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a b s t r a c t

We consider job scheduling on a flow-line production system, which covers a wide range
of real-world manufacturing situations from plastic molding, steel milling to machine
maintenance, and the service industry, where the duration of a task performed on a job
is an arbitrary monotone non-decreasing function of the time the job has spent in the
system. Ourmodel is set in a deterministic environment with the initial conditions (i.e., job
release times rj) as decision variables (determined by the parameters γ1, γ2, . . . , γn, which
control the time elapsed since the first machine becomes available). The main feature of
the problem to minimize the sum of weighted completion times – as compared to, say,
the problem to minimize the makespan considered earlier (Wagneur and Sriskandarajah
(1993) [23]) – is that its solution depends on the rate of growth of the processing time
functions. We confine our study to the two-machine case for the sake of simplicity. We
derive a closed-form formula for the optimal job release times for a finite set of jobs. This
result also applies to the problem to minimize the flow time as a special case.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The state dependent scheduling problems have received some attention in the literature after Callahan [6] and Buzacott
and Callahan [5], who consider a tandem soaking pits-rollingmill in steelmilling in a stochastic environment. In [4], queuing
theory is applied for the determination of an efficient queue service policy for a service unit where the service time of a
customer depends on the length of time he has waited. A few years later, Melnikov and Shafransky [18] devise an O(n log n)
algorithm to solve the single-machineminimummakespan problemwith affine processing time functions, i.e. pj = aj+f (t),
where f is an arbitrary function. The case where f is non-decreasing is studied by Gupta [12] for the scheduling of heating
treatment of parts in a furnace. Here the state of a part corresponds to its temperature.

In [17], Kubiak and Van de Velde study the single-machine minimum makespan scheduling problem. They show that
when the processing time of job j grows by wj with each time unit its release is delayed beyond a common critical date d,
then the scheduling problem is NP-hard. They devise a pseudopolynomial algorithm for this problem.

The two-machine case was considered in Sriskandarajah and Wagneur [21] for the minimum makespan problem. As
soon as the first machine becomes available, the decision maker has to decide whether to release the next job, or to differ
its release until the job will not have to wait between the machines (the no-wait case), or else to opt for a compromise
between these extreme policies. The minimummakespan (Cmax) scheduling problem in the case where the processing time
of a job is an affine function of the time elapsed since its release to the shop is shown to be NP-hard in the strong sense. The
scheduling problemmay be decomposed into two steps. In the first step, the release times of the jobs are optimized for any
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given schedule. Then ordinary scheduling techniques (such as the well-known Johnson’s rule [16]) can be used. A closed-
form solution for the optimal release was proposed in [22] for the two-machineminimummakespan problem, when the job
processing times (the penalty functions) are affine functions of the time that jobs have spent in the shop. This solution was
generalized in [23] to them-machines permutation flow shop with n jobs and arbitrary non-decreasing processing penalty
functions.

This problemhas also been considered by Finke and Jiang (cf [9]). The approach has been extended to treat algorithmically
the total completion time problem, i.e.,

∑
Cj by Oulamara in [20]. This is generalized here to the minimum weighted total

completion time (
∑

wjCj) problem on the one hand, and to the formulation of a closed-form solution on the other hand.
Also, we consider arbitrary non-decreasing penalty functions.

Variants of the original problemwith various objective functions have been dealt with bymany researchers, in particular,
for single-machine problems. Gawiejnowicz and Pankowska [11] devise two polynomial time algorithms for the minimum
makespan problem with linear increasing processing time functions of job starting times. Janiak and Bachman [13] show
that the single-machinemaximum latenessminimization problemwith linear deteriorating jobs is NP-hard, then they prove
in [2] the strongNP-hardness of theminimummakespan problem for two differentmodels of job processing times. Bachman
et al. [3] prove that theminimumweighted sumof completion times problem is NP-hard. Janiak andKovalyov [14] show that
theminimummakespan problemwith arbitrary job release times is strongly NP-hardwith strongly increasing functions, the
maximum latenessminimization problemwith decreasing functions is strongly NP-hard, and the total weighted completion
time minimization problem is ordinary NP-hard.

Another approach whereby jobs start deteriorating simultaneously at the same time has also been considered in the
literature. In this simpler approach, a job is released as soon as the firstmachine becomes available. In [19],Mosheiov devises
polynomial algorithms for the two-machine flow shop and open shop, i.e., F2 and O2, respectively, to minimize makespan
(Cmax), and the corresponding three-machine F3 and O3 problems are shown to be NP-hard. This type of deteriorating
jobs is also considered by Chen [7] in an environment with parallel machines. The approach considered here is well-
suited to maintenance operations (think for example of aircraft maintenance) since, for any given sequence of maintenance
operations, the longer themaintenance is delayed, the longer it takes to perform it. As a consequence, maintenancewill take
more time on the next machine, which further delays the next maintenance operations. The

∑
Cj (or

∑
wjCj) criterion will

ensure a better utilization of the resources used for maintenance.
The interested reader will find a review and some extensions of such problems in [1,8]. Also, two chapters of the book

by Janiak (Chapters 2 and 3 of [15]) are dedicated to scheduling problems related to deteriorating jobs, and the recent book
by Gawiejnowicz [10] provide a more recent update of the literature on the topic.

This paper is organized as follows: in Section 2 we formulate the model, introduce the notation, and briefly recall the
results of Wagneur and Sriskandarajah [23], which will be used in the sequel. We introduce two examples and compute
the optimal release times for the Cmax criterion, for both the wait and no-wait cases. Then in Section 3, we derive and
prove the results for the

∑
wjCj problem. The examples in Section 2 are revisited, and the optimal sequences for the∑

Cj,
∑

wjCj, Cmax, and no-wait cases are compared.

2. The shop model, notation and preliminary results

We recall here the model and the results developed in Wagneur and Sriskandarajah [23], to which we refer the reader
for details. The notation, formulas, and propositions will be used in the sequel.

Let J = {1, . . . , n} and K = {1, 2} stand for the sets of jobs and machines, respectively. Each job must be processed
consecutively by the two machines. We restrict here to permutation schedules, with 1, . . . , n the sequence of processing
the jobs on both machines. We assume unlimited storage capacity between the machines.

The notation follows the main scheduling literature: the first subscript refers to a job, and the second to a machine. For
instance, Cjk stands for the completion time of job j on machine k = 1, 2, and rj is a decision variable, which stands for the
release time of job j. The start time is assumed to be 0, this is the date when all the jobs are ready. Since withholding the
first job would induce unnecessary delay, this is also the release time of the first job and job j may be released at any time
rj ≥ 0.

We write xj,k for the time elapsed between job j’s release time rj and its starting time on machine k. Then gj,k(xj,k) stands
for the processing time function of job j on machine k. We assume that for j = 1, . . . , n, k = 1, 2, gj,k is continuous and
non-decreasing.

Our assumptions are summarized in the following:

• A1. The release of the jobs can be delayed at no cost.
• A2. Storage between the machines is unlimited.
• A3. The processing sequence is the same on all the machines.
• A4. For j = 1, . . . , n, k = 1, 2, gj,k is a non-decreasing continuous function of xjk with a constant growth rate.

We have:
rj+1 ≥ rj + gj,1(xj1), j = 1, . . . , n − 1, and since jobs never wait for machine 1:
xj,1 = 0, ∀ j ∈ J . Set tj,1 = gj,1(0), j = 1, . . . , n.
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Fig. 1. Policies for the release of jobs to the shop.

The decision variable γj associated with job j consists in withholding this job after machine 1 becomes available. Our
control variable γj+1 is then defined by:

rj+1 = rj + tj,1 + γj+1, j = 1, . . . , n − 1.

The problem consists in choosing the decision variable γj+1 optimally in the interval [0,max{0, gj,2(xj,2) − tj+1,1}], whose
right bound depends on the choice of γj.

Since machine 1 remains idle for this period of time, γj+1 also corresponds to the idle time of machine 1 between the
processing of jobs j and j + 1, and

rj+1 = rj + tj,1 + γj+1 =

j−
i=1

(ti,1 + γi+1), j = 1, . . . , n − 1.

Since job 1 never waits (δ1 = 0), the release of job 1 is never delayed, i.e., we have γ1 = 0 for the optimal policy.
Let δj stand for the waiting time of job j between the two machines.
The dynamics of the system is governed by the following recursive formulas:

xj,1 = 0, Cj,1 = rj + tj,1, j ∈ J, C1,2 = x1,2 + g1,2(x1,2). (2.1)

δj = max{0, Cj−1,2 − Cj,1}, j = 2, . . . , n. (2.2)

xj,2 = tj,1 + δj, j = 2, . . . , n. (2.3)

Cj = Cj,2 = rj + xj,2 + gj,2(xj,2), j = 2, . . . , n. (2.4)

The maps γ(j) = (γ1, . . . , γj) → xj,k are well defined for all j = 2, . . . , n, k = 1, 2, and so are the maps (γ1, . . . , γj) → Cj.

Hence, for any given regular performance criterion Rn P
−→ R+, γ → P(γ ) = P(C1(γ ), . . . , Cn(γ )), we associate with it the

following control problem:
Control problem

For any sequence σ ∈ Sn, find a control vector γ (σ ) = (γ2(σ ), . . . , γn(σ )) ∈ Rn−1 that optimizes the criterion P .
We first study the optimal control problem for the no-wait case, i.e., the control γ o associated with δj = 0, j = 1, . . . , n,

which will be the basis of a renormalization of the functions and variables.
The three policies for the release of jobs, namely ‘‘earliest release’’, ‘‘no-wait’’, and ‘‘optimal control’’, are illustrated in

Fig. 1.

2.1. The no-wait case

The no-wait case is characterized by: δj = 0, ∀ j ∈ J , with γ o being the optimal control vector corresponding to this case.
Since by (2.3), we have ∀ j ∈ J, xj,2(γ o

j ) = tj,1, we let tj,2 = gj,2(tj,1), j ∈ J .
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Note that tj,2’s are independent of the schedule. We call them intrinsic processing times, and since a job may be released
alone to the shop, we assume that they are known for every job.

The results on this case (except for Proposition 3) for the two-machine flow shop for any given (deterministic) sequence
can be found in [22]. We have:

Proposition 1. For any regular performance criterion, the optimal no-wait control is given by:

γ o
j = max{0, tj−1,2 − tj,1}, j = 2, . . . , n. � (2.1.1)

By Proposition 1, and [21], Cmax(γ
o) and

∑
wjCj(γ

o) correspond to the classical F2|no wait|Cmax and F2|no wait|
∑

wjCj
solutions, respectively.

Proposition 2. We have

Cmax(γ
o) = Cn(γ

o) =

n−
j=1

tj,1 +

n−
j=2

γ o
j + tn,2

= t1,1 + tn,2 +

n−
j=2

max{tj,1, tj−1,2}. � (2.1.2)

LetWj =
∑n

i=j wj.
By Proposition 2, we have:

Cj(γ
o) = t1,1 + tj,2 +

j−
i=2

(max{ti,1, ti−1,2}), j = 2, . . . , n;

hence
n−

j=1

wjCj(γ
o) = w1(t1,1 + t1,2) +

n−
j=2

wj


t1,1 + tj,2 +

j−
i=2

max{ti,1, ti−1,2}



=

n−
j=1

Wjtj,1 +

n−
j=1

wjtj,2 +

n−
j=2

Wj max{tj,1, tj−1,2}.

So we have the following statement:

Proposition 3. For the weighted sum of completion times, we have:

n−
j=1

wjCj(γ
o) = W1t1,1 +

n−
j=1

wjtj,2 +

n−
j=2

Wj max{tj,1, tj−1,2}. (2.1.3)

2.2. Processing times as functions of waiting times

The no-wait solution is not optimal in general because it creates machine idle times, which could be used efficiently for
the (increased) processing times eventually arising from earlier release times. In fact, the optimal γj’s are such that all the
available idle time on machine 2 is completely utilized. This idea, which was explained in detail in [22] for the problem
F2|deteriorating jobs, linear functions|Cmax, and in [23] for the problem

Fm|deteriorating jobs continuous non − decreasing functions|Cmax,

was used in [9] and in [20] for the design of an algorithm for an optimal placement of the jobs for the Cmax and
∑

Cj problems,
respectively. Our closed-form formulas for the

∑
wjCj problem yield the optimal solution more efficiently.

Note that waiting time δj induces an increase in state xj,2 and in processing time gj,2(xj,2). This will increase Cj, and
therefore, eventually also the waiting time δj+1 of the next job, and so on. Thus, in the general case, there should be a trade-
off between machine idle times and job waiting times.

The processing time functions fj(·) depend on the waiting times δj:

fj(δj) = gj,2(xj,2) − tj,2, j = 2, . . . , n (2.2.1)

∀j ≥ 2, fj:R+
→ R+ is a non-decreasing continuous function satisfying fj(0) = 0.

The extended penalty functions Fj() are then defined by:

Fj(δj) = δj + fj(δj), j = 2, . . . , n. (2.2.2)
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The completion times are given by:

Cj =

j−
i=1

ti,1 +

j−
i=2

γi + tj,2 + Fj(δj), j = 1, . . . , n, (2.2.3)

and the differences Cj−1 − Cj,1 by:

tj−1,2 − tj,1 + Fj−1(δj−1) − γj, j = 2, . . . , n. (2.2.4)

Then (2.2) becomes:

δj = max

0, tj−1,2 − tj,1 + Fj−1(δj−1) − γj


, j = 2, . . . , n. (2.2.5)

For all j fj is a monotone non-decreasing functions of δj, and Fj(x) = x + fj(x) ⇒
F(x+h)−F(x)

h = 1 +
f (x+h)−f (x)

h ≥ 1 (where
h is small). Hence F(δj) is an increasing function of δj, which increases at least as fast as the identity mapping ı, thus it is a
decreasing function of γj, which decreases at least as fast as−ı. Also, for a, b ≥ 0, we have Fj(max{a, b}) = max{Fj(a), Fj(b)},
and similarly for the min operator. Moreover, its inverse F−1

j exists on R+, and since Fj(0) = 0 and F−1
j (0) = 0, it may be

extended to the whole of R by:

F−1
j (x) = F−1

j (max{0, x}) ∀ x ∈ R, j = 2, . . . , n. (2.2.6)

We have the following key statement:

Lemma 2.2.7 (Wagneur and Sriskandarajah [23]). Let G(x) = max{0, ω + F(max{0, u− x})}, with F(0) = 0, and F−1(x) = 0,
for all x ≤ 0, then argminx≥0


x + G(x)


= argminx≥0 G(x), x∗

= argminx≥0 G(x) = max{0, u − F−1(−ω)}, and
G(x∗) = max{0, ω}.

2.3. The minimum makespan problem with two machines

We briefly recall and adapt to the casem = 2 the results of Wagneur and Sriskandarajah [23] for the makespan problem.
The optimal control γ C

j for this problem will then be shown to be a lower bound for the optimal control γ ∗

j , for the
∑

wjCj
(Proposition 5). They are necessary for the computation in the next Section 2.4.Moreover, the development in this subsection
will help the reader to follow themain idea of the proof of Theorem1 in Section 3. For j = 2, . . . , n, wewrite tj−1,2−tj,1 = αj.

The problem with two machines may be written as:

min
γ≥0

Cn =

n−
j=1

tj,1 + tn,2 + min
γ≥0


n−

j=2

γi + Fn(δn)


. (2.3.1)

Up to constant terms, problem (2.3.1) may be re-written as:

min
γ2≥0


γ2 + min

γ3≥0


γ3 + (· · · + min

γn≥0
(γn + Fn(δn)) · · ·)


. (2.3.2)

(2.3.2) is solved by backward induction, starting with minγn≥0(γn + Fn(δn)). It is easy to see (cf. [23]) that all the steps of the
backward induction for (2.3.2) yield a function γj satisfying the conditions of the map G in the Lemma 2.2.7. The sequence
of βj’s is defined inductively by:

βn = αn, βj = αj − F−1
j+1(−βj+1). (2.3.3)

We have the following statement.

Proposition 4 ([23]). The optimal control for the Cmax problem is given by:

γ C
j = max{0, βj}, j = 2, . . . , n. � (2.3.4)

We refer the reader to [23] for the generalization of Proposition 4 to m machines and for interpretation of the optimal
control γ C

j .
We show below how the approach can be generalized to the case of minimizing

∑
wjCj. However, as will be seen, we

will have to take into account the growth rate of the functions wjFj and wjFj + wj+1Fj+1 ◦ Fj.
In the next sectionwe compute the optimal controls γ o

j and γ C
j for two examples. The computationwill then be compared

with the optimal γ ∗

j for the
∑

wjCj problem, with the same examples, and some choices of the weights for the completion
times.
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2.4. Examples

We write H2(γ ) for the variable cost of
∑

wjCj.

2.4.1
There are five jobs, with intrinsic processing times given by:


1 4 3 4 5
6 4 1 2 3


. The functions fj are all the same and

are given by a linear function: f (x) = 2x. Then F(x) = (1 + a)x = 3x, and b = 3, b−1
=

1
3 . Also let w1 = 2, w2 = 5,

w3 = 2, w4 = 1, w5 = 3. Then W2 = 11,W3 = 6,W4 = 4,W5 = 3, and βo
5 = −3, βo

4 = −3, βo
3 = 1, βo

2 = 2.
The no-wait policy is given by: γ o

5 = 0, γ o
4 = 0, γ o

3 = 1, γ o
2 = 2, and H2(γ

o) = 28.
With the Cmax policy, we have:
γ5 = max{0, α5+F4(δ4)} = max{0, −3+F4(δ4)} ⇒ F4(δ4) = 3, and γ C

5 = 0, β1
4 = −3, and γ4 = max{0, β1

4 +F3(δ3)} =

max{0, −3+ F3(δ3)} ⇒ F3(δ3) = 3, and γ C
4 = 0, β2

3 = −
1
3 , γ3 = max{0, β2

3 + F2(δ2)} = max{0, − 1
3 + F2(δ2)} ⇒ F2(δ2) =

1
3 , and γ C

3 = 0, β3
2 =

17
9 , and γ2 = max{0, β3

2 } =
17
9 , with δ2 = 0. Then, with this policy, we have H2(γ

C ) = 31 4
9 .

2.4.2
Let the processing times be given by


2 2 4 4 5
6 3 3 1 3


, with the fj linear functions given by a2 = a3 =

1
4 , a4 =

1
3 , a5 =

1
2 .

Also, let w1 = w2 = w3 = 1, w4 = 12, w5 = 1. We have: βo
5 = −4, βo

4 = −1, βo
3 = −1, βo

2 = 4, and W2 = 15,
W3 = 14,W4 = 13.

The no-wait policy yields γ o
5 = γ o

4 = γ o
3 = 0, and γ o

2 = 4, with H2(γ
o) = 60.

With the Cmax policy, we get γ C
5 = 0, with δ5 = 0, γ C

4 = 0, with F4(δ4) = −βo
5 = 4, γ C

3 = 0, with F3(δ3) = −β1
4 = 4,

and γ o
2 = max{0, β3

2 } =
16
25 , and F2(δ2) = −β2

3 = 4 1
5 , with H2(γ

C ) = 65 4
5 .

3. The
∑

wjCj problem with two machines

In this section, the rates of growth ρ(Fj), or ρ(wjFj) or ρ(wjFj + wj+1Fj+1 ◦ Fj) are always meant to be in the interval
[0, δj(γ C

j )]. Indeed, we must have γ ∗

j ≤ γ o
j , since γ ∗

j > γ o
j would yield completion time Cj > Cj(γ

o
j ). On the other hand, the

optimal control vector γ C will usually fail to be optimal for the
∑

wjCj problem, since it is designed to minimize Cn only.
The following proposition states that the optimal control γ ∗

j lies between the optimal control for makespan and the
no-wait control.

Proposition 5. We have γ ∗

j ∈ [γ C
j , γ o

j ] j = 1, . . . , n.

Proof. We just need to show that γ C
j ≤ γ ∗

j for all j. We have:

n−
j=1

wjCj = w1C1 +

n−
j=2

wj

j−
i=1

ti,1 +

n−
j=2

wjtj,2 +

n−
j=2

wj


j−

i=2

γj + Fj(δj)


= D + H2(γ2, . . . , γn),

where D stands for the constant part of the criterion, and for k = n, . . . , 2,Hk is defined by Hk(γk, . . . , γn) =
∑n

j=k(Wjγj +

wjFj(δj)).
Clearly argmin

∑
wjCj = argminH2(·) and minγ2≥0,...,γn≥0 H2(·) splits into the subprograms:

min
γ2≥0


W2γ2 + w2F2(δ2) + · · · + min

γn≥0
(wn[γn + Fn(δn)]) . . .


,

which may be written as:

min
γ2≥0


W2γ2 + w2F2(δ2) + · · · + min

γj≥0,...,γn≥0
Hj(γj, . . . , γn)


. (3.1)

Note that, up to the multiplicative constantWn, the first step of the backward induction program (3.1):
minγn≥0 Wn[γn+Fn(δn)] is the same as the first step of the program for Cmax. We get: γn = max{0, αn+Fn−1(δn−1)}, δn =

0, and the next step will be: minγn−1≥0 Hn−1(γn−1, γn), i.e.,

min
γn−1≥0


Wn−1γn−1 + wn−1Fn−1(δn−1) + Wn max{0, αn + Fn−1(δn−1)}


. (3.1.1)

In step n − 1 for makespan, the program reads minγn−1≥0(γn−1 + max{0, αn + Fn−1(δn−1)}). Write minγn−1≥0 Γn−1 for this
program. Now step Hn−1(γn−1, γn), as given by (3.1.1), may be written as: minγn−1≥0


wn−1(γn−1 + Fn−1(δn−1))+Wn(γn−1 +

max{0, αn + Fn−1(δn−1)})

, or minγn−1≥0 Hn−1(γn−1, γn) = minγn−1≥0


wn−1(γn−1 + Fn−1(δn−1) + WnΓn−1)


.
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Since Γn−1 andWnΓn−1 reach their minima simultaneously andwn−1(γn−1 +Fn−1(δn−1)) is a decreasing function of γn−1,
we have; γ C

n−1 ≤ γ ∗

n−1.
The (backward) induction step is similar, and we leave it to the reader to work out the details. �

We introduce the following notation: β−1
j = 0, βk

j = αj − F−1
j (−βk−1

j+1 ), and γ
[k]
j = max{0, βk

j + Fj−1(δj−1)}, j = 2,
. . . , n, k = 0, . . . , n − j.

We also use the following conditions:

[Ak
j ]: βk

j ≥ 0,
[Bj]: ρ(wjFj) ≥ Wj, and
[Cj]: ρ(wjFj + wj+1Fj+1 ◦ Fj) ≥ Wj.

Note that Cn−1 holds, since ρ(wn−1Fn−1 + wnFn ◦ Fn−1) ≥ wn−1 + wn = Wn−1.
We have the following statement:

Theorem 1. For j = 2, . . . , n − 1, and 0 ≤ k ≤ n − j, we have:

γj+1 = γ
[k]
j+1 ⇒

γj =


γ

[0]
j Ak

j+1 ∨ Bj ∨

Ao
j+1 ∧ Cj


γ

[1]
j ¬Ak

j+1 ∧ ¬A0
j+1 ∧ ¬Bj ∧ Cj

γ
[k+1]
j [j < n − 1] ∧ ¬Ak

j+1 ∧ ¬Bj ∧ ¬Cj,

and

γ ∗

j+1 = max{0, βk
j+1}.

We first show that in the statement of the theorem all the cases are considered.

Wehave¬

[
Ak
j+1∨Bj∨


Ao
j+1∧Cj

]
= ¬

[
Ak
j+1∨Bj∨Ao

j+1


∧

Ak
j+1∨Bj∨Cj

]
=

[
¬Ak

j+1∧¬Bj∧¬Ao
j+1

]
∨

[
¬Ak

j+1∧¬Bj∧¬Cj

]
.

Proof. We prove the statement by backward induction on n.

INITIAL STEP: j = n

We have γn = max{βo
n + Fn−1(δn−1)} = γ [0]

n , and δn = 0.

Althoughwe need only to prove the induction step, we also prove the case n−1, since it will help the reader to better follow
the proof of the induction step.

SUPPLEMENT STEP for j = n − 1
3.1.1.1 Ao

n

min
γn−1≥0

(Wn−1γn−1 + wn−1Fn−1(δn−1) + wn max{0, βo
n + Fn−1(δn−1)})

= min
γn−1≥0

(Wn−1γn−1 + wn−1Fn−1(δn−1) + wn[β
o
n + Fn−1(δn−1)])

= min
γn−1≥0

(Wn−1[γn−1 + Fn−1(δn−1)] + wnβ
o
n).

As a straightforward application of 2.2.7 with w = 0, F = Fn, u = βo
n−1 + Fn−2(δn−2), and x = γn−1, we get γn−1 =

max{0, βo
n−1 + Fn−2(δn−2)}, together with γ ∗

n = βo
n .

3.1.1.2 ¬Ao
n

Clearly Hn−1(γn−1, γn) is decreasing until max{0, βo
n + Fn−1(δn−1)} reaches its minimum, which occurs when βo

n +

Fn−1(δn−1) ≤ 0, i.e. Fn−1(δn−1) ≤ −βo
n , or δn−1 = max{0, βo

n−1 + Fn−2(δn−2) − γn−1} ≤ F−1
n−1(−βo

n) ⇒ βo
n−1 − F−1

n−1(β
o
n) +

Fn−2(δn−2) ≤ γn−1 ⇔ β1
n−1 + Fn−2(δn−2) ≤ γn−1 ⇒


γn−1 ≥ max{0, β1

n−1 + Fn−2(δn−2)}
and
γ ∗
n = 0.

It follows in particular (from the case ¬Ao
n) that γ ∗

n = max{0, βo
n} and (3.1.1) becomes:

min
γn−1≥0

(Wn−1γn−1 + wn−1Fn−1(δn−1)) .

Bn−1 (wn−1Fn−1 decreases faster than −Wn−1ı). In this case,

γn−1 = max{0, βo
n−1 + Fn−2(δn−2)}, with δn−1 = 0.



1374 E. Wagneur et al. / Discrete Applied Mathematics 159 (2011) 1367–1376

¬Bn−1 . Then Hn−1 is increasing for γn−1 ≥ max{0, β1
n−1 + Fn−2(δn−2)}, hence γn−1 = γ

[1]
n−1, and

δn−1 = max{0, βo
n−1 + Fn−2(δn−2) − max{0, β1

n−1 + Fn−2(δn−2)}}

= max{0, F−1
n−1(−βo

n) + min{0, β1
n−1 + Fn−2(δn−2)}}.

BACKWARD INDUCTION STEP: j + 1 → j
Assume that the statement holds for every integer larger than j and let k be arbitrary (0 ≤ k ≤ n − j − 1).
By the induction hypothesis, γ ∗

j+2, . . . , γ
∗
n are constant, hence the induction step in (3.1.1) becomes:

min
γj≥0


Wjγj + wjFj(δj) + Wj+1γj+1 + wj+1Fj+1(δj+1)


.

Since γj+1 = max{0, βk
j+1 + Fj(δj)}, by assumption, we have:

δj+1 = max{0, βo
j+1 + Fj(δj) − max{0, βk

j+1 + Fj(δj)}}

= max{0, βo
j+1 + Fj(δj) + min{0, −βk

j+1 − Fj(δj)}}

= max{0, F−1
j+1(−βk−1

j+2 ) + min{0, βk
j+1 + Fj(δj)}},

and the program becomes:

min
γj≥0

(Wjγj + wjFj(δj)) + Wj+1 max{0, βk
j+1 + Fj(δj)} + wj+1Fj+1(max{0, F−1

j+1(−βk−1
j+2 ) + min{0, βk

j+1 + Fj(δj)}}). (3.2)

3.2.1 Ak
j+1 The program becomes:

minγj≥0

Wj(γj + Fj(δj))


+ Wj+1β

k
j+1 + wj+1 max{0, −βk−1

j+2 }.
Thus γj = max{0, βo

j + Fj−1(δj−1)} = γ
[0]
j , δj = 0, and γ ∗

j+1 = βk
j+1.

3.2.2 ¬Ak
j+1 Hj(·) is decreasing until βk

j+1 + Fj(δj) = 0 and in this case:

Fj(δj) = −βk
j+1 ⇒ δj = max{0, βo

j + Fj−1(δj−1) − γj} = F−1
j (−βk

j+1).
Hence γj ≥ max{0, βo

j + Fj−1(δj−1) − F−1
j (−βk

j+1)} = max{0, βk+1
j + Fj−1(δj−1)}.

Now, for γj ≥ max{0, βk+1
j + Fj−1(δj−1)}, δj+1 = max{0, βo

j+1 + Fj(δj)} and γ ∗

j+1 = 0. Hence γ ∗

j+1 = max{0, βk
j+1}, which

proves this part of the induction step. The program minHj(·) may now be stated as:

min
γj≥0


Wjγj + wjFj(δj) + wj+1Fj+1(max{0, βo

j+1 + Fj(δj)})

.

3.2.2.1 Bj Hj(·) is decreasing and reaches its minimum for γj = max{0, βo
j + Fj−1(δj−1)} = γ

[0]
j . Then δj = 0.

3.2.2.2 ¬Bj

Cj

Ao
j+1 Hj(·) is decreasing and reaches its minimum for γj = max{0, βo

j + Fj−1(δj−1)} = γ
[0]
j . Then δj = 0.

¬Ao
j+1 Hj(·) is decreasing until γj = βo

j+1+Fj(δj) = 0, and increasing afterward. Hence γj = max{0, β1
j +Fj(δj)} =

γ
[1]
j .

¬Cj Hj(·) is increasing for γj ≥ max{βk+1
j + Fj−1(δj−1)}. Hence γj = γ

[k+1]
j .

Summing up: γj = γ
[0]
j when:

either Akj+1

or ¬Akj+1 and


either Bj
or

¬Bj and Cj and Aoj+1


Formally, the logical conditions on the r.h.s may be written as:

Ak
j+1 ∨


¬Ak

j+1


∧


Bj ∨

[
¬Bj ∧ Cj ∧ Ao

j+1

]
.

But ∀X and Y , we have: X ∨

¬X ∧ Y


= X ∨ Y .

Thus:

Ak
j+1 ∨


¬Ak

j+1 ∧

Bj ∨


¬Bj ∧ Cj ∧ Ao

j+1


= Ak

j+1 ∨

Bj ∨


Cj ∧ Ao

j+1


,

i.e., γj = γ
[0]
j in case Ak

j+1 ∨

Bj ∨


Cj ∧ Ao

j+1


holds.
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Similarly: γj = γ
[1]
j when ¬Ak

j+1 ∧ ¬Bj ∧ Cj ∧ ¬Ao
j+1 holds,

and γj = γ
[k+1]
j in case ¬Ak

j+1 ∧ ¬Bj ∧ ¬Cj holds. �

3.3. Remark

Notice that γj+1 is completely determined after we solve the program for γj. This interesting property was mentioned
in [22]. This property does not hold for δj, except δj−1 = 0. The generic case is a sequence of embedded δk’s:

δj+1 = max{0, F−1
j+1(−βo

j+2 + min{0, β1
j+1 + Fj(δj)})}

= max{0, F−1
j+1(−βo

j+2 + min{0, β1
j+1 + Fj(max{0, F−1

j (−βo
j+1 + min{0, β1

j + Fj−1(δj−1)})})})} = · · · .

This is illustrated in Example 3.4.1, where even if γ4 is known, δ4 cannot be determined before we know that γ3 = γ
[o]
3 ,

hence δ3 = 0.
Finally, as a straightforward application of Theorem 1, we have the following statement:

Theorem 2. γ ∗

j = max{0, β
kj
j }, j = 2, . . . , n,where kn = 0, and for j < n, kj is given by the sequence γ [o]

n , γ
[kn−1]
n−1 , . . . , γ

[kj+1]

j+1 ,

(0 ≤ kj ≤ n − j), δ2 = max{0,min{βo
2, F

−1
2 (−β

k2−1
3 )}}, and, for j = 3, . . . , n − 1, δj = max{0,min{βo

j , F
−1
j (−β

kj−1
j+1 )} +

Fj−1(δj−1)}. �

In Section 2, we recalled the solution to the minimummakespan problem: γ C
j = max{0, βn−j

j }.
This means that, for every j, we compute how much machine 2 idle time will be available for the next jobs. The optimal

release times aim at using all machine 2 idle time that will be available while the next jobs are processed. This eventually
reduces makespan at the expense of Cj, i.e., Cj increases, while Cn decreases. It follows that this policy will generally fail to
be optimal for the

∑
wjCj criterion.

Note that the computation of γ C
j requires the computation of γ C

n , γ C
n−1, . . . , γ

C
j+1.

The interpretation of the γ ∗

j ’s for the
∑

wjCj is similar to that of the γ C
j ’s, i.e., they seek to utilize as much as possible the

machine 2 idle time.
Also, the computation of the γ ∗

j ’s proceeds by backward induction from that of γ ∗
n , γ ∗

n−1, . . . , γ
∗

j+1.

3.4. The examples revisited

3.4.1. Example 2.4.1
First consider the weights: w1 = 2, w2 = 5, w3 = 2, w4 = 1, w5 = 3 ⇒ W2 = 11,W3 = 6,W4 = 4,W5 = 3. Also

D = 140.
For the optimal policy, we have γ5 = γ

[o]
5 , with γ ∗

5 = max{0, βo
5} = 0, then ¬A0

5 holds, and ¬B4 holds. Also, since

Cn−1 always holds, C4 holds, i.e., we have that ¬A0
5 ∧ ¬B4 ∧ C4 (line 2 in the statement of Theorem 1). Hence γ4 = γ

[1]
4 ,

with γ ∗

4 = 0, and δ4 = max{0, F−1
4 (−βo

5) + min{0, β1
4 + F3(δ3)}}.

Similarly, from line 1 in the statement of Theorem 1, since ρ(w3F3) = 6 = W3, B3 holds, thenwe have γ3 = γ
[o]
3 , hence

γ ∗

3 = max{0, β0
3 } = 1, with δ3 = 0. Thus δ4 = max{0, βo

4} = 0. Now, since γ3 = γ
[o]
3 , and A0

3 holds, we have γ2 = γ
[o]
2 ,

and γ ∗

2 = max{0, βo
2} = 2, with δ2 = 0.

Thus, the optimal policy is no-wait and
∑

wjCj = 28.

3.4.2
Consider the previous example with weights given by: w2 = w3 = w4 = 1, and w5 = 10. The optimal Cmax and no-wait

policies remain unchanged. On the other hand, we have: γ5 = max{0, βo
5 + F4(δ4)} = 0 and

¬Ao
5 ∧ ¬B4 ⇒ γ4 = γ

[1]
4 = max{0, β1

4 } = 0. Similarly,

¬A1
4 ∧ ¬B3 ∧ ¬C3 ⇒ γ3 = γ

[2]
3 = max{0, β2

3 } = max{0, − 1
3 } = 0. Finally:

¬A3
3 ∧ ¬B3 ∧ ¬C2 ⇒ γ2 = γ

[3]
2 = max{0, β3

2 } = max{0, 17
9 } =

17
9 .

Thus, the optimal policy is the Cmax policy. This is no surprise since, in contrast to the weights in 3.4.1, the last job now has
a relatively large weight, hence the optimal policy will tend to minimize C5, which is precisely what the Cmax policy does.

3.4.3
When all thewj’s are equal, the problem is tominimize the total completion time. The no-wait and Cmax solutions remain

the same, with H2(γ
o) = 11 and H2(γ

C ) = 13 8
9 .
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For the
∑

Cj problem, we have γ ∗

5 = 0 (and δ5 = 0), and B4 holds. Then γ4 = γ
[o]
4 , hence γ ∗

4 = 0, and δ4 = 0. Since C3

holds, we also have γ ∗

3 = γ
[o]
3 , with γ ∗

3 = 1, and δ3 = 0. As above, we also have γ2 = γ
[o]
2 , hence γ ∗

2 = 0, and δ2 = 0. The
optimal solution is (again) no-wait.

3.4.4. Example 2.4.2
Consider the weights: w1 = w2 = w3 = 1, w4 = 12, w5 = 1.
For the

∑
wjCj policy, we have γ ∗

5 = 0 (and δ5 = 0), and C4 . Hence γ ∗

4 = γ
[o]
4 , and δ4 = 0, γ ∗

4 = 0. Also C3

⇒ γ ∗

3 = γ
[o]
3 , with δ3 = 0, and γ ∗

3 = 0. Clearly, we have ¬Ao
3 ∧ ¬B2 ∧ ¬C2 . Hence γ2 = max{0, β1

2 } = 3 1
5 , and

F2(δ2) = −βo
3 = 1, and we have H2(γ

∗) = 49.
For this problem, and for the sequence given, we have γ C

2 < γ ∗

2 < γ o
2 , while γ C

j = γ ∗

j = γ o
j for j = 3, 4, 5.

Note also that (for instance) γ C
j = γ o

j ⇏ δC
j = δo

j (as would be the case if γ C
j = γ o

j , j = 2, . . . , n).
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