
of brown adipocytes as demonstrated both by oil red O staining

(Figure 4A) and gene expression (Table 2). Expression of C/EBPb

alone had no effect on differentiation of Tyk2�/� brown preadipo-

cytes (Figure 4A). However, a combination of both PRDM16 and

C/EBPb fully restored differentiation of Tyk2�/� preadipocytes to

the level observed in Tyk2+/+ cells. Furthermore, immunoprecip-

itation of PRDM16 from these cells demonstrated that endoge-

nous Stat3 formed a complex with PRDM16 (Figure 4B). We

have also detected the complex in cell extracts immunoprecipi-

tated with Stat3 (Figure 4C), as well as in adipocytes, which

express endogenous levels of PRDM16 and Stat3 (Figure 4D).

We have not observed any changes in the association of

PRDM16 and Stat3 in cells treated with rosiglitazone (data not

shown).

Stat3 Enhances Stability of PRDM16
Treatment of preadipocytes with the PPARu agonist rosiglita-

zone stabilizes PRDM16 protein (Ohno et al., 2012). Since

PRDM16 interacts with Stat3 and the expression of both is

required for differentiation of brown adipocytes, we examined

PRDM16 protein levels in Stat3+/+ and Stat3�/� preadipocytes

incubated with or without rosiglitazone, while the cells were

being differentiated (Figure 4E). Basal levels of PRDM16 protein

were very much decreased or absent in differentiated Stat3�/�

adipocytes, and rosiglitazone induction of PRDM16 was

severely blunted. We also incubated cells with or without rosigli-

tazone under nondifferentiating conditions (Figure 4F). Although

basal levels of PRDM16 were similar in Stat3+/+ and Stat3�/�

cells prior to differentiation, rosiglitazone did not increase the



Figure 4. PRDM16 and Stat3 Regulate

Differentiation of Brown Preadipocytes

(A) Oil red O staining of immortalized brown

adipocytes expressing indicated retroviral vectors

5 days after inducing adipocyte differentiation (n =

3 independent experiments).

(B) Stat3 coimmunoprecipitates with PRDM16.

Cell extracts prepared from differentiated Tyk2�/�

adipocytes expressing PRDM16 or PRDM16

and C/EBPb were immunoprecipitated with either

IgG (lanes 1 and 3) or PRDM16 (lanes 2 and 4)

antisera. The immunoblots were probed for either

PRDM16 or Stat3. Endogenous Stat3 was de-

tected in the complex with PRDM16 by western

blotting. Input is shown in the lower panels. IB,

immunoblot; IP, immunoprecipitate (n = 3 inde-

pendent experiments).

(C) The same cell extracts used in (B) were

immunoprecipitated with either IgG or Stat3 anti-

sera. The immunoblots were probed for either

PRDM16 or Stat3. Input is shown in the lower

panels (n = 3 independent experiments).

(D) Cell extracts from differentiated wild-type

brown adipocytes were immunoprecipitated with

either IgG or Stat3 antisera. The immunoblots were

probed for either PRDM16 or Stat3. Input is shown

in the lower panels (n = 2 independent experi-

ments).

(E) Stat3�/� adipocytes are insensitive to rosigli-

tazone-induced accumulation of PRDM16. Cell

lines were generated from immortalized Floxed

Stat3+/+ preadipocytes infected with a retrovirus

expressing Cre recombinase or an empty vector

control. Cell lines were differentiated in the pres-

ence or absence of rosiglitazone (1 mM). Extracts

were western blotted for the expression of

PRDM16, Stat3, and tubulin as a control for protein

loading (n = 4 independent experiments).

(F) The same Stat3+/+ and Stat3�/� cell lines were

incubated with or without rosiglitazone (1 mM) for

4 days (nondifferentiating conditions). Protein

extracts western blotted for the expression of

PRDM16, Stat3, and tubulin as a control for protein

loading (n = 3 independent experiments).

(G) Stat3 expression does not affect cellular levels

of PRDM16 RNA. Cells were exposed to rosigli-

tazone as described in C). RNA was harvested

and PRDM16 transcripts were measured by qPCR

(n = 4 independent experiments). Data are ex-

pressed as means ± SEM.
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expression of PRDM16 in Stat3�/� cells. Furthermore, expres-

sion of PPARu was not altered in Stat3�/� preadipocytes.

In contrast to levels of PRDM16 protein, as reported by Ohno

et al. (2012), levels of PRDM16 RNA were not significantly

changed in Stat3+/+ or Stat3�/� brown adipocytes with or

without exposure to rosiglitazone (Figure 4G).

Expression of Constitutively Active Stat3 in BAT
Protects Tyk2–/– Mice from Becoming Obese
To determine whether the metabolic syndrome in Tyk2�/� mice

was due to a defect in BAT development, we examined a mouse
Cell M
containing a constitutively active Stat3 transgene, whose

expression is activated by Cre recombinase (Mesaros et al.,

2008). CAStat3 mice were crossed with Tyk2�/� mice

(Tyk2�/�CAStat3). Tyk2�/�CAStat3 mice were then crossed

with aP2 Cre/Tyk2�/� mice that express Cre recombinase in

adipose tissue to generate aP2-Cre/Tyk2�/�CAStat3 mice

(Imai et al., 2001). Consistent with the results of Mesaros et al.

(2008), the transgene was expressed at physiological levels

(data not shown). All experiments were performed using Tyk2�/�

CAStat3 (controls; CTR) and animals with the activated trans-

gene aP2-Cre/Tyk2�/�CAStat3 (CAStat3), from the same litter.
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Table 2. Reconstitution of Brown Adipose Tissue-Specific Gene Expression in Tyk2–/– Preadipocytes through PRDM16 and C/EBPb

Tyk2+/+ Tyk2�/� Tyk2�/� + MSCV Tyk2�/� + PRDM16 Tyk2�/� + C/EBPb Tyk2�/� + PRDM16 + C/EBPb

UCP1 1 0.2 ± 0.09* 0.2 ± 0.1* 1.4 ± 0.35 0.1 ± 0.7* 1.1 ± 0.08

PRDM16 1 0.2 ± 0.07* 0.3 ± 0.1* 760 ± 84 0.2 ± 0.03* 1150 ± 307

Cidea 1 0.1 ± 0.03* 0.1 ± 0.03* 0.45 ± 0.1* 0.1 ± 0.04* 2.9 ± 0.3

Elovl3 1 0.2 ± 0.09* 0.2 ± 0.1* 0.2 ± 0.05* 0.3 ± 0.1* 2.1 ± 0.6

PGC1a 1 0.1 ± 0.02* 0.1 ± 0.03* 0.5 ± 0.15* 0.2 ± 0.06* 2.7 ± 0.8

PPARa 1 0.3 ± 0.2* 0.3 ± 0.2* 0.95 ± 0.15 0.4 ± 0.2* 1.0 ± 0.1

PPARu 1 0.2 ± 0.09* 0.2 ± 0.04* 0.4 ± 0.1* 0.3 ± 0.1* 1.2 ± 0.4

Total RNA was isolated from in vitro differentiated adipocytes and analyzed for selected RNA levels. The values represent mean fold change ± SEM

over Tyk2+/+ set as 1, for n = 4 independent experiments.
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As previously reported, transgenes expressed under the control

of the aP2 promoter can be variably expressed in BAT, WAT, or

both tissues (Cho et al., 2009). Expression of the CAStat3 trans-

gene preferentially in BAT of Tyk2�/�mice upregulated the levels

of BAT-specific RNAs (UCP1, PRDM16, Cidea), which are

severely diminished in Tyk2�/� animals (Figure 5A). C/EBPb,

PPARg, and PPARa, which play important roles in BAT develop-

ment, were also increased. The protein levels corresponding to

these RNAs were also increased in BAT of CAStat3 mice (Fig-

ure 5B). Furthermore, the altered BAT morphology depicted in

(Figure 2C) was restored by CAStat3 expression and resembled

the tissue in wild-type animals (Figure 5C). Tyk2�/� mice ex-

pressing CAStat3 in BAT exhibited significantly reduced body

weight in comparison to control littermates (Figure 5D). More-

over, CAStat3 mice had much lower plasma insulin levels than

control animals, suggesting improved insulin sensitivity (Fig-

ure 5E). The levels of insulin as well as body weight in the trans-

geneic mice were similar to wild-type animals (data not shown).

DISCUSSION

The data in this report provide evidence for the unanticipated role

of Tyk2 and Stat3 in the regulation of Myf5+ BAT development

and energy balance both in rodents and possibly humans.

Tyk2�/� mice provide a model to understand the role of BAT in

pathogenesis of obesity. The observations that Tyk2 RNA in

BAT and skeletal muscle is regulated by diet in rodents, and

obese humans, who also have decreased levels of Tyk2 in skel-

etal muscle, offers potential avenues for pharmacological and

nutritional intervention to treat obesity.

At the moment it is not clear whether the obese phenotype

observed in Tyk2�/� mice is only due to impaired differentiation

of BAT or whether a defect in SKM also contributes to obesity.

Since we have used global Tyk2 knock out animals for these

studies, it is also possible that the changes in overall metabolism

are a result of a multiple defects in more than one tissue. The fact

that the CAStat3 transgene expressed in BAT of Tyk2�/� mice

restores a normal phenotype argues that the actions of Stat3

do not required its activation in SKM. These results also argue

against the concept that a defect in many tissues in the Tyk2�/�

mouse is required for the development of obesity. It remains to

be determinedwhether the actions of Tyk2 aremediated through

Stat3 and/or another signaling pathway.

White and brown adipocytes are derived from mesenchymal

stem cells. Interscapular BAT shares a common lineage with
820 Cell Metabolism 16, 814–824, December 5, 2012 ª2012 Elsevier
Myf5+ muscle progenitors, while brown adipocyte-like cells

distributed within subcutaneous WAT and skeletal muscle have

a different lineage (Schulz et al., 2011). Recent studies indicate

that this model is more complex in that mixtures of Myf5+ and

Myf5– cells are present in WAT (Sanchez-Gurmaches et al.,

2012). Differentiation of Myf5+ progenitors into brown preadipo-

cytes requires the expression of PRDM16. Our results suggest

that Tyk2 and Stat3 are required for the progression of differen-

tiation-incompetent preadipocytes to committed differentiation-

competent brown preadipocytes such that PRDM16, C/EBPb,

Stat3, and other transcription factors can induce differentiation.

It remains to be determined, whether Tyk2 and Stat3 directly or

indirectly mediate the expression of BAT-selective RNAs. The

fact that the DNA in the promoters of UCP1 and Cidea are hyper-

methylated in Tyk2�/� preadipocytes, and markers of the abun-

dance of trimethylated histone H3 at lysine 4 (H3K4me3) are

decreased is consistent with an effect of Tyk2 on chromatin

modeling.

This leads us to speculate that the role of Tyk2 in differentiation

of BAT is to directly or indirectly facilitate chromatin remodeling

and accessibility. A nuclear-localized pool of the related kinase

Jak2 phosphorylates histone H3 (Dawson et al., 2009). It is

notable that Tyk2 also localizes to the nucleus (Ragimbeau

et al., 2001). It is thus possible that the actions of Tyk2 are unre-

lated to those of Stat3 and classic cytokine activation of the

Jak/Stat pathway. An alternative or additional role of Tyk2 might

be to modify Stat3 such that in combination with PRDM16 and

C/EBPb it induces the expression of BAT-specific genes. Under

this scenario, CAStat3 would be modified in the absence of Tyk2

such that it can induce differentiation of Tyk2�/� preadipocytes.

Tyrosine phosphorylation of Stat3 probably is not the modifica-

tion of this protein mediated by Tyk2 because both basal levels

of tyrosine phosphorylated Stat3 in preadipocytes, and tyrosine

phosphorylated Stat3 during differentiation are not different

between Tyk2�/� and Tyk2+/+ cells (data not shown). Acetylation

and methylation have been reported to modify Stat3 and

contribute to the effects of Stat3 in gluconeogenesis (Nie et al.,

2009; Yang et al., 2010).

In contrast to the ability of CAStat3 to induce BAT-specific

gene expression, CAStat3 does not substitute for wild-type

Tyk2 in repressing the expression of muscle specific genes

during differentiation of preadipocytes (Table 1). Disrupted

expression of Stat3 in Tyk2+/+ preadipocytes diminished BAT-

selective gene expression, indicates that this transcription factor

plays an essential role in two stages of BAT development: the
Inc.



Figure 5. Expression of CAStat3 in BAT Reverses Obesity in Tyk2–/– Mice

(A) The BAT-specific RNA levels (UCP1, PRDM16, Cidea) and highly expressed BAT RNA expression (PPARg, C/EBPb, PPARa) are restored in tissue from

Tyk2�/� mice that express the CAStat3 transgene. Total RNA was isolated from interscapular BAT of 12 week old mice (n = 6–8 mice per group).

(B) The amounts of BAT-enriched proteins are increased in CAStat3 mice. Cell extracts from BAT of individual control (CTR) and CAStat3 mice were analyzed by

western blotting for the presence of PRDM16, PPARa, PPARu, Cidea, and UCP1 (n = 6–8mice per group). Intensity of signals were quantified by Image J software

and presented in the table. All samples were normalized to tubulin. The values represent mean fold increase ± SE over CTR mice set as 1.

(C) Hematoxylin and eosin staining staining of interscapular BAT from 12-week-old CTR and CAStat3-expressing mice (n = 5 mice per group).

(D) Body weight of 24-week-old CAStat3 and control mice fed a regular chow diet (n = 10–12 mice per group).

(E) Fasted plasma insulin levels of 24-week-old control and CAStat3-expressing mice (n = 10–12 mice per group).

Data are expressed as means ± SEM.
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progression of differentiation-incompetent to differentiation-

competent preadipocytes and the development of differentia-

tion-competent adipocytes into mature brown adipocytes. At

the moment it is not clear whether progression from differentia-

tion-competent to mature brown adipocytes requires Tyk2.

The expression of CAStat3 in BAT of Tyk2�/� mice is consis-

tent with the results in cell culture models. However, the aP2
Cell M
Cre promoter used to express CAStat3 in Tyk2�/� mice is also

expressed in macrophages and brain, leaving the possibility

that these tissues may also be involved in the obese phenotype

(Klöting et al., 2008; Mao et al., 1993; Urs et al., 2006). We have

not detected expression of CAStat3 in macrophages indicating

that they do not contribute to the actions of CAStat3 in prevent-

ing the development of obesity. We have not examined, whether
etabolism 16, 814–824, December 5, 2012 ª2012 Elsevier Inc. 821
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CAStat3 mice express the transgene in brain. However, if CA-

Stat3 expression in the brain is contributing to the prevention

of obesity, thenwewould expect to see changes in themetabolic

profile of mice that express CAStat3 only in WAT and brain. The

limited numbers of animals that express CAStat3 only in WAT

that have been examined, display the same phenotype as

Tyk2�/� mice. These results suggest that it is unlikely that

expression of CAStat3 in the brain is contributing to the obesity

observed in Tyk2�/� mice.

The observation that rosiglitazone-induced stabilization of

PRDM16 protein is absent in Stat3�/� brown preadipocytes

under conditions, where there is no change in levels of

PRDM16 RNA suggests another mechanism of Stat3 action.

We have examined whether the expression of Stat3 controls

the rate of degradation of PRDM16 by treating cells with cyclo-

heximide (Ohno et al., 2012). There were no changes in half life

of PRDM16 protein in Stat3�/� compared to Stat3+/+ preadipo-

cytes, suggesting that in these cells the rate of translation of

PRDM16 is being influenced by the presence of Stat3.

However, these results are ambiguous because the endoge-

nous levels of PRDM16 are very low in Stat3�/� cells, which

makes it very difficult to analyze rates of decay of the protein.

Stat3 may directly stabilize PRDM16 protein, presumably by

their direct interaction (Figures 4B–4D). Alternatively, Stat3

may regulate the expression of RNAs that encode proteins

involved in stability of PRDM16. Since PRDM16 is destabilized

through the ubiquitin (Ub)-proteasome targeting system, this

complex is also a potential target of Stat3. In renal cancer cells

Stat3 has been reported to bind and stabilize HIF1a but the

physiological consequences of this interaction need to be clar-

ified (Jung et al., 2005).

Further characterization of the mechanisms by which Tyk2

and Stat3 regulate brown fat development in animal models

and a better understanding of the signaling cascade governed

by these proteins will help design screens for different targets

to treat obesity and the metabolic syndrome.
EXPERIMENTAL PROCEDURES

Subjects

Ten lean controls (four men, six women; average age, 45.3 ± 2.8), 15 obese

(three men, 12 women; average age, 36 ± 2.1) and 12 obese type 2 diabetic

(eight men, four women; average age, 49.3 ± 1.4) individuals participated in

this study. Obese and obese type 2 diabetic patients were undergoing lapa-

roscopically performed adjustable gastric banding surgery, as previously

described (O’Brien et al., 2005). None of the patients were under thiazolidine-

dione but some of them under insulin treatment. Lean patients were under-

going general abdominal surgical procedures unrelated to obesity or type 2

diabetes. The subject details have been published previously (Russell

et al., 2012). Written informed consent was obtained from all subjects. This

study was approved by the Deakin University Human Ethics Research

Committee, The Avenue Hospital and Cabrini Hospital. Muscle samples

(about 200 mg) were obtained from the rectus abdominus in the fasted state

(8–18 hr). All participants were under general anesthesia, predominantly via

short-acting propofol and maintained by a fentanyl, rocuronium and volatile

anesthesia mixture. Following collection, which was performed 30 min after

the operation had started, surgical samples were immediately frozen in liquid

nitrogen.

Statistical analysis was performed using SPSS version 15.0. A one-way

analysis of variance (ANOVA) followed by LSD or Dunnett’s T3 post hoc

test was used (where equal variances were not assumed) to determine the

significance of differences between groups. Significance was set at p < 0.05.
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Animals

All the mice were bred and maintained in the MCV/VCU animal facility accord-

ing to Institutional Animal Care and Use Committee (IACUC) regulations. Male

mice were used for these studies. Tyk2-deficient mice (C57BL/6) were kindly

provided by Dr. Ana Gamero (Temple University School of Medicine, Philadel-

phia, USA). Tyk2�/� (SV129) were generated by Dr. Kazuya Shimoda and

colleagues (Kyushu University, Fukuoka, Japan) (Shimoda et al., 2000). Mice

carrying a transgene encoding a constitutively active form of the Stat3 protein

(CAStat3) including an upstream loxP- flanked stop sequence in the ubiqui-

tously expressed Rosa26 locuswere a kind gift of Dr. Klaus Rajewsky (Harvard

Medical School, Boston, MA) (Mesaros et al., 2008). The Tyk2�/� mice ex-

pressing the constitutively active Stat3 only in BAT (brown adipose tissue) or

WAT (white adipose tissue) were obtained by crossing CAStat3 transgenic

animals with mice expressing the Cre recombinase under control of the aP2

promoter, allowing adipocyte-specific expression of Cre. Both transgenic lines

(CAStat3 and aP2-Cre) were bred with Tyk2�/� mice and then intercrossed.

Only animals from the same mixed background strain generation were

compared. The specificity of transgene expression was confirmed by quanti-

tative PCR (qPCR). Mice carrying floxed alleles of Stat3 were kindly provided

by Dr. Valeria Poli (University of Turin, Turin, Italy).

Cell Culture

Interscapular brown adipose tissue was isolated from newborn Tyk2+/+ and

Tyk2�/� mice, minced and subjected to collagenase A digestion (1.5 mg/ml

in isolation buffer containing 123 mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 5 mM

glucose, 100 mM HEPES, and 4% BSA) for 40 min at 37�C (Fasshauer et al.,

2000). Collected cells were centrifuged at 1,500 rpm at room temperature

for 5 min and then resuspended in 1 ml primary culture medium (Dulbecco’s

modified Eagle medium, 4,500 mg/liter glucose GIBCO, Carlsbad, CA) con-

taining 20% FBS, 20 mMHEPES, and 1% penicillin-streptomycin), transferred

into 12-well plates and grown in a humidified atmosphere of 5% CO2 and 95%

O2 at 37�C. After 3 days of culture, cells were immortalized by infection

with puromycin resistance retroviral vector pBabe encoding SV40 Large T

antigen. Twenty-four hours after infection cells were split into 10 cm dishes

and maintained in primary culture media for the next 24 hr and then subjected

to selection with puromycin at a concentration of 2 mg/ml in DMEM with 20%

FBS for one week.

For differentiation, brown preadipocytes were grown to 100% confluence in

the differentiation medium: DMEM containing 4500 mg/liter glucose, 10%

FBS, 20 nM insulin, and 1 nM triiodothyronine. Fully confluent cells were incu-

bated for 48 hr in differentiation medium supplemented with 0.5 mM isobutyl-

methylxanthine (IMBX), 0.5 mM dexamethasone and 0.125 mM indomethacin

(induction medium). After 48 hr of induction, cells were maintained in differen-

tiation medium for 5 days.

Dietary Studies

Five-week-old mice were housed four or five per cage and maintained on

a fixed 12 hr light/dark cycle. The animals were fed regular chow diet (Teklad

F6 S664, Harlan Tekland, Madison, WT) or high-fat diet (D12330, Research

Diets, New Brunswick, NJ). The chow diet contained 27% kcal protein, 17%

kcal fat, and 57% kcal carbohydrate. The high-fat diet contained 20% kcal

protein, 60% kcal fat, and 20% kcal carbohydrate. The mice were kept on

the diets for 12 weeks. They had free access to water and food.

Glucose Tolerance Test

Micewere fasted overnight (16 hr), and then 2mg/g glucose was injected intra-

peritoneally. Blood glucose levels were measured using a One-Touch Ultra

glucometer (LifeScan, Milpitas, CA) at 0, 15, 30, 60, and 120 min after glucose

administration.

Biochemical Analysis

Mice were fasted overnight (16 hr). Blood samples were collected perfor-

mance of heart punctures. Plasma samples were obtained by centrifuging

blood in Microtainer plasma separator tubes (Becton Dickinson, Franklin

Lakes, NJ). Plasma was assayed for insulin with an ultra sensitive mouse

insulin ELISA kit (Crystal Chem, Downers Grove, IL). The measurements of

blood cholesterol, b-hydroxybutyrate, FFA and triglycerides were performed

by the Cincinnati Mouse Metabolic Phenotyping Center (MMPC).
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Mitochondrial Preparation

Brown adipose tissue mitochondria were prepared as described previously

(Shabalina et al., 2004). In brief, four Tyk2+/+ and/or Tyk2�/� mice were sacri-

ficed for each experiment. The interscapular brown adipose tissue depots

were dissected out, cleaned from white adipose tissue and pooled in ice-

cold isolation buffer (250 mM sucrose, 10 mM Tris-HCl, 1 mM EDTA, and

0.2% defatted BSA). The tissue was kept at 4�C throughout the isolation

process. The tissue was minced with scissors, homogenized in a glass

homogenizer with Teflon pestle, and centrifuged 8,500 3 g for 10 min. The

supernatant containing fat layer was discarded. The pellet was resuspended

in isolation buffer and centrifuged at 500 3 g for 10 min. The resulting super-

natant was transferred to a clean tube and centrifuged again at 8500 3 g for

10 min. The mitochondrial pellet was resuspended in KME buffer at pH 7.4

(100mMKCl, 50mMMOPS, 0.5mMEGTA) and usedwithin 4 hr after isolation.

The protein concentration was measured with the Lowry method (with BSA as

a standard and sodium deoxycholate as a detergent) (Lowry et al., 1951).

Oxygen Consumption

Oxygen consumption was measured with a Clark-type oxygen electrode

(Strathkelvin Instruments, North Lanarkshire, UK) at 30�C in respiration buffer

at pH 7.4 (100 mM KCl, 50 mMMOPS, 1 mM EGTA, 5 mM KH2PO4, and 0.1%

defatted BSA). The mitochondrial suspension was continuously stirred in the

chambers with magnetic stirrers. Oxygen consumption rates were measures

in the presence of the substrate of interest: for complex I (5 mM pyruvate

plus 5 mM malate), for complex II (20 mM succinate with 7.5 mM rotenone).

Subsequently, 1 mM GDP and 0.2 mM dinitrophenol (DNP) were added.

Measurement of Energy Expenditure by Indirect Calorimetry

Metabolic rates were measured by indirect calorimetry in Tyk2+/+ and Tyk2�/�

mice by using an eight-chamber open-circuit Oxymax system (CLAMS,

Columbus Instruments, Columbus, OH) at Mouse Metabolic Phenotyping

Center in the Case Western Reserve University (Cleveland, Ohio). In brief,

mice were individually housed in acrylic calorimeter chambers through which

air of known O2 concentration was passed at a constant flow rate. The system

automatically withdrew gas samples from each chamber hourly for 24 hr. The

system then calculated the volume of O2 consumed (VO2) and CO2 generated

(VCO2) for each mouse in 1 hr normalized by lean body mass. Body

composition of unanesthetized mice was measured by quantitative magnetic

resonance imaging with EchoMRI (Echo Medical Systems, Houston, TX) as

previously described (Lo et al., 2008). The RQ, ratio of the VCO2 to VO2, was

calculated. Heat expenditures were measured throughout the study in light

and dark cycles and under fed and fasting conditions and are represented in

kcal/g/day. Mice were maintained at 25�C and had free access to water under

all conditions.

RNA Extraction and Real-Time qPCR

Total RNA was isolated with TRI Reagent (Molecular Research, Cincinnati,

OH), according to the manufacturer’s instructions. Isolated RNA samples

were treated with DNase (Promega, Madison, WI), Complementary DNA

(cDNA) was synthesized from 2 mgRNAwith the Tetro cDNASynthesis Kit (Bio-

line, Taunton, MA), real-time qPCR was performed with the SensiMix SYBR

and Fluorescein Kit (Bioline, Taunton, MA) according to manufacturer’s

instruction. All the samples were assayed in duplicates and analyzed

with a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA).

Table S2 contains a full list of the primer sequences. Primers for Tyk2, Jak1,

Jak2, OPA1, Mfn1, and Mfn2 were purchased from SuperArray (QIAGEN

SABioscience, Frederick, MD).

Bisulfite Sequencing

Genomic DNA (1.5 mg) was converted with the EZ DNA methylation kit

(Zymo Research, Orange, CA) according to the supplier’s instructions. The

treated DNA was amplified by PCR with the bisulfite-specific primers listed

in Table S3. The amplification conditions for the 830 bp (Cidea promoter)

and 730 bp (UCP1 promoter) DNA fragments were as follows: stage 1,

95�C/3 min/1 cycle; stage 2, 95�C/1 min/55�C/1 min/73�C/1 min/40 cycles;

stage 3, 73�C/5 min/1 cycle. PCR products were cloned into the pCR2.1-

TOPO vector (Invitrogen, Carlsbad, CA), and eight to 15 clones for each

were picked and sequenced.
Cell M
Chromatin Immunoprecipitation Assay

Immortalized Tyk2+/+ and Tyk2�/� differentiated adipocytes were crosslinked

with 1% formaldehyde for 10 min at 37�C and then washed with ice-cold PBS

containing 125 mM glycine and 1 mM PMSF. Chromatin was sonicated and

immunoprecipitated with specific antibodies exactly as described in the

chromatin immunoprecipitation (ChIP) protocol provided by Upstate (Charlot-

tesville, VA). The following antibodies were used: ChIPAb+ Trimethyl-Histone

H3 (Lys4) from Milipore. The primers used in qPCR are listed in Table S4.

Statistical Analysis

Results are presented as the mean ± SEM. Statistical comparison was per-

formed with a two-tailed Student’s t test. While interpreting the data results

a p value less than 0.05 was considered statistically significant and annotated

by an asterisk.
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