Generating bricks

Serguei Norine ${ }^{1}$, Robin Thomas ${ }^{2}$
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 27 October 2004
Available online 26 January 2007

Abstract

A brick is a 3-connected graph such that the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer. We prove a "splitter theorem" for bricks. More precisely, we show that if a brick H is a "matching minor" of a brick G, then, except for a few well-described exceptions, a graph isomorphic to H can be obtained from G by repeatedly applying a certain operation in such a way that all the intermediate graphs are bricks and have no parallel edges. The operation is as follows: first delete an edge, and for every vertex of degree two that results contract both edges incident with it. This strengthens a recent result of de Carvalho, Lucchesi and Murty.

 © 2007 Robin Thomas. Published by Elsevier Inc. All rights reserved.Keywords: Graph; Perfect matching; Brick; Generating theorem; Splitter theorem

1. Introduction

All graphs in this paper are finite and simple; that is, may not have loops or multiple edges. The following well-known theorem of Tutte [15] describes how to generate all 3-connected graphs, but first a definition. Let v be a vertex of a graph H, and let N_{1}, N_{2} be a partition of the neighbors of v into two disjoint sets, each of size at least two. Let G be obtained from $H \backslash v$ (we use \backslash for deletion and - for set-theoretic difference) by adding two vertices v_{1} and v_{2}, where v_{i} has neighbors $N_{i} \cup\left\{v_{3-i}\right\}$. We say that G was obtained from H by splitting a vertex. Thus for 3 -connected graphs splitting a vertex is the inverse of contracting an edge that belongs to no

[^0]triangle. A wheel is a graph obtained from a cycle by adding a vertex joined to every vertex of the cycle.
(1.1) Every 3-connected graph can be obtained from a wheel by repeatedly applying the operations of adding an edge between two nonadjacent vertices and splitting a vertex.

A graph is a minor of another if the first can be obtained from a subgraph of the second by contracting edges. Seymour [14] extended (1.1) as follows.
(1.2) Let H be a 3-connected minor of a 3-connected graph G such that H is not isomorphic to K_{4} and G is not a wheel. Then a graph isomorphic to G can be obtained from H by repeatedly applying the operations of adding an edge between two nonadjacent vertices and splitting a vertex.

Our objective is to prove an analogous theorem for bricks, where a brick is a 3-connected bicritical graph, and a graph G is bicritical if $G \backslash u \backslash v$ has a perfect matching for every two distinct vertices $u, v \in V(G)$. A related notion is that of a brace, by which we mean a connected bipartite graph such that every matching of size at most two is contained in a perfect matching. Bricks and braces are important, because they are the building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer [8], which we now briefly review.

Let G be a graph, and let $X \subseteq V(G)$. We use $\delta(X)$ to denote the set of edges with one end in X and the other in $V(G)-X$. A cut in G is any set of the form $\delta(X)$ for some $X \subseteq V(G)$. A cut C is $t i g h t$ if $|C \cap M|=1$ for every perfect matching M in G. Every cut of the form $\delta(\{v\})$ is tight; those are called trivial, and all other tight cuts are called nontrivial. Let $\delta(X)$ be a nontrivial tight cut in a graph G, let G_{1} be obtained from G by identifying all vertices in X into a single vertex and deleting all resulting parallel edges, and let G_{2} be defined analogously by identifying all vertices in $V(G)-X$. Then many matching-related problems can be solved for G if we are given the corresponding solutions for G_{1} and G_{2}. As an example, consider lat (G), the matching lattice of a graph G, defined as the set of all integer linear combinations of characteristic vectors of perfect matchings of G. It is not hard to see that a description of lat (G) can be read off from descriptions of lat $\left(G_{1}\right)$ and lat $\left(G_{2}\right)$. We will return to the matching lattice shortly.

The above decomposition process can be iterated, until we arrive at graphs with no nontrivial tight cuts. Lovász [7] proved that the list of indecomposable graphs obtained at the end of the procedure does not depend on the choice of tight cuts made during the process. These indecomposable graphs were characterized by Edmonds, Lovász and Pulleyblank [2,3]:
(1.3) Let G be a connected graph such that every edge of G belongs to a perfect matching. Then G has no nontrivial tight cut if and only if G is a brick or a brace.

Coming back to the matching lattice, Lovász [6] proved that if G is a brace, then lat (G) consists of all integral vectors $\mathbf{w} \in \mathbf{Z}^{E(G)}$ such that $\mathbf{w}(\delta(v))=\mathbf{w}\left(\delta\left(v^{\prime}\right)\right)$ for every two vertices $v, v^{\prime} \in V(G)$. This is not true for bricks, because the Petersen graph is a counterexample. However, Lovász [7] proved the following deep result.
(1.4) Let G be a brick other than the Petersen graph. Then lat (G) consists precisely of all vectors $\mathbf{w} \in \mathbf{Z}^{E(G)}$ such that $\mathbf{w}(\delta(v))=\mathbf{w}\left(\delta\left(v^{\prime}\right)\right)$ for every two vertices $v, v^{\prime} \in V(G)$.

Our motivation for generating bricks came from Pfaffian orientations [4]. An orientation D of a graph G is Pfaffian if every even cycle C such that $G \backslash V(C)$ has a perfect matching has an odd number of edges directed in either direction of the cycle. A graph is Pfaffian if it has a Pfaffian orientation. This is an important concept, because the number of perfect matchings in a Pfaffian graph can be computed efficiently [4]. No polynomial-time algorithm to recognize Pfaffian graphs is known, even though there is one for bipartite graphs [11,13], using a structure theorem obtained in $[10,13]$. The above-mentioned tight cut decomposition procedure can be used to reduce the Pfaffian graph decision problem to bricks and braces [5,16]. Thus it remains to understand which bricks have a Pfaffian orientation, but that seems to be a much harder problem than the corresponding question for braces. Using the main theorem of this paper we managed to shed some light on this perplexing question, but the structure of Pfaffian graphs remains a mystery. We will report on these findings elsewhere. A characterization of Pfaffian graphs in terms of drawings in the plane (with crossings) has been recently obtained by the first author [12].

Let us now describe our theorem. We need a few definitions first. Let G be a graph, and let v_{0} be a vertex of G of degree two incident with the edges $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$. Let H be obtained from G by contracting both e_{1} and e_{2} and deleting all resulting parallel edges. We say that H was obtained from G by bicontracting or bicontracting the vertex v_{0}, and write $H=G / v_{0}$. Let us say that a graph H is a reduction of a graph G if H can be obtained from G by deleting an edge and bicontracting all resulting vertices of degree two. By a prism we mean the unique 3-regular planar graph on six vertices. The following is a generation theorem of de Carvalho, Lucchesi and Murty [1].
(1.5) If G is a brick other than K_{4}, the prism, and the Petersen graph, then some reduction of G is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be repeated until we reach K_{4} or the prism. By reversing the process (1.5) can be viewed as a generation theorem. It is routine to verify that (1.5) implies (1.4), and that demonstrates the usefulness of (1.5). Our main theorem strengthens (1.5) in two respects. (We have obtained our result independently of [1], but later. We are indebted to the authors of [1] for bringing their work to our attention.) The first strengthening is that the generation procedure can start at graphs other than K_{4} or the prism, as we explain next. Let a graph J be a subgraph of a graph G. We say that J is a central subgraph of G if $G \backslash V(J)$ has a perfect matching. We say that a graph H is a matching minor of G if H can be obtained from a central subgraph of G by repeatedly bicontracting vertices of degree two. Thus if H can be obtained from G by repeatedly taking reductions, then H is isomorphic to a matching minor of G. We will denote the fact that G has a matching minor isomorphic to H by writing $H \hookrightarrow G$. This is consistent with our notation for embeddings, to be introduced in Section 4. Since every brick has a matching minor isomorphic to K_{4} or the prism by [8, Theorem 5.4.11], the following implies (1.5).
(1.6) Let G be a brick other than the Petersen graph, and let H be a brick that is a matching minor of G. Then a graph isomorphic to H can be obtained from G by repeatedly taking reductions in such a way that all the intermediate graphs are bricks not isomorphic to the Petersen graph.

We say that a graph H is a proper reduction of a graph G if it is a reduction in such a way that the bicontractions involved do not produce parallel edges. We would like to further strengthen (1.6) by replacing reductions by proper reductions; such an improvement is worthwhile, because

Fig. 1. Exceptional families.
in applications it reduces the number of cases that need to be examined. Unfortunately, (1.6) does not hold for proper reductions, but all the exceptions can be conveniently described. Let us do that now. We refer to Fig. 1(a)-(e).

Let C_{1} and C_{2} be two vertex-disjoint cycles of length $n \geqslant 3$ with vertex-sets $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ (in order), respectively, and let G_{1} be the graph obtained from the union of C_{1} and C_{2} by adding an edge joining u_{i} and v_{i} for each $i=1,2, \ldots, n$. We say that G_{1} is a planar ladder. Let G_{2} be the graph consisting of a cycle C with vertex-set $\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\}$ (in order), where $n \geqslant 2$ is an integer, and n edges with ends u_{i} and u_{n+i} for $i=1,2, \ldots, n$. We say that G_{2} is a Möbius ladder. A ladder is a planar ladder or a Möbius ladder. Let G_{1} be a planar ladder as above on at least six vertices, and let G_{3} be obtained from G_{1} by deleting the edge $u_{1} u_{2}$ and contracting the edges $u_{1} v_{1}$ and $u_{2} v_{2}$. We say that G_{3} is a staircase. Let $t \geqslant 2$ be an integer, and let P be a path with vertices $v_{1}, v_{2}, \ldots, v_{t}$ in order. Let G_{4} be obtained from P by adding two distinct vertices x, y and edges $x v_{i}$ and $y v_{j}$ for $i=1, t$ and all even $i \in\{1,2, \ldots, t\}$ and $j=1, t$ and all odd $j \in\{1,2, \ldots, t\}$. Let G_{5} be obtained from G_{4} by adding the edge $x y$. We say that G_{5} is an upper prismoid, and if $t \geqslant 4$, then we say that G_{4} is a lower prismoid. A prismoid is a lower prismoid or an upper prismoid. We are now ready to state our main theorem.
(1.7) Let H, G be bricks, where H is isomorphic to a matching minor of G. Assume that H is not isomorphic to K_{4} or the prism, and G is not a ladder, wheel, staircase or prismoid. Then a graph isomorphic to H can be obtained from G by repeatedly taking proper reductions in such a way that all the intermediate graphs are bricks not isomorphic to the Petersen graph.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder, wheel, staircase or prismoid, then H itself is a ladder, wheel, staircase or prismoid, and can be obtained from a graph isomorphic to G by taking (possibly improper) reductions in such a way that all intermediate graphs are bricks. Thus (1.7) implies (1.6). (Well, this is not immediately clear if the graph H from (1.6) is a K_{4} or a prism, but in those cases the implication follows with the aid of the next theorem.)

As a counterpart to (1.7) we should describe the starting graphs for the generation process of (1.7). Notice that K_{4} is a wheel, a Möbius ladder, a staircase and an upper prismoid, and that the prism is a planar ladder, a staircase and a lower prismoid. Later in this section we show
(1.8) Let G be a brick not isomorphic to K_{4}, the prism or the Petersen graph. Then G has a matching minor isomorphic to one of the following seven graphs: the graph obtained from the prism by adding an edge, the lower prismoid on eight vertices, the staircase on eight vertices, the staircase on ten vertices, the planar ladder on ten vertices, the wheel on six vertices, and the Möbius ladder on eight vertices.

McCuaig [9] proved an analogue of (1.7) for braces. To state his result we need another exceptional class of graphs, depicted in Fig. 1(f). Let C be an even cycle with vertex-set $v_{1}, v_{2}, \ldots, v_{2 t}$ in order, where $t \geqslant 2$ is an integer and let G_{6} be obtained from C by adding vertices $v_{2 t+1}$ and $v_{2 t+2}$ and edges joining $v_{2 t+1}$ to the vertices of C with odd indices and $v_{2 t+2}$ to the vertices of C with even indices. Let G_{7} be obtained from G_{6} by adding an edge $v_{2 t+1} v_{2 t+2}$. We say that G_{7} is an upper biwheel, and if $t \geqslant 3$ we say that G_{6} is a lower biwheel. A biwheel is a lower biwheel or an upper biwheel. McCuaig's result is as follows.
(1.9) Let H, G be braces, where H is isomorphic to a matching minor of G. Assume that if H is a planar ladder, then it is the largest planar ladder matching minor of G, and similarly for Möbius ladders, lower biwheels and upper biwheels. Then a graph isomorphic to H can be obtained from G by repeatedly taking proper reductions in such a way that all the intermediate graphs are braces.

Actually, (1.9) follows from a version of our theorem stated in Section 11.
Let us now introduce terminology that we will be using in the rest of the paper. Let $H, G, v_{0}, v_{1}, v_{2}, e_{1}, e_{2}$ be as in the definition of bicontraction. Assume that both v_{1} and v_{2} have degree at least three and that they have no common neighbors except v_{0}; then no parallel edges are produced during the contraction of e_{1} and e_{2}. Let v be the new vertex that resulted from the contraction. If both v_{1} and v_{2} have degree at least three, then we say that G was obtained from H by bisplitting the vertex v. We call v_{0} the new inner vertex and v_{1} and v_{2} the new outer vertices.

Let H be a graph. We wish to define a new graph $H^{\prime \prime}$ and two vertices of $H^{\prime \prime}$. Either $H^{\prime \prime}=H$ and u, v are two nonadjacent vertices of H, or $H^{\prime \prime}$ is obtained from H by bisplitting a vertex, u is the new inner vertex of $H^{\prime \prime}$ and $v \in V\left(H^{\prime \prime}\right)$ is not adjacent to u, or $H^{\prime \prime}$ is obtained by bisplitting a vertex of a graph obtained from H by bisplitting a vertex, and u and v are the two new inner vertices of $H^{\prime \prime}$. Finally, let $H^{\prime}=H^{\prime \prime}+(u, v)$. We say that H^{\prime} is a linear extension of H (see

Fig. 2. Linear extensions of H.

Fig. 2). Thus H^{\prime} is a linear extension of H if and only if H is a proper reduction of H^{\prime}. By the cube we mean the graph of the 1 -skeleton of the 3 -dimensional cube. Notice that the cube and $K_{3,3}$ are bipartite, and hence are not bricks. Using this terminology (1.7) can be restated in a mildly stronger form. It is easy to check that if G^{\prime} is obtained from a brick G by bisplitting a vertex into new outer vertices v_{1} and v_{2}, then $\left\{v_{1}, v_{2}\right\}$ is the only set $X \subseteq V\left(G^{\prime}\right)$ such that $|X| \geqslant 2$ and $G^{\prime} \backslash X$ has at least $|X|$ odd components. Thus a linear extension of a brick is a brick, and hence (1.10) implies (1.7).
(1.10) Let G be a brick other than the Petersen graph, and let H be a 3-connected matching minor of G not isomorphic to K_{4}, the prism, the cube, or $K_{3,3}$. If G is not isomorphic to H and G is not a ladder, wheel, biwheel, staircase or prismoid, then a linear extension of H is isomorphic to a matching minor of G.

The main step in the proof of (1.10) is the following.
(1.11) Let G be a brick other than the Petersen graph, and let H be a 3-connected matching minor of G. Assume that if H is a planar ladder, then there is no strictly larger planar ladder L with $H \hookrightarrow L \hookrightarrow G$, and similarly for Möbius ladders, wheels, lower biwheels, upper biwheels, staircases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some matching minor of G is isomorphic to a linear extension of H.

It is routine to verify that if G is a ladder, wheel, biwheel, staircase or prismoid, G^{\prime} is a linear extension of G, and H is a 3-connected matching minor of G not isomorphic to K_{4}, the prism, the cube, or $K_{3,3}$, then G^{\prime} has a matching minor isomorphic to a linear extension of H. Thus (1.11) implies (1.10), and we omit the details. The proof of (1.11) will occupy the rest of the paper. However, assuming (1.11) we can now deduce (1.8).

Proof of (1.8), assuming (1.11). Let G be a brick not isomorphic to K_{4}, the prism or the Petersen graph. By [8, Theorem 5.4.11], G has a matching minor M isomorphic to K_{4} or the prism. Since M is not bipartite, it is not a biwheel, a planar ladder on $4 k$ vertices, or a Möbius ladder on $4 k+2$ vertices. Thus if a prismoid, wheel, ladder or staircase larger than M is isomorphic to a matching minor of G, then G has a matching minor as required for (1.8). Thus we may assume that the hypothesis of (1.11) is satisfied, and hence a matching minor of G is isomorphic to a linear extension of M. But K_{4} does not have any linear extensions, and the prism has, up to isomorphism, exactly one, namely the graph obtained from it by adding an edge. This proves (1.8).

Here is an outline of the paper. First we need to develop some machinery; that is done in Sections 2-4. In Section 5 we prove a first major step toward (1.11), namely that the theorem holds provided a graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of G. Then in Section 6 we reformulate our key lemma in a form that is easier to apply, and introduce several different types of extensions. In Section 7 we use the 3-connectivity of G to show that at least one of those extensions of H is isomorphic to a matching minor of G, and in Sections $8-10$ we gradually eliminate all the additional extensions. Theorem (1.11) is proved in Section 10. Finally, in Section 11 we state a strengthening of (1.11) that can be obtained by following the proof of (1.11) with minimal changes. We delegate the strengthening to the last section, because the statement is somewhat cumbersome and perhaps of lesser interest. Its applications include (1.11), (1.9) and a generation theorem for a subclass of factor-critical graphs.

A word about notation. If H is a graph, and $u, v \in V(H)$ are distinct nonadjacent vertices, then $H+(u, v)$ or $H+u v$ denotes the graph obtained from H by adding an edge with ends u and v. Now let $u, v \in V(H)$ be adjacent. By bisubdividing the edge $u v$ we mean replacing the edge by a path of length three, say a path with vertices u, x, y, v, in order. Let H^{\prime} be obtained from H by this operation. We say that x, y (in that order) are the new vertices. Thus y, x are the new vertices resulting from subdividing the edge $v u$ (we are conveniently exploiting the notational asymmetry for edges). Now if $w \in V(H)-\{u\}$, then by $H+(w, u v)$ we mean the graph $H^{\prime}+(w, x)$. Notice that the graphs $H+(w, u v)$ and $H+(w, v u)$ are different. In the same spirit, if $a, b \in V(H)$ are adjacent vertices of H with $\{u, v\} \neq\{a, b\}$, then we define $H+(u v, a b)$ to be the graph $H^{\prime}+(x, a b)$.

2. Octopi and frames

Let H be a graph with a perfect matching, and let $X \subseteq V(H)$ be a set of size k. If $H \backslash X$ has at least k odd components, then X is called a barrier in H. The following is easy and well known.

(2.1) A brick has no barrier of size at least two.

Now if H and X are as above and H is a subgraph of a brick G, then X cannot be a barrier in G. If H is a central subgraph of G, then we get the following useful outcome. In the application $R_{1}, R_{2}, \ldots, R_{k}$ will be the components of $G \backslash X$.
(2.2) Let G be a brick and let H be a subgraph of G. Let M be a perfect matching of $G \backslash V(H)$ and let $V(H)$ be a disjoint union of $X, R_{1}, R_{2}, \ldots, R_{k}$, where $k \geqslant 2,|X| \leqslant k$ and $\left|R_{i}\right|$ is odd for every $i \in\{1,2, \ldots, k\}$. Then there exist distinct integers $i, j \in\{1,2, \ldots, k\}$ and an M-alternating path joining a vertex in R_{i} to a vertex in R_{j}.

Proof. Suppose for a contradiction that the lemma is false, and let H be a maximal subgraph of G that satisfies the hypothesis of the lemma, but not the conclusion.

By (2.1) there exists an edge $e_{1} \in E(G)$ with one end $v \in R_{i}$ for some $i \in\{1,2, \ldots, k\}$ and the other end $u \in V(G)-R_{i}-X$. Without loss of generality we may assume that $i=1$. If $u \in V(H)$ then the path with edge-set $\left\{e_{1}\right\}$ is as required. Thus $u \notin V(H)$, and hence u is incident with an edge $e_{2} \in M$. Let w be the other end of e_{2}; then clearly $w \notin V(H)$. Let $X^{\prime}=X \cup\{u\}$, $R_{k+1}=\{w\}, M^{\prime}=M-\left\{e_{2}\right\}$ and construct H^{\prime} by adding the vertices u and w and edges e_{1} and e_{2} to H. By the maximality of H the graph H^{\prime}, matching M^{\prime} and sets $X^{\prime}, R_{1}, R_{2}, \ldots, R_{k+1}$ satisfy the conclusion of the lemma. Thus for some distinct integers $i, j \in\{1,2, \ldots, k+1\}$ there exists an M^{\prime}-alternating path P joining a vertex in R_{i} to a vertex in R_{j}. Since H does not satisfy the conclusion of the lemma we may assume that $j=k+1$. Let P^{\prime} be the graph obtained from P by adding the edges e_{1} and e_{2}. If $i>1$, then P^{\prime} is a path and satisfies the conclusion of the lemma.

Thus we may assume that $i=1$. Let $H^{\prime \prime}=H \cup P^{\prime}, M^{\prime \prime}=M-E\left(P^{\prime}\right)$ and $R_{1}^{\prime}=R_{1} \cup V\left(P^{\prime}\right)$. Then the graph $H^{\prime \prime}$, matching $M^{\prime \prime}$ and sets $X, R_{1}^{\prime}, R_{2}, \ldots, R_{k}$ also satisfy the conclusion of the lemma by the maximality of H. Thus we may assume that there is an $M^{\prime \prime}$-alternating path Q joining a vertex in R_{1}^{\prime} to a vertex in R_{j} for some $j \in\{2,3, \ldots, k\}$. If neither of the ends of Q lies in $V\left(P^{\prime}\right)$ then Q is a required path for H. If one of them, say x, is in $V\left(P^{\prime}\right)$, we add to Q one of the subpaths of P^{\prime} with end x to obtain a required path.

To motivate the next definitions, let us consider the following example. Let G be a brick that has a matching minor isomorphic to K_{4}. Later in the proof there will come a step when one will be able to deduce that G has a matching minor isomorphic to the graph H depicted in Fig. 3. Unfortunately, H is not a brick, because the set $\{a, b, c\}$ is a barrier. So we try to apply (2.2). More precisely, G has a central subgraph J isomorphic to a graph obtained from H by repeatedly bisubdividing edges of H; let $a^{\prime}, b^{\prime}, c^{\prime}, x^{\prime}, y^{\prime} \in V(J)$ correspond to a, b, c, x, y, respectively. By applying (2.2) we deduce that one of a number of outcomes holds, including a possibility that G has a matching minor isomorphic to $J+\left(x^{\prime}, y^{\prime} a^{\prime}\right)$. The latter graph, however, is not a brick and the only brick matching minor it contains is K_{4}. Thus we need a strengthening of (2.2) in the case when each R_{i} has a restricted structure, what we call an octopus. Let us introduce the necessary definitions.

Fig. 3. A graph H, containing K_{4} as a matching minor.

Fig. 4. An octopus Ω and an Ω-compatible matching.
Let H be a graph, let C be a subgraph of H with an odd number of vertices, and let $P_{1}, P_{2}, \ldots, P_{k}$ be odd paths in H. For $i=1,2, \ldots, k$ let u_{i} and v_{i} be the ends of P_{i}. If for distinct $i, j=1,2, \ldots, k$ we have $V\left(P_{i}\right) \cap V(C)=\left\{u_{i}\right\}$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right) \subseteq\left\{u_{i}, v_{i}\right\}$, then we say that $\Omega=\left(C, P_{1}, P_{2}, \ldots, P_{k}\right)$ is an octopus in H. We say that the paths $P_{1}, P_{2}, \ldots, P_{k}$ are the tentacles of Ω, C is the head of Ω and v_{i} are the ends of Ω. We define the graph of Ω to be $C \cup P_{1} \cup P_{2} \cup \cdots \cup P_{k}$, and by abusing notation slightly we will denote this graph also by Ω. We say that a matching M in G is Ω-compatible if every tentacle is M-alternating and no vertex of C is incident to an edge of M. See Fig. 4. Then in the example above each component of $J \backslash\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ can be turned into an octopus Ω, and the perfect matching in $G \backslash V(J)$ can be extended to an Ω-compatible matching in G.

Let G be a graph, and let $k \geqslant 1$ be an integer. We say that the pair (\mathcal{F}, X) is a frame in G if $X \subseteq V(G)$ and $\mathcal{F}=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}\right\}$ satisfy
(1) $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}$ are octopi,
(2) for $i=1,2, \ldots, k$ the ends and only the ends of Ω_{i} belong to X,
(3) for distinct $i, j \in\{1,2, \ldots, k\}, V\left(\Omega_{i}\right) \cap V\left(\Omega_{j}\right) \subseteq X$,
(4) $|X| \leqslant k$.

We say that $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}$ are the components of (\mathcal{F}, X). We define the graph of (\mathcal{F}, X) to be $\Omega_{1} \cup \Omega_{2} \cup \cdots \cup \Omega_{k}$, and denote it by \mathcal{F}, again abusing notation. Thus in the above example G has a frame $\left(\mathcal{F},\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right)$ with three components. The following is the main result of this section. We say that a graph H is M-covered if a subset of M is a perfect matching of H.
(2.3) Let G be a brick, let M be a matching in G, and let (\mathcal{F}, X) be a frame in G such that $G \backslash(V(\mathcal{F}) \cup X)$ is M-covered and M is Ω-compatible for each $\Omega \in \mathcal{F}$. Then there exists an M alternating path P joining vertices of the heads of two different components Ω_{1}, Ω_{2} of (\mathcal{F}, X). Moreover, there is an edge $e \in E(P)-M$ such that the two components of $P \backslash e$ can be numbered P_{1} and P_{2} in such a way that $V\left(P_{i}\right) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{i}\right)$ for $i=1,2$.

Proof. We say that a subpath Q of a path P is an \mathcal{F}-jump in P if the ends of Q belong to different components of \mathcal{F} and Q is otherwise disjoint from \mathcal{F}. Let $\mathcal{F}=\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}\right\}$ and let C_{i} denote the vertex-set of the head of Ω_{i}. By (2.2) applied to $X, C_{1}, C_{2}, \ldots, C_{k}$ there exists an M alternating path joining vertices of the heads of two different components of (\mathcal{F}, X). Choose such path P with the minimal number of \mathcal{F}-jumps in it. We prove that P satisfies the requirements of the theorem.

Let $v_{1} \in C_{1}$ and $v_{2} \in C_{2}$ be the ends of P. Since P is M-alternating and M is Ω_{i}-compatible for all $i=1,2, \ldots, k$, it follows that no internal vertex of P belongs to C_{i}. Suppose that $P \cap$ $T \neq \emptyset$ for some tentacle T of Ω_{i}, where $i \geqslant 3$. Let $\left\{v_{0}\right\}=V(T) \cap C_{i}$ and let $v \in V(P) \cap V(T)$ be chosen so that $T\left[v, v_{0}\right]$ is minimal. For some $j \in\{1,2\}$ the path $P\left[v_{j}, v\right] \cup T\left[v, v_{0}\right]$ is M alternating and contradicts the choice of P. Thus $V(P) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{1}\right) \cup V\left(\Omega_{2}\right)$.

Define a linear order on $V(P)$ so that $v \succ v^{\prime}$ if and only if $v^{\prime} \in P\left[v_{1}, v\right]$. Let P_{0} be an \mathcal{F}-jump in P with ends $u_{1} \in V\left(\Omega_{1}\right)$ and $u_{2} \in V\left(\Omega_{2}\right)$ chosen so that $u_{1} \succ u_{2}$ and $P\left[v_{1}, u_{2}\right]$ is minimal. Equivalently we can define P_{0} as a second \mathcal{F}-jump we encounter if we traverse P from v_{1} to v_{2}. If such an \mathcal{F}-jump P_{0} in P does not exist then P contains a unique \mathcal{F}-jump. Let $e \notin M$ be an edge of this unique \mathcal{F}-jump; then P and e satisfy the requirements of the theorem. Therefore we may assume the existence of P_{0}.

For $i \in\{1,2\}$ let T_{i} be the tentacle of Ω_{i} such that $u_{i} \in V\left(T_{i}\right)$ and let $\left\{w_{i}\right\}=V\left(T_{i}\right) \cap C_{i}$. Let $s_{1} \in V\left(T_{1}\right) \cap V(P)$ be chosen so that $s_{1} \succ u_{1}$ and $T_{1}\left[s_{1}, w_{1}\right]$ is minimal. Note that $s_{1} \neq w_{1}$, because the only vertex in $V(P) \cap C_{1}$ is v_{1} and $s_{1} \succ u_{1} \succ v_{1}$. Let $s_{1} t_{1}$ be the edge of M incident to s_{1}. We have $s_{1} t_{1} \in E\left(T_{1} \cap P\right)$ as both T_{1} and P are M-alternating, $s_{1} \in T_{1}\left[t_{1}, w_{1}\right]$ by the choice of s_{1} and $s_{1} \succ t_{1}$ as otherwise the path $T_{1}\left[w_{1}, s_{1}\right] \cup P\left[s_{1}, v_{2}\right]$ contradicts the choice of P. Let $s_{2} \in V\left(T_{2}\right) \cap V(P)$ be chosen so that $s_{2} \prec s_{1}$ and $T_{2}\left[s_{2}, w_{2}\right]$ is minimal. Let $s_{2} t_{2}$ be the edge of M incident to s_{2}. We again have $s_{2} t_{2} \in T_{2} \cap P, s_{2} \in T_{2}\left[t_{2}, w_{2}\right]$ and $s_{2} \prec t_{2}$, as otherwise the path $P\left[v_{1}, s_{2}\right] \cup T_{2}\left[s_{2}, w_{2}\right]$ contradicts the choice of P.

Consider $P^{\prime}=P\left[s_{2}, s_{1}\right]$. By the choice of s_{1} we have $V\left(P\left[u_{2}, s_{1}\right]\right) \cap V\left(T_{1}\left[s_{1}, w_{1}\right]\right)=\left\{s_{1}\right\}$. Also if $s_{2} \prec u_{2}$ we have $V\left(P\left[s_{2}, u_{2}\right]\right) \cap V\left(\Omega_{1}\right)=\emptyset$ by the choice of P_{0}. It follows that $V\left(P^{\prime}\right) \cap$ $V\left(T_{1}\left[s_{1}, w_{1}\right]\right)=\left\{s_{1}\right\}$. By the choice of s_{2} we have $V\left(P^{\prime}\right) \cap V\left(T_{2}\left[s_{2}, w_{2}\right]\right)=\left\{s_{2}\right\}$. Therefore $T_{2}\left[w_{2}, s_{2}\right] \cup P^{\prime} \cup T_{1}\left[w_{1}, s_{1}\right]$ is an M-alternating path contradicting the choice of P.

3. Two paths meeting

In this section we study the following problem. Let G be a graph, let M be a matching, and let P_{1} and P_{2} be two M-alternating paths. In the applications we will be permitted to replace the matching M by a matching M^{\prime} saturating the same set of vertices, and to replace the paths P_{1} and P_{2} by a pair of M^{\prime}-alternating paths with the same ends. Thus we are interested in graphs
that are minimal in the sense that there is no replacement as above upon which an edge of G may be deleted. The main result of this section, Theorem (3.3) below, asserts that there are exactly four types of minimally intersecting pairs of M-alternating paths, three of which are depicted in Fig. 5. We start with two auxiliary lemmas.
(3.1) Let M be a matching in G, let P be an M-alternating path with ends x and y, let C be an M-alternating cycle such that x and y have degree at most two in $P \cup C$ and let $M^{\prime}=M \triangle E(C)$. Then there exists an M^{\prime}-alternating path Q with ends x and y satisfying $E(Q) \subseteq E(P) \triangle E(C)$.

Proof. Let H be the subgraph of G with vertex-set $V(G)$ and edge-set $E(P) \triangle E(C)$. Then x, y have degree one in H, every other vertex of H has degree zero or two, and if it has degree two, then it is incident with an edge of M^{\prime}. Thus some component of H is an M^{\prime}-alternating path joining x and y, as desired.
(3.2) Let M be a matching in G, let P be an M-alternating path with ends w and v, and let R be a path with ends v and z such that $R \backslash v$ is M-covered, v is incident with no edge of M, and $w \notin V(R)$. Let $M^{\prime}=M \triangle E(R)$. Then there exists an M^{\prime}-alternating path Q with ends w and z satisfying $E(Q) \subseteq E(P) \triangle E(R)$.

Proof. This follows similarly as (3.1) by considering the graph with edge-set $E(P) \triangle E(R)$.
Let G be a graph, let M be a matching in G, and let P and Q be two M-alternating paths in G. For the purpose of this definition let a segment be a maximal subpath of $P \cap Q$, and let an arc be a maximal subpath of Q with no internal vertex or edge in P. We say that P and Q intersect transversally if either they are vertex-disjoint, or there exist vertices $q_{0}, q_{1}, \ldots, q_{7} \in V(Q)$ such that
(1) $q_{0}, q_{1}, \ldots, q_{7}$ occur on Q in the order listed, and q_{0} and q_{7} are the ends of Q,
(2) $q_{2}, q_{1}, q_{3}, q_{4}, q_{6}, q_{5}$ all belong to P and occur on P in the order listed,
(3) if $q_{0} \in V(P)$, then $q_{0}=q_{1}=q_{2}=q_{3}$, and otherwise $Q\left[q_{0}, q_{1}\right]$ is an arc,
(4) if $q_{7} \in V(P)$, then $q_{7}=q_{6}=q_{5}=q_{4}$, and otherwise $Q\left[q_{6}, q_{7}\right]$ is an arc,
(5) $Q\left[q_{3}, q_{4}\right]$ is a segment,
(6) either $q_{1}=q_{2}=q_{3}$, or q_{1}, q_{2}, q_{3} are pairwise distinct, $Q\left[q_{1}, q_{2}\right]$ is a segment, $Q\left[q_{2}, q_{3}\right]$ is an arc and q_{2} is not an end of P, and
(7) either $q_{4}=q_{5}=q_{6}$, or q_{4}, q_{5}, q_{6} are pairwise distinct, $Q\left[q_{5}, q_{6}\right]$ is a segment, $Q\left[q_{4}, q_{5}\right]$ is an arc and q_{5} is not an end of P.

It follows that the definition is symmetric in P and Q. There are four cases of transversal intersection depending on the number of components of $P \cap Q$; the three cases when P and Q intersect are depicted in Fig. 5, where matching edges are drawn thicker. We shall prove the following lemma.
(3.3) Let M be a matching in a graph G and let P_{1} and P_{2} be two M-alternating paths, where P_{i} has ends s_{i} and t_{i}. Assume that s_{1}, s_{2}, t_{1} and t_{2} have degree at most two in $P_{1} \cup P_{2}$. Then there exist a matching M^{\prime} saturating the same set of vertices as M and two M^{\prime}-alternating paths Q_{1} and Q_{2} such that $M \triangle M^{\prime} \subseteq E\left(P_{1}\right) \cup E\left(P_{2}\right), Q_{i}$ has ends s_{i} and t_{i} and Q_{1} and Q_{2} intersect transversally.

Fig. 5. Three cases of transversal intersection.

Unfortunately, for later application we need a more general, but less nice result, the following. Please notice that it immediately implies (3.3) on taking $r=t_{2}$.
(3.4) Let M be a matching in a graph G and let P_{1} and P_{2} be two M-alternating paths, where P_{i} has ends s_{i} and t_{i}. Assume that s_{1}, s_{2}, t_{1} and t_{2} have degree at most two in $P_{1} \cup P_{2}$. Let $r \in V\left(P_{2}\right)$, and let $P_{2}^{\prime}=P_{2}\left[s_{2}, r\right]$. Then one of the following conditions holds:
(1) There exist a matching M^{\prime} saturating the same set of vertices as M and two M^{\prime}-alternating paths Q_{1} and Q_{2} such that Q_{i} has ends s_{i} and $t_{i}, M \triangle M^{\prime} \subseteq E\left(P_{1}\right) \cup E\left(P_{2}^{\prime}\right), Q_{1} \subseteq P_{1} \cup P_{2}^{\prime}$, and $Q_{1} \cup Q_{2}$ is a proper subgraph of $P_{1} \cup P_{2}$;
(2) $r \neq t_{2}$, and there exists an M-alternating path $R \subseteq P_{1} \cup P_{2}^{\prime}$ with ends s_{2} and t_{1} such that R and P_{1} intersect transversally;
(3) P_{2}^{\prime} intersects P_{1} transversally.

Proof. We may assume that $G=P_{1} \cup P_{2}$ and (1) does not hold. We shall refer to this as the minimality of G.

We claim that $P_{1} \cup P_{2}^{\prime}$ contains no M-alternating cycles. Suppose for a contradiction there exists an M-alternating cycle $C \subseteq P_{1} \cup P_{2}^{\prime}$. Let $M^{\prime}=M \triangle E(C)$ and let Q_{1}, Q_{2} be the two M^{\prime} alternating paths obtained by applying (3.1) to P_{1} and P_{2}, respectively. Since P_{1} and P_{2} are M-alternating and their union includes C, they either share an edge of $M \cap E(C)$, say e, or P_{1} and P_{2} have the same ends. In the later case replacing P_{2} by P_{1} contradicts the minimality of G, and so we may assume the former. Now $Q_{1} \subseteq P_{1} \cup P_{2}^{\prime}$ and $Q_{1} \cup Q_{2}$ is a subgraph of $\left(P_{1} \cup P_{2}\right) \backslash e$, contradicting the minimality of G.

For the purpose of this proof let us define an arc as a maximal subpath of P_{2}^{\prime} that has at least one edge or contains an end of P_{2}^{\prime} and has no internal vertex or edge in P_{1}. Define segment as a maximal subpath of $P_{1} \cap P_{2}$. We say that two vertices of P_{1} have the same biparity if their distance on P_{1} is even, and otherwise we say they have opposite biparity. We claim that the ends of every arc have the same biparity. To see that, let $P_{2}^{\prime}[s, t]$ be an arc with ends of opposite
biparity. There are two cases. Either both end-edges of $P_{1}[s, t]$ belong to M, or both of them do not. If they do, then $P_{1}[s, t] \cup P_{2}^{\prime}[s, t]$ is an M-alternating cycle, and if they do not, then P_{1}^{\prime}, P_{2} contradict the minimality of G, where P_{1}^{\prime} is obtained from P_{1} by replacing the interior of $P_{1}[s, t]$ by $P_{2}^{\prime}[s, t]$. (Notice that the edge of $P_{1}[s, t]$ incident with s does not belong to P_{1}^{\prime} or P_{2}.) This proves our claim that the ends of every arc have the same biparity.

We may assume that there is an arc with both ends on P_{1}, for otherwise (3) holds. Let $P_{2}^{\prime}\left[u_{0}, v_{0}\right]$ be such an arc. Since u_{0}, v_{0} have the same biparity, exactly one end-edge of $P_{1}\left[u_{0}, v_{0}\right]$ belongs to M, say the one incident with u_{0}. Then the unique segment incident with u_{0}, say $P_{1}\left[u_{0}, v_{1}\right]=P_{2}^{\prime}\left[u_{0}, v_{1}\right]$ has the property that v_{1} lies between u_{0} and v_{0} on P_{1}. Let $P_{2}^{\prime}\left[v_{1}, u_{1}\right]$ be the unique arc incident with v_{1}. Then either u_{1} is an end of P_{2}^{\prime}, or u_{1}, v_{1} have the same biparity, opposite to the biparity of u_{0}, v_{0}.

We claim that either u_{1} is an end of P_{2}^{\prime}, or u_{1} lies between v_{1} and v_{0} on P_{1}. To prove this claim we need to prove that neither u_{0} nor v_{0} lie between u_{1} and v_{1} on P_{1}. To this end suppose first that u_{0} lies between u_{1} and v_{1} on P_{1}. Then $P_{1}^{\prime \prime}$ and P_{2} contradict the minimality of G, where $P_{1}^{\prime \prime}$ is obtained from P_{1} by replacing the interior of $P_{1}\left[u_{1}, v_{0}\right]$ by $P_{2}^{\prime}\left[u_{1}, v_{0}\right]$ (the edge of $P_{1}\left[v_{1}, v_{0}\right]$ incident with v_{1} does not belong to $P_{1}^{\prime \prime} \cup P_{2}$). Suppose now that v_{0} lies between u_{1} and v_{1} on P_{1}. Then $P_{2}^{\prime}\left[v_{0}, u_{1}\right] \cup P_{1}\left[u_{1}, v_{0}\right]$ is an M-alternating cycle, a contradiction. This proves that either u_{1} is an end of P_{2}^{\prime}, or u_{1} lies between v_{1} and v_{0} on P_{1}.

Now assume that $P_{2}^{\prime}\left[u_{0}, v_{0}\right]$ is chosen so that $P_{1}\left[u_{0}, v_{0}\right]$ is maximal, and let u_{1}, v_{1} be as in the previous paragraph. If u_{1} is an end of P_{2}^{\prime} we stop, and so assume that it is not. Recall that u_{1}, v_{1} have opposite biparity from u_{0}, v_{0}. Thus the unique segment incident with u_{1}, say $P_{1}\left[u_{1}, v_{2}\right]=P_{2}^{\prime}\left[u_{1}, v_{2}\right]$ has the property that v_{2} lies between v_{1} and u_{1} on P_{1}. Now let $P_{2}^{\prime}\left[v_{2}, u_{2}\right]$ be the unique arc incident with v_{2}. By the result of the previous paragraph either u_{2} is an end of P_{2}^{\prime}, or u_{2} lies between v_{2} and v_{1} on P_{1}. By arguing in this manner we arrive at a sequence of vertices $u_{0}, v_{0}, \ldots, u_{k+1}, v_{k+1}$ such that
(i) $u_{0}, v_{1}, u_{2}, v_{3}, \ldots, v_{k+1}, \ldots, u_{3}, v_{2}, u_{1}, v_{0}$ occur on P_{1} in the order listed,
(ii) u_{k+1} is an end of P_{2}^{\prime},
(iii) $P_{2}^{\prime}\left[u_{i}, v_{i}\right]$ are arcs for $i=0,1, \ldots, k+1$, and
(iv) $P_{1}\left[u_{i}, v_{i+1}\right]$ are segments for $i=0,1, \ldots, k$.

It follows that u_{i}, v_{i} have the same biparity and that their biparity depends on the parity of i. Let $P_{1}\left[v_{0}, v_{0}^{\prime}\right]$ be the unique segment incident with v_{0}. Then v_{0} lies between v_{0}^{\prime} and u_{0} on P_{1}. Let $P_{2}^{\prime}\left[v_{0}^{\prime}, u_{0}^{\prime}\right]$ be the unique arc incident with v_{0}^{\prime}. The maximality of $P_{1}\left[u_{0}, v_{0}\right]$ and the result of the previous paragraph imply that either u_{0}^{\prime} is an end of P_{2}^{\prime}, or that $u_{0}, v_{0}, v_{0}^{\prime}, u_{0}^{\prime}$ occur on P_{1} in the order listed. In the latter case by an analogous argument there exists a sequence of vertices $u_{0}^{\prime}, v_{0}^{\prime}, \ldots, u_{k^{\prime}+1}^{\prime}, v_{k^{\prime}+1}^{\prime}$ such that
(i) $u_{0}^{\prime}, v_{1}^{\prime}, u_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{k^{\prime}+1}^{\prime}, \ldots, u_{3}^{\prime}, v_{2}^{\prime}, u_{1}^{\prime}, v_{0}^{\prime}$ occur on P_{1} in the order listed,
(ii) $u_{k^{\prime}+1}^{\prime}$ is an end of P_{2},
(iii) $P_{2}^{\prime}\left[u_{i}^{\prime}, v_{i}^{\prime}\right]$ are arcs for $i=0,1, \ldots, k^{\prime}+1$, and
(iv) $P_{1}\left[u_{i}^{\prime}, v_{i+1}^{\prime}\right]$ are segments for $i=0,1, \ldots, k^{\prime}$.

Suppose $r=t_{2}$. Then $k=0$, for otherwise P_{1} and the path obtained from P_{2} by replacing the interior of $P_{2}\left[v_{0}, u_{1}\right]$ by $P_{1}\left[v_{0}, u_{1}\right]$ contradict the minimality of G. Similarly, either u_{0}^{\prime} is an end of P_{2} or $k^{\prime}=0$. Thus (3) holds.

Therefore we may assume $r \neq t_{2}$. Suppose $s_{2} \neq u_{0}^{\prime}$. Then without loss of generality we assume $s_{2}=u_{k+1}$. We define $R_{1}=P_{2}^{\prime}\left[s_{2}, u_{k}\right] \cup P_{1}\left[u_{k}, t_{1}\right]$ and $R_{2}=P_{2}^{\prime}\left[s_{2}, v_{k}\right] \cup P_{1}\left[v_{k}, t_{1}\right]$. For some $i \in\{1,2\} R_{i} \subseteq P_{1} \cup P_{2}^{\prime}$ is an M-alternating path with ends s_{2} and t_{1} such that R_{i} and P_{1} intersect transversally. Thus (2) holds.

It remains to consider the case when $s_{2}=u_{0}^{\prime}$ and $u_{k+1}=r$. If $k=0$, then (3) holds, and so we may assume that $k \geqslant 1$. We claim that $E\left(P_{1}\left[v_{k+1}, v_{k}\right] \cap P_{2}\right)=\emptyset$. Suppose for a contradiction $P_{2}[x, y] \subseteq P_{1}\left[v_{k+1}, v_{k}\right]$ is a segment, and let $P_{2}[x, y]$ be chosen so that $P_{2}\left[y, t_{2}\right]$ is minimal. If $x \in V\left(P_{1}\left[v_{k}, y\right]\right)$ define $Q_{2}=P_{2}\left[s_{2}, v_{k}\right] \cup P_{1}\left[v_{k}, x\right] \cup P_{2}\left[x, t_{2}\right]$, and otherwise define $Q_{2}=$ $P_{2}\left[s_{2}, v_{k+1}\right] \cup P_{1}\left[v_{k+1}, x\right] \cup P_{2}\left[x, t_{2}\right]$. As $E\left(P_{1}\left[v_{k+1}, v_{k}\right] \cap P_{2}^{\prime}\right)=\emptyset$ we see that Q_{2} is an M alternating path. We replace P_{2} with Q_{2} to contradict the minimality of G.

Now we claim $E\left(P_{1}\left[v_{k-1}, u_{k}\right] \cap P_{2}\right)=\emptyset$. Again suppose $P_{2}[x, y] \subseteq P_{1}\left[v_{k-1}, u_{k}\right]$ is a segment, and let $P_{2}[x, y]$ be chosen so that $P_{2}\left[y, t_{2}\right]$ is minimal. If $x \in V\left(P_{1}\left[v_{k-1}, y\right]\right)$ define $Q_{2}=P_{2}\left[s_{2}, v_{k-1}\right] \cup P_{1}\left[v_{k-1}, x\right] \cup P_{2}\left[x, t_{2}\right]$, and otherwise define $Q_{2}=P_{2}\left[s_{2}, v_{k}\right] \cup P_{1}\left[v_{k}, x\right] \cup$ $P_{2}\left[x, t_{2}\right]$. As $E\left(P_{1}\left[v_{k+1}, v_{k}\right] \cap P_{2}\right)=\emptyset$ we see that Q_{2} is an M-alternating path. Again we replace P_{2} with Q_{2} to contradict the minimality of G.

Now let $Q_{2}=P_{2}\left[s_{2}, v_{k-1}\right] \cup P_{1}\left[v_{k-1}, u_{k}\right] \cup P_{2}\left[u_{k}, t_{2}\right]$. As $E\left(P_{1}\left[v_{k-1}, u_{k}\right] \cap P_{2}\right)=\emptyset$ we see that Q_{2} is an M-alternating path and replacing P_{2} with Q_{2} we once again contradict the minimality of G.

We deduce several corollaries of (3.4). Let Ω be an octopus in a graph G, where Ω consists of two tentacles and a head C with $V(C)=\{v\}$. Then the graph of Ω is a path. We say that Ω is a path octopus with head v. The head of a path octopus can be moved along Ω in the sense that if $v^{\prime} \in V(\Omega)$ is at even distance from v in Ω, then there is another path octopus with the same graph and head v^{\prime}. The next lemma will use this fact.
(3.5) Let G be a graph, let Ω be a path octopus in G with head v and ends v_{1} and v_{2}, let z be the neighbor of v_{1} in Ω, let M be an Ω-compatible matching, and let P be an M-alternating path in $G \backslash v_{1} \backslash v_{2}$ with ends v and $w \notin V(\Omega)$. Then there exist a path octopus Ω^{\prime} with head z and ends v_{1} and v_{2}, an Ω^{\prime}-compatible matching M^{\prime}, and a path P^{\prime} with ends z and w such that $E\left(\Omega^{\prime}\right) \subseteq E(\Omega \cup P), z v_{1} \in E\left(\Omega^{\prime}\right), v_{1} \notin V\left(P^{\prime}\right), M$ coincides with M^{\prime} on $G \backslash(V(P) \cup V(\Omega))$, $\Omega \cup P \backslash V\left(\Omega^{\prime} \cup P^{\prime}\right)$ is M^{\prime}-covered, and P^{\prime} intersects $\Omega^{\prime} \backslash v_{1}$ transversally.

Proof. Since M is Ω-compatible, v is incident with no edge of M. Let $R=\Omega[z, v]$, let $M^{\prime}=$ $M \triangle E(R)$, and let Ω^{\prime} be the octopus with graph Ω and head z. Then M^{\prime} is an Ω^{\prime}-compatible matching. By (3.2) there exists an M^{\prime}-alternating path P^{\prime} with ends z and w such that $E\left(P^{\prime}\right) \subseteq$ $E(P) \triangle E(R)$. By (3.3) we may assume, by replacing the tentacle $\Omega^{\prime}\left[z, v_{2}\right]$ and path P^{\prime}, that P^{\prime} intersects $\Omega^{\prime} \backslash v_{1}=\Omega^{\prime}\left[z, v_{2}\right]$ transversally, as desired.

Let P_{1}, P_{2}, P_{3} be odd paths in a graph H. For $i=1,2,3$ let u_{i} and v_{i} be the ends of P_{i}. If $u_{1}=u_{2}=u_{3}$ and otherwise P_{1}, P_{2}, P_{3} are pairwise disjoint, then we say that the octopus with tentacles P_{1}, P_{2} and P_{3} and a head the graph with vertex-set $\left\{u_{1}\right\}$ is a triad in H. Assume now that P_{1}, P_{2}, P_{3} are pairwise disjoint, and let Q_{1}, Q_{2}, Q_{3} be three odd paths such that for $\{i, j, k\}=\{1,2,3\}$ the ends of Q_{k} are u_{i} and u_{j}. Assume further that $P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}, Q_{3}$ are pairwise disjoint, except for common ends in the set $\left\{u_{1}, u_{2}, u_{3}\right\}$. In those circumstances we say that an octopus with tentacles P_{1}, P_{2} and P_{3} and head $Q_{1} \cup Q_{2} \cup Q_{3}$ is a tripod in H.
(3.6) Let G be a graph. Let T be a triad or tripod in G with ends v_{1}, v_{2} and v_{3}. Let M be a T-compatible matching, and let P be an M-alternating path in $G \backslash v_{1} \backslash v_{2}$ with one end in the head of T and another end $w \notin V(T)$. Assume that the edge of P incident with w does not belong to M. Then there exist a triad or tripod $T^{\prime} \subseteq T \cup P$ with ends v_{1}, v_{2} and w and a T^{\prime} compatible matching M^{\prime} such that M is identical to M^{\prime} on $G \backslash V(P \cup T)$ and $(T \cup P) \backslash V\left(T^{\prime}\right)$ is M^{\prime}-covered.

Proof. If T is a triad then the result follows immediately from (3.5). If T is a tripod, then for $i \in\{1,2,3\}$ let $P_{i}, Q_{i}, u_{i}, v_{i}$ be as in the definition of tripod. Extend M to Q_{1}, Q_{2} and Q_{3} in such a way that $Q_{1} \cup Q_{2} \cup Q_{3} \backslash u_{1}$ is M-covered. Let $T^{\prime \prime}$ be the path octopus with tentacles P_{1} and $P_{2} \cup Q_{1} \cup Q_{2}$. Extend P along $Q_{1} \cup Q_{2} \cup Q_{3}$ to a path $P^{\prime \prime}$ so that $P^{\prime \prime}$ is an M-alternating path with ends w and u_{1}. It remains to apply (3.5) to $P^{\prime \prime}$ and $T^{\prime \prime}$.

Let Q be an even path with ends u_{1} and u_{3}, let $u_{2}=u_{1}$ and $u_{4}=u_{3}$, and for $i=1,2,3,4$ let P_{i} be an odd path with ends u_{i} and v_{i}, disjoint from Q except for u_{i}, and such that the paths P_{i} are pairwise disjoint, except that P_{1} and P_{2} share a common end $u_{1}=u_{2}$ and P_{3} and P_{4} share a common end $u_{3}=u_{4}$. In those circumstances we say that the octopus with head Q and tentacles $P_{1}, P_{2}, P_{3}, P_{4}$ is a quadropod.

Now let $P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}, Q_{3}$ be as in the definition of tripod, except that Q_{2} and Q_{3} are allowed to intersect beyond the vertex u_{1}. Suppose there exists a perfect matching M of $Q_{2} \cup$ $Q_{3} \backslash u_{1} \backslash u_{2} \backslash u_{3}$ such that Q_{2} and Q_{3} are M-alternating and intersect transversally. Then we say that the octopus Ω with tentacles P_{1}, P_{2} and P_{3} and a head $Q_{1} \cup Q_{2} \cup Q_{3}$ is a quasi-tripod in H. Clearly every tripod is a quasi-tripod. It follows from the definition of transversal intersection that $Q_{2} \cap Q_{3}$ consists of one or two paths, one of which contains the vertex u_{1}. By shortening both Q_{2} and Q_{3} and extending P_{1} we may assume that one of the components of $Q_{2} \cap Q_{3}$ has vertex-set $\left\{u_{1}\right\}$. If that is the only component of $Q_{2} \cap Q_{3}$, then Ω is a tripod; otherwise Ω looks as depicted in Fig. 6.
(3.7) Let G be a graph. Let T be a triad or tripod in G with ends v_{1}, v_{2} and v_{3}. Let M be a T-compatible matching, and let P be an M-alternating path in $G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ with one end in the head of T and another end $w \notin V(T)$. Assume that the edge of P incident with w does not

Fig. 6. A quasi-tripod.
belong to M. Then there exist an octopus $T^{\prime} \subseteq T \cup P$ and a T^{\prime}-compatible matching M^{\prime} such that M is identical to M^{\prime} on $G \backslash V(P \cup T)$, the graph $(T \cup P) \backslash V\left(T^{\prime}\right)$ is M^{\prime}-covered and either T^{\prime} is a quasi-tripod with ends v_{i}, v_{j} and w, for some distinct indices $i, j \in\{1,2,3\}$, or T^{\prime} is a quadropod with ends v_{1}, v_{2}, v_{3} and w.

Proof. We may assume that $G=T \cup P$ and that there do not exist a triad or tripod T^{\prime} with ends v_{1}, v_{2} and v_{3}, a T^{\prime}-compatible matching M^{\prime} and an M^{\prime}-alternating path P^{\prime} in $G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ with one end in the head of T^{\prime} and the other end w such that $w \notin V\left(T^{\prime}\right),(T \cup P) \backslash V\left(T^{\prime} \cup P^{\prime}\right)$ is M^{\prime}-covered and $P^{\prime} \cup T^{\prime}$ is a proper subgraph of G. We refer to this as the minimality of G.

Let the tentacles of T be P_{1}, P_{2}, P_{3}, where P_{i} has one end v_{i}, and let u_{i} be the other end of P_{i}. If T is a tripod, then let Q_{i} be as in the definition of tripod, and otherwise let Q_{i} be the null graph. We say that a vertex v of P_{i} is inbound if $P_{i}\left[v, u_{i}\right]$ is even and we say that v is outbound otherwise.

Let $u_{0} \in V(P \cap T)$ be chosen to minimize $P\left[w, u_{0}\right]$. If T is a triad and u_{0} is inbound, then $T \cup$ $P\left[w, u_{0}\right]$ is a required quadropod. If T is a tripod and $u_{0} \in V\left(P_{i}\right)$ is inbound then by replacing $P_{i}\left[v_{i}, u_{0}\right]$ by $P\left[w, u_{0}\right]$ in T we obtain a required quasi-tripod. If T is a tripod and $u_{0} \in V\left(Q_{i}\right)$, then we may assume from the symmetry that $Q_{i}\left[u_{0}, u_{j}\right]$ is even, in which case by replacing P_{j} by $P\left[w, u_{0}\right]$ we obtain a required quasi-tripod.

Therefore for the rest of the proof we may assume that $u_{0} \in V\left(P_{1}\right)$ and that u_{0} is outbound. Let $r \in V(T) \cap V(P)-V\left(P_{1}\right)$ be chosen to minimize $P[w, r]$ and if no such r exists let $r \neq w$ be the end of P. Apply (3.4) to P_{1} and P with $s_{1}=v_{1}, t_{1}=u_{1}$ and $s_{2}=w$. Outcome (3.4)(1) does not hold by the minimality of G. If (3.4)(2) holds, then by considering the path guaranteed therein we obtain a desired quasi-tripod or quadropod. Thus we may assume (3.4)(3) holds, and hence P_{1} intersects $P[w, r]$ transversally.

Let v_{0} be such that $P\left[v_{0}, u_{0}\right]$ is a component of $P \cap P_{1}$, and let u be such that $P\left[v_{0}, u\right]$ is a maximal path with no internal vertex or edge in T. If $u \in V\left(P_{1}\right)$, then by the definition of transversal intersection the vertices $v_{1}, v_{0}, u_{0}, u, u_{1}$ occur on P_{1} in the order listed and u is inbound. By considering $T \cup P[w, u]$ and deleting $P_{3} \backslash u_{3}$ and the interior of Q_{3} we obtain a required quasi-tripod. Thus we may assume that $u \notin V\left(P_{1}\right)$, and hence $u=r$. If r is not outbound, then a similar argument gives a required quasi-tripod.

It follows that for the remainder of the proof we may assume that $r \in V\left(P_{2}\right)$, and that r is outbound. Let M_{1} be the unique perfect matching of $Q_{1} \cup Q_{2} \cup Q_{3} \backslash u_{1}$, and let $M^{+}=M \cup M_{1}$. We can extend P along $Q_{1} \cup Q_{2} \cup Q_{3}$ to an M^{+}-alternating path P^{+}so that u_{1} is an end of P^{+}. Apply (3.2) to P^{+}and $P_{1}\left[v_{0}, u_{1}\right]$ to produce an M^{\prime}-alternating path P^{\prime} with ends w and v_{0}, where $M^{\prime}=M^{+} \triangle P_{1}\left[u_{1}, v_{0}\right]$. Let T^{\prime} be obtained from $T \cup P\left[v_{0}, r\right]$ by deleting the interiors of $P_{2}\left[r, u_{2}\right]$ and Q_{2}; then T^{\prime} is a triad with ends v_{1}, v_{2}, v_{3}. But now T^{\prime} and P^{\prime} contradict the minimality of G.

4. Embeddings and main lemma

In this section we first formalize the notion of a matching minor by introducing the concept of an embedding, and show in (4.2) below that a graph H has a matching minor isomorphic to a graph G if and only if there is an embedding $H \hookrightarrow G$. Then we study the following question. Suppose that $\eta: H \hookrightarrow G$ is an embedding, G is a brick, and $v_{0} \in V(H)$ has degree two. Since bricks have no vertices of degree two, there is a subgraph of G that "fixes" this violation of being a brick. What can we say about this subgraph? The answer leads to the notion of v_{0}-augmentation of η. We define this concept formally, and then prove two results about its existence. The second,
(4.4), will be used when some graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of G; otherwise we will use (4.3), the first of these results. Finally, we classify all "minimal" v_{0}-augmentations into one of four types.

Let T^{\prime} be a tree, and let T be obtained from T^{\prime} by subdividing every edge an odd number of times. Then $V\left(T^{\prime}\right) \subseteq V(T)$. The vertices of T that belong to $V\left(T^{\prime}\right)$ will be called old and the vertices of $V(T)-V\left(T^{\prime}\right)$ will be called new. We say that T is a barycentric tree. Please note that the partition into old and new vertices depends on T^{\prime} (there is an ambiguity concerning vertices of degree two). We shall assume that each barycentric tree has a fixed partition into new and old vertices. By a branch of a barycentric tree T we mean a subpath of T with ends old vertices and all internal vertices new.

We need to formalize the concept of matching minor. Let H and G be graphs. A weak embedding of H to G is a mapping η with domain $V(H) \cup E(H)$ such that for $v, v^{\prime} \in V(H)$ and $e, e^{\prime} \in E(H)$,
(1) $\eta(v)$ is a barycentric subtree in G,
(2) if $v \neq v^{\prime}$, then $\eta(v)$ and $\eta\left(v^{\prime}\right)$ are vertex-disjoint,
(3) $\eta(e)$ is an odd path with no internal vertex in any $\eta(v)$ or $\eta\left(e^{\prime}\right)$ for $e^{\prime} \neq e$,
(4) if $e=u_{1} u_{2}$, then the ends of $\eta(e)$ can be denoted by x_{1}, x_{2} in such a way that x_{i} is an old vertex of $\eta\left(u_{i}\right)$, and
(5) $G \backslash \bigcup_{x \in V(H) \cup E(H)} V(\eta(x))$ has a perfect matching.

The next lemma will show that H is isomorphic to a matching minor of G if and only if there is a weak embedding of H to G. Then we will show that such a weak embedding can be chosen with two additional properties. Thus we say that a weak embedding from H to G is an embedding if, in addition, it satisfies
(6) if v has degree one then $\eta(v)$ has exactly one vertex,
(7) if $v \in V(H)$ has degree two and e_{1}, e_{2} are its incident edges, then $\eta(v)$ is an even path with ends x_{1}, x_{2}, say, and $\eta\left(e_{1}\right), \eta\left(e_{2}\right)$ both have length one, one has x_{1} as its end and the other has x_{2} as its end, and
(8) if v has degree at least three and x is an old vertex of $\eta(v)$ of degree d, then x is an end of $\eta(e)$ for at least $3-d$ distinct edges e.

For every subgraph H^{\prime} of H define $\eta\left(H^{\prime}\right)=\bigcup_{x \in V(H) \cup E(H)} \eta(x)$. We denote the fact that η is an embedding of H into G by writing $\eta: H \hookrightarrow G$.

Let $T \subseteq H$ be a barycentric tree, and let (X, Y) be the unique partition of $V(T)$ into two independent sets with X including all the old vertices. The vertices of X will be called protected and the vertices of Y will be called exposed.
(4.1) Let H and G be graphs. There exists a weak embedding of H to G if and only if H is isomorphic to a matching minor of G.

Proof. If $\eta: H \hookrightarrow G$ then a graph isomorphic to H can be obtained from the central subgraph $\eta(H)$ of G by repeatedly bicontracting exposed vertices of $\eta(v)$ and internal vertices of $\eta(e)$ for $v \in V(H)$ and $e \in E(H)$. Thus H is a matching minor of G.

To prove the converse we may assume that H is a matching minor of G. Thus there exist graphs $H_{1}, H_{2}, \ldots, H_{k}$ such that $H_{1}=H, H_{k}$ is a central subgraph of G, and for $i=2,3, \ldots, k$
the graph H_{i-1} is obtained from H_{i} by bicontracting a vertex. We define $\eta_{k}: H_{k} \hookrightarrow G$ by saying that if $v \in V\left(H_{k}\right)$, then $\eta_{k}(v)$ is the graph with vertex-set $\{v\}$, and if $e \in E\left(H_{k}\right)$, then $\eta_{k}(e)$ is the graph consisting of e and its ends. It is clear that η_{k} satisfies (1)-(5). We now construct a sequence of mappings satisfying (1)-(5). Assuming that η_{i} has been defined we define η_{i-1} as follows. Let v be the vertex of H_{i} whose bicontraction produces H_{i-1}, let x, y be the neighbors of v, and let w be the new vertex of H_{i-1}. For $z \in V\left(H_{i-1}\right) \cup E\left(H_{i-1}\right)-\{w\}$ let $\eta_{i-1}(z)=\eta_{i}(z)$, and let $\eta_{i-1}(w)=\eta_{i}(x) \cup \eta_{i}(y) \cup \eta_{i}(v) \cup \eta_{i}(x v) \cup \eta_{i}(y v)$. This completes the construction. It is clear that η_{1} satisfies (1)-(5).

We now show that if there is a weak embedding of H to G, then there is an embedding of H to G.
(4.2) Let H and G be graphs. There exists an embedding of H to G if and only if H is isomorphic to a matching minor of G.

Proof. By (4.1) it suffices to show that if η is a weak embedding of H to G, then there exists an embedding of H to G.

It is easy to modify η so that it satisfies conditions (6) and (7). Thus we may choose a mapping η with domain $V(H) \cup E(H)$ satisfying (1)-(7) such that the total number of old vertices in $\eta(v)$ over all vertices $v \in V(H)$ of degree at least three is minimum. We claim that η satisfies (8) as well.

To prove that η satisfies (8) let $v \in V(H)$ have degree at least three, let x be an old vertex of $\eta(v)$, and let d be the degree of x in $\eta(v)$. If $d=2$ and x is not an end of $\eta(e)$ for any $e \in E(G)$, then we change the barycentric structure of $\eta(v)$ by declaring x to be a new vertex. The new embedding thus obtained contradicts the minimality of η. If $d=0$, then x is the unique vertex of $\eta(v)$, and it is an end of $\eta(e)$ for all the (at least three) edges e incident with v by (4). Thus we may assume that $d=1$. If x is not an end of any $\eta(e)$, then we remove from $\eta(v)$ the vertex x and all internal vertices of Q, where Q is the unique subpath of $\eta(v)$ between x and the nearest old vertex. Then the set of vertices removed has a perfect matching, because Q is even by the definition of barycentric subdivision, and hence the new embedding satisfies (5). Thus the new embedding contradicts the minimality of η. To complete the proof we may therefore suppose for a contradiction that x is incident with $\eta(e)$ for exactly one $e \in E(H)$. By (4) one end of e is v; let u be the other end. If u has degree at most two, then we define a new embedding by moving x and the internal vertices of Q from $\eta(v)$ to $\eta(u)$, and changing $\eta(e)$ accordingly. If u has degree at least three, then we move x and all internal vertices of Q from $\eta(v)$ to $\eta(e)$. In either case the new embedding contradicts the minimality of η. Thus η satisfies (8), and hence it is an embedding $H \hookrightarrow G$, as desired.

Let T be an even subpath of a graph H, and let T be regarded as a barycentric tree, with its ends designated as old and all internal vertices designated as new. Let us recall that the notions of protected and exposed were defined prior to (4.1). Let P be a path with one end, say v, in the interior of T and no other vertex in T. If v is exposed, then let Q be the null graph, and if v is protected, then let Q be a path with ends exposed vertices $q_{1}, q_{2} \in V(T)$ and otherwise disjoint from $H \cup P$ such that v lies on T between q_{1} and q_{2}. In those circumstances we say that Q is a cap for P at v with respect to T and H.

Let $\eta: H \hookrightarrow G$. For every edge $e=u v \in E(H)$ the path $\eta(e)$ is odd. Let P_{e} denote its interior (that is, the path obtained by deleting the ends), and let M_{e} be the unique perfect matching of P_{e} (possibly $\left.M_{e}=\emptyset\right)$. We define $M(\eta)$ to be the union of M_{e} over all $e \in E(H)$.

Now let $v_{0} \in V(H)$ have degree two, and let v_{1}, v_{2} be its neighbors. For $i=1,2$ let E_{i} be the set of edges of H incident with v_{i}, except for the edge $v_{0} v_{i}$, and let $E_{1} \cap E_{2}=\emptyset$. Let M_{1} be a perfect matching of $G \backslash V(\eta(H))$, and let $M=M_{1} \cup M(\eta)$. Let P be an M-alternating path with one end $x \in V\left(\eta\left(v_{0}\right)\right)$ and the other end u in $\bigcup\left\{\eta(v): v \in V(H)-\left\{v_{0}, v_{1}, v_{2}\right\}\right\}$ with the property that if P intersects $\eta(e)$ for some $e \in E(H)$ not incident with v_{0}, v_{1}, or v_{2}, then P and $\eta(e)$ intersect in a path and have a common end. Let S denote the path $\eta\left(v_{0}\right) \cup \eta\left(v_{0} v_{1}\right) \cup \eta\left(v_{0} v_{2}\right)$; then S is obtained from $\eta\left(v_{0}\right)$ by appending two edges, one at each end. Let Q be an M_{1}-alternating cap for P at x with respect to S and $\eta(H)$. We say that the pair (P, Q) is a v_{0}-augmentation of η. It follows that P and Q have no internal vertices in $\bigcup_{v \in V(H)} \eta(v)$. We say that x is the origin and u is the terminus of P. See Figs. 7-9 for example.

Our first result about augmentations is the following.
(4.3) Let H be a graph on at least four vertices, let v_{0} be a vertex of H that has exactly two neighbors v_{1} and v_{2}, and let v_{1} and v_{2} be not adjacent. Let G be a brick and let $\eta: H \hookrightarrow G$ be an embedding such that both $\eta\left(v_{1}\right)$ and $\eta\left(v_{2}\right)$ have exactly one vertex. Then there exist an embedding $\eta^{\prime}: H \hookrightarrow G$ and a v_{0}-augmentation of η^{\prime}.

Proof. Define E_{1}, E_{2} and M as in the definition of v_{0}-augmentation. The path $\eta\left(v_{0}\right) \cup \eta\left(v_{0} v_{1}\right) \cup$ $\eta\left(v_{0} v_{2}\right)$ is even and can therefore be regarded as path octopus, which we denote by Ω_{1}. Let Ω_{2} be the octopus with the set of tentacles $\left\{\eta(e): e \in E_{1} \cup E_{2}\right\}$ and head $\eta\left(H \backslash v_{0} \backslash v_{1} \backslash v_{2}\right)$. The head of Ω_{2} is non-null, because H has at least four vertices. We can convert M to a matching M^{+}so that M^{+}is Ω_{i}-compatible for $i=1,2$. We apply (2.3) to the frame $\left(\left\{\Omega_{1}, \Omega_{2}\right\}, V\left(\eta\left(v_{1}\right)\right) \cup V\left(\eta\left(v_{2}\right)\right)\right)$ and denote the resulting path by R. Let R have ends $r_{1} \in V\left(\Omega_{1}\right)$ and $r_{2} \in V\left(\Omega_{2}\right)$ and let $e \in$ $E(R)$ be such that each of the components $R_{i}=R\left[s_{i}, r_{i}\right]$ of $R \backslash e$ intersects only one of the octopi Ω_{1} and Ω_{2}.

By (3.5) we may assume, by changing M^{+}, R_{1}, and $\eta\left(v_{0}\right)$, that there exist an M^{+}-alternating path P_{1} with ends $p_{1} \in V\left(\eta\left(v_{0}\right)\right)$ and s_{1}, and an M^{+}-alternating cap Q_{1} for P_{1} at p_{1} with respect to Ω_{1} and $\eta(H)$ such that $P_{1} \cup Q_{1} \subseteq R_{1}$. We may also assume that r_{2} is the only vertex of R in the head of Ω_{2}. If $r_{2} \in \eta(v)$ for some $v \in V(H)$, then let R_{2}^{\prime} be the null graph, and if $r_{2} \in \eta(e)$ for some $e \in E(H)$, then let R_{2}^{\prime} be an M^{+}-alternating subpath of $\eta(e)$ with one end r_{2} and the other in $\eta(v)$ for some $v \in V(H)$. Then $\left(P_{1} \cup R_{2} \cup R_{2}^{\prime}, Q_{1}\right)$ is a desired v_{0}-augmentation of η.

In the next section we will need the following lemma.
(4.4) Let H be a graph, and let v be a vertex of H of degree at least four, let G be a brick, and let $\eta: H \hookrightarrow G$ be such that $\eta(v)$ has at least two vertices. Then either
(1) there exist a graph H_{1} obtained from H by bisplitting v, an embedding $\eta_{1}: H_{1} \hookrightarrow G$ and a v_{0}-augmentation of η_{1}, where v_{0} is the new inner vertex of H_{1}, or
(2) there exist an embedding $\eta_{2}: H \hookrightarrow G$, a path P with ends p_{1} and p_{2} in the interiors of different branches, say B_{1} and B_{2}, of $\eta_{2}(v)$ and otherwise disjoint from $\eta_{2}(H)$ and for $i=1,2$ there exists a cap Q_{i} for P at p_{i} with respect to B_{i} and $\eta_{2}(H)$ such that Q_{1} and Q_{2} are disjoint.

Proof. Denote the branches of $\eta(v)$ by $B_{1}, B_{2}, \ldots, B_{n}$. They can be considered as octopi, which we denote by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}$, respectively. Let Ω_{0} be the octopus with the set of tentacles $\{\eta(e): e$ is incident to $v\}$ and head $\eta(H \backslash v)$, let X be the set of old vertices of $\eta(v)$, and let $\mathcal{F}=\left\{\Omega_{0}, \Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}\right\}$. We can extend a perfect matching of $G \backslash \eta(H)$ to a matching M so that M is Ω-compatible for every $\Omega \in \mathcal{F}$. Clearly $|X|=n+1$. Therefore (\mathcal{F}, X) is a frame. We apply (2.3) to it and denote the resulting path by R. Furthermore, there is an edge $e \in E(R)$ such that each of the components $R_{i}=R\left[s_{i}, r_{i}\right]$ of $R \backslash e$ intersects only one of the octopi of \mathcal{F}.

If for some $i \in\{1,2\}$ the path R_{i} intersects Ω_{j} for $j \geqslant 1$ we may assume, by changing M, and Ω_{j}, that there exist an M-alternating path P_{i} with ends $p_{i} \in V\left(B_{j}\right)$ and s_{i}, and an M alternating cap Q_{i} for P_{i} at p_{i} with respect to B_{j} and $\eta(H)$ such that $P_{i} \cup Q_{i} \subseteq R_{i} \cup B_{j}$. If this happens for both R_{1} and R_{2} define $P=P_{1} \cup P_{2}+e$ and outcome (2) holds.

Therefore we may assume that R_{2} intersects Ω_{0} and R_{1} intersects Ω_{j} for some $j \geqslant 1$, and furthermore that r_{2} is the only vertex of R in the head of Ω_{0}. If $r_{2} \in \eta(v)$ for some $v \in V(H)$, then let R_{2}^{\prime} be the null graph, and if $r_{2} \in \eta(e)$ for some $e \in E(H)$, then let R_{2}^{\prime} be an M-alternating subpath of $\eta(e)$ with one end r_{2} and the other in $\eta(v)$ for some $v \in V(H)$.

Let T_{1} and T_{2} be the two components of the graph obtained from $\eta(v)$ by removing the internal vertices of B_{j}. Let H_{1} be obtained from H by splitting v into new outer vertices v_{1} and v_{2} and new inner vertex v_{0} in such a way that v_{i} is adjacent to a neighbor u of v in H if $\eta\left(u v_{i}\right)$ has an end in T_{i}. Let $\eta_{1}\left(v_{i}\right)=T_{i}$, let $\eta_{1}\left(v_{0}\right)$ be B_{1} minus its ends, let $\eta_{1}\left(v_{1} v_{0}\right)$ and $\eta_{1}\left(v_{2} v_{0}\right)$ be the two end-edges of B_{1} and let $\eta_{1}(x)=\eta(x)$ for all other $x \in V\left(H_{1}\right) \cup E\left(H_{1}\right)$. Then $\left(P_{1} \cup R_{2}^{\prime} \cup\{e\}, Q_{1}\right)$ is a v_{0}-augmentation of η_{1} and outcome (1) holds.

Let H and G be graphs, let $\eta: H \hookrightarrow G$, let v_{0} be a vertex of H of degree two, and let (P, Q) be a v_{0}-augmentation of η. We say that η is minimal if there exists no embedding $\eta^{\prime}: H \hookrightarrow G$ and a v_{0}-augmentation $\left(P^{\prime}, Q^{\prime}\right)$ of η^{\prime} such that $\eta^{\prime}(H) \cup P^{\prime} \cup Q^{\prime}$ is a proper subgraph of $\eta(H) \cup P \cup Q$. In applications we may assume that our v_{0}-augmentations are minimal. The next lemma will classify minimal augmentations into four types, which we now introduce.

Let $\eta: H \hookrightarrow G$, let $v_{0} \in V(H)$ have degree two, let $v_{1}, v_{2} \in V(H)$ be its neighbors, and let E_{1}, E_{2} be as in the definition of v_{0}-augmentation. Let $i \in\{1,2\}$ and $e \in E_{i}$. Let x_{e} be the end of $\eta(e)$ that belongs to $V\left(\eta\left(v_{i}\right)\right)$. We say that an internal vertex $x \in V(\eta(e))$ is an inbound vertex if it is at even distance from x_{e} in $\eta(e)$, and otherwise we say that it is an outbound vertex.

Let M be a matching containing $M(\eta)$, let P be an M-alternating path with ends x_{0} and x_{5}, and let the vertices $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ appear on P in the order listed. Assume that $P\left[x_{1}, x_{2}\right]$ and $P\left[x_{3}, x_{4}\right]$ are subpaths of $\eta(e)$, and that otherwise P is disjoint from $\bigcup\left\{\eta(e): e \in E_{1} \cup E_{2}\right\}$. Assume also that x_{1} is an inbound vertex of $\eta(e)$, that x_{2} and x_{3} are outbound, and that either $x_{2}=x_{3}=x_{4}$, or $x_{1}, x_{2}, x_{4}, x_{3}, x_{e}$ are pairwise distinct and occur on $\eta(e)$ in the order listed. In those circumstances we say that P intersects $\eta(e)$ regularly from x_{0} to x_{5}.

Let (P, Q) be a v_{0}-augmentation of η and let P have ends a and b where $a \in V\left(\eta\left(v_{0}\right)\right)$. We say that (P, Q) is of type A if whenever P intersects $\eta(e)$ for some $e \in E_{1} \cup E_{2}$, then P and $\eta(e)$ intersect in a path whose one end is a common end of P and $\eta(e)$. Thus P intersects at most one $\eta(e)$, because the common end must be b, and b does not belong to $\eta\left(v_{1}\right) \cup \eta\left(v_{2}\right)$. See Fig. 7.

We say that (P, Q) is of type B if there exist a vertex $x \in V(P)$, an index $i \in\{1,2\}$, and an edge $e \in E_{i}$ such that the vertex v_{i} has degree at most three, the path $P[a, x]$ intersects $\eta(e)$ regularly from a to x, and if $P[x, b] \backslash x$ intersects $\eta\left(e^{\prime}\right)$ for some $e^{\prime} \in E(H)$, then $P[x, b] \backslash x$ and $\eta\left(e^{\prime}\right)$ intersect in a path and have a common end. Moreover, if $e=e^{\prime}$, then we require that $P[a, x] \cap \eta(e)$ be a path. We say that (P, Q) crosses $\eta(e)$. See Fig. 8 .

Fig. 7. Augmentations of type A.

Fig. 8. Augmentations of type B.

We say that (P, Q) is of type C if there exist vertices $x_{1}, x_{2} \in V(P)$ such that a, x_{1}, x_{2}, b occur on P in the order listed, and there exist distinct edges e_{1}, e_{2}, one in E_{1} and the other in E_{2}, such that the end of e_{1} in $\left\{v_{1}, v_{2}\right\}$ has degree at most three, $P\left[a, x_{1}\right]$ intersects $\eta\left(e_{1}\right)$ regularly from a to $x_{1}, P\left[x_{1}, x_{2}\right]$ has no internal vertices in $\eta(H)$ and x_{2} is an inbound vertex of $\eta\left(e_{2}\right)$. We say that (P, Q) crosses $\eta\left(e_{1}\right)$. See Fig. 9 .

We say that (P, Q) is of type D if for some $i \in\{1,2\}$ and some $e \in E_{i}$ the vertex v_{i} has degree at least four and there exists an inbound vertex x of $\eta(e)$ such that $x \in V(P)$ and $P[a, x]$ has no internal vertex in $\eta(H)$.

Fig. 9. Augmentations of type C.

The following classification of minimal v_{0}-augmentations is the third main result of this section.
(4.5) Let H and G be graphs, and let $\eta: H \hookrightarrow G$. Let $v_{0} \in V(H)$ have degree two, and let v_{1}, v_{2} be its neighbors. Assume that v_{1} is not adjacent to v_{2}. Then every minimal v_{0}-augmentation of η is of type $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .

Proof. Let (P, Q) be a minimal v_{0}-augmentation of η, let x_{0} be the end of P in $\eta\left(v_{0}\right)$, and let b be the other end of P. We wish to think of P as being directed away from x_{0}; thus language such as "the first vertex of P in a set Z " will mean the vertex of $V(P) \cap Z$ that is closest to x_{0} on P. Let E_{1} and E_{2} be as in the definition of v_{0}-augmentation.

Let us assume for a moment that P includes an internal vertex of some $\eta(e)$, where $e \in E(H)$ is not incident with v_{0}, v_{1}, or v_{2}. Let z be the first such vertex on P. The vertex z divides $\eta(e)$ into two subpaths, one even and one odd. Let R be the even one. Then $\left(P\left[x_{0}, z\right] \cup R, Q\right)$ is a v_{0}-augmentation, and hence the minimality of (P, Q) implies that $R=P[z, b]$. If $e \in E_{1} \cup E_{2}$ and z is an outbound vertex, then the same conclusion holds. This will be later referred to as the confluence property of P.

If P includes an internal vertex of $\eta\left(e_{1}\right)$ for no $e_{1} \in E_{1} \cup E_{2}$, then (P, Q) is of type A . Thus we may assume that P includes such a vertex, and let x_{1} be the first such vertex on P. From the symmetry we may assume that $e_{1}=v_{1} v_{3} \in E_{1}$. If x_{1} is an outbound vertex, then the confluence property of P implies that (P, Q) is of type A. Thus we may assume that x_{1} is inbound. If v_{1} has degree at least four, then (P, Q) is of type D , and so we may assume that v_{1} has degree at most three. It follows from axiom (7) in the definition of an embedding that v_{1} has degree exactly three.

Let x_{2} be the first vertex on P that belongs to $\eta(z)$ for some $z \in V(H) \cup E(H)$ not equal, incident or adjacent to v_{0} and not equal to e_{1}. Then x_{1} lies on P between x_{0} and x_{2}. Let $P_{1}=$ $\eta\left(e_{1}\right)$. By (3.4) applied to $P_{1}, P_{2}=P, r=x_{2}, s_{2}=x_{0}, t_{2}=b$ and the ends of P_{1} numbered so that $s_{1} \in V\left(\eta\left(v_{0}\right)\right)$ and $t_{1} \in V\left(\eta\left(v_{3}\right)\right)$ we deduce that (1), (2), or (3) of (3.4) holds. But (1) does not hold by the minimality of (P, Q), and if (2) holds, then (R, Q) is a v_{0}-augmentation of type A or B. Thus we may assume that (3) of (3.4) holds. Since x_{1} is an inbound vertex, this implies that either there exist vertices $y_{1}, y_{2} \in V\left(P_{1}\right)$ such that y_{1} and y_{2} are outbound, $P\left[x_{1}, y_{1}\right] \subseteq P_{1}$, $x_{1} \in P_{1}\left[y_{1}, y_{2}\right]$ and $P\left[y_{1}, y_{2}\right]$ has no internal vertices in $\eta(H)$, or $P\left[x_{0}, x_{2}\right] \backslash x_{2}$ intersects $\eta\left(e_{1}\right)$ regularly from x_{0} to x_{2}. In the former case $\left(P\left[x_{0}, y_{2}\right] \cup P_{1}\left[y_{2}, t_{1}\right], Q\right)$ is a v_{0}-augmentation of η of type B , and hence we may assume that the latter case holds. Thus $P\left[x_{0}, x_{2}\right] \backslash x_{2}$ intersects $\eta\left(e_{1}\right)$ regularly from x_{0} to x_{2}, and if $x_{2}=t_{2}$, then $P\left[x_{0}, x_{2}\right] \backslash x_{2}$ intersects $\eta\left(e_{1}\right)$ in a path.

If $x_{2} \in \bigcup\left\{V(\eta(v)): v \in V(H)-\left\{v_{0}, v_{1}, v_{2}\right\}\right\}$, then (P, Q) is of type B. Therefore we may assume that $x_{2} \in V\left(\eta\left(e_{2}\right)\right)$ for some $e_{2} \in E\left(H \backslash v_{0}\right)-\left\{e_{1}\right\}$. By the confluence property of P we may assume that $e_{2} \in E_{1} \cup E_{2}$ and that x_{2} is inbound, for otherwise (P, Q) is of type B .

If $e_{2} \in E_{2}$, then (P, Q) is of type C , and the lemma holds. Thus we may assume that $e_{2} \in$ $E_{1}-\left\{e_{1}\right\}$. Let y be such that $\eta\left(e_{2}\right)\left[x_{2}, y\right]$ is a component of $\eta\left(e_{2}\right) \cap P$. For simplicity of notation assume that Q is empty. The argument in the other case is similar. As v_{1} has degree three, axiom (8) in the definition of an embedding implies that the tree $\eta\left(v_{1}\right)$ consists a single vertex, say u_{1}. Since x_{2} is inbound it follows that y lies between u_{1} and x_{2} in $\eta\left(e_{2}\right)$. Let C be the cycle $P\left[x_{0}, y\right] \cup \eta\left(e_{2}\right)\left[y, u_{1}\right] \cup S$, where $S=\eta\left(v_{0}\right)\left[x_{0}, u_{1}\right]$. The subgraph of G with edge-set $E(P) \triangle E(C)$ includes a path with ends x_{0} and b, say P^{\prime}. Let f be the edge of $P\left[x_{0}, x_{1}\right]$ incident to x_{1}. We define a new embedding $\eta^{\prime}: H \hookrightarrow G$ by $\eta^{\prime}\left(e_{1}\right)=\eta\left(e_{1}\right)\left[x_{1}, t_{1}\right], \eta^{\prime}\left(e_{2}\right)=P\left[x_{1}, x_{2}\right] \cup$ $\eta\left(e_{2}\right)\left[x_{2}, z\right]$ (where $z \neq u_{1}$ is the other end of $\eta\left(e_{2}\right)$), $\eta^{\prime}\left(v_{1}\right)$ is the graph with vertex-set $\left\{x_{1}\right\}$, we define $\eta^{\prime}\left(v_{0} v_{1}\right)$ to be the path with edge-set $\{f\}$, we define $\eta^{\prime}\left(v_{0}\right)$ to be the path obtained from $\eta\left(v_{0}\right)$ by replacing $\eta\left(v_{0}\right)\left[x_{0}, u_{1}\right]$ by $P\left[x_{0}, x_{1}\right] \backslash x_{1}$, and we define $\eta^{\prime}(x)=\eta(x)$ for all other $x \in V(H) \cup E(H)$. It follows that $\left(P^{\prime}, Q\right)$ is a v_{0}-augmentation of η^{\prime}, contrary to the minimality of (P, Q), because $P^{\prime} \cup Q \cup \eta^{\prime}(H)$ does not include the edge of $\eta\left(e_{2}\right)\left[y, x_{2}\right]$ incident with x_{2}.

5. Disposition of bisplits

The purpose of this section is to prove (1.11) under the additional hypothesis that a graph, say H^{\prime}, obtained from H by bisplitting some vertex is isomorphic to a matching minor of G. If that is the case we apply (4.4) and (4.5). We handle the four possible outcomes of (4.5) separately.
(5.1) Let H and G be graphs, where H has minimum degree at least three. Let H^{\prime} be obtained from H by bisplitting a vertex v, and let v_{0} be the new inner vertex. Let $\eta: H^{\prime} \hookrightarrow G$, and assume that there exists a v_{0}-augmentation of η of type A. Then a linear extension of H is isomorphic to a matching minor of G.

Proof. Let v_{1} and v_{2} be the new outer vertices of H^{\prime}, let (P, Q) be a v_{0}-augmentation of η of type A, and let a and b be the ends of P, where $a \in V\left(\eta\left(v_{0}\right)\right)$. Let $b \in \eta(u)$, where $u \in$ $V(H)-\left\{v_{0}, v_{1}, v_{2}\right\}$. Let us assume first that b is protected. If Q is null, then $H^{\prime}+\left(v_{0}, u\right)$ is isomorphic to a matching minor of G, and otherwise (by ignoring Q and bicontracting its ends) we see that $H+(v, u)$ is isomorphic to a matching minor of G and is a linear extension of H unless $v u \in E(H)$. If $v u \in E(H)$ we assume without loss of generality that $u v_{1} \in E\left(H^{\prime}\right)$. Then $\eta\left(H^{\prime} \backslash u v_{1}\right) \cup P \cup Q$ is isomorphic to a bisubdivision of a linear extension of H.

Now let us assume that b is exposed. Let T_{1}, T_{2} be the two components of $\eta(u) \backslash b$. For each neighbor w of u in H the path $\eta(u w)$ has exactly one end in $\eta(u)$; that end is an old vertex by axiom (4) in the definition of embedding, and hence belongs to either T_{1} or T_{2}. For $i=1,2$ let N_{i} be the set of all neighbors w of u such that the end of $\eta(u w)$ in $\eta(u)$ belongs to T_{i}. Let H_{1} be obtained from H by bisplitting u so that one of the new outer vertices is adjacent to every vertex of N_{1}, and the other new outer vertex is adjacent to every vertex of N_{2}. (Here we use that u has degree at least three.) Let u_{0} be the new inner vertex of H_{1}. Let H_{1}^{\prime} be defined similarly, but starting from H^{\prime} rather than H, and let the new inner vertex be also u_{0}. If Q is null, then $H_{1}^{\prime}+\left(v_{0}, u_{0}\right)$ is isomorphic to a matching minor of G; otherwise $H_{1}+\left(v, u_{0}\right)$ is isomorphic to a matching minor of G, as desired.
(5.2) Let H and G be graphs, let $\eta: H \hookrightarrow G$ be an embedding, let v_{0} be vertex of H of degree two, and let v_{1} be a neighbor of v_{0} of degree three with neighbors $v_{0}, v_{1}^{\prime}, v_{1}^{\prime \prime}$. Let (P, Q) be a v_{0} augmentation of η of type B or C that crosses $\eta\left(v_{1} v_{1}^{\prime}\right)$. Then there exists an embedding $\eta^{\prime}: H \hookrightarrow$ G and a v_{0}-augmentation $\left(P^{\prime}, Q^{\prime}\right)$ of η^{\prime} of the same type as (P, Q) that crosses $\eta^{\prime}\left(v_{1} v_{1}^{\prime \prime}\right)$ such that $\eta^{\prime}(H) \cup P^{\prime} \cup Q^{\prime} \subseteq \eta(H) \cup P \cup Q$ and P and P^{\prime} have the same terminus.

Proof. We first define η^{\prime}. Let x_{0} be the end of P in $\eta\left(v_{0}\right)$, let x_{6} be the other end of P, let $x_{5} \in V(P)$, and let $x_{0}, x_{1}, \ldots, x_{5}$ be as in the definition of regular intersection, witnessing that $P\left[x_{0}, x_{5}\right]$ intersects $\eta\left(v_{1} v_{1}^{\prime}\right)$ regularly from x_{0} to x_{5}. We define $\eta^{\prime}\left(v_{1}\right)=x_{1}$, we define $\eta^{\prime}\left(v_{1} v_{1}^{\prime}\right)$ to be the subpath of $\eta\left(v_{1} v_{1}^{\prime}\right)$ with one end x_{1} and the other end in $\eta\left(v_{1}^{\prime}\right)$, we define $\eta^{\prime}\left(v_{1} v_{1}^{\prime \prime}\right)$ to be the union of the complementary subpath of $\eta\left(v_{1} v_{1}^{\prime}\right)$ and $\eta\left(v_{1} v_{1}^{\prime \prime}\right)$, we define $\eta^{\prime}\left(v_{0}\right)$ to be a suitable subgraph of $\eta\left(v_{0}\right) \cup P \cup Q$, define $\eta^{\prime}\left(v_{0} v_{1}\right)$ to be the edge of $P\left[x_{0}, x_{1}\right]$ incident with x_{1}, and we define $\eta^{\prime}(x)=\eta(x)$ for all other $x \in V(H) \cup E(H)$. Then $\eta^{\prime}: H \hookrightarrow G$.

It is now easy to find subpaths Q^{\prime} and $P^{\prime \prime}$ of $\eta\left(v_{0}\right) \cup \eta\left(v_{0} v_{1}\right) \cup \eta\left(v_{1} v_{1}^{\prime}\right) \cup P \cup Q$ such that $\left(P^{\prime \prime} \cup P\left[x_{4}, x_{6}\right], Q^{\prime}\right)$ is the desired v_{0}-augmentation of η^{\prime}.
(5.3) Let H and G be graphs, where H has minimum degree at least three. Let H^{\prime} be obtained from H by bisplitting a vertex v, and let v_{0} be the new inner vertex. Let $\eta: H^{\prime} \hookrightarrow G$, and assume that there exists a v_{0}-augmentation of η of type B . Then a linear extension of H is isomorphic to a matching minor of G.

Proof. Let v_{1} and v_{2} be the new outer vertices of H^{\prime}. Let (P, Q) be a v_{0}-augmentation of η of type B, let x_{0}, x_{6} be the ends of P, where $x_{0} \in V\left(\eta\left(v_{0}\right)\right)$ and $x_{6} \in V(\eta(u))$, and let P cross $\eta\left(e_{1}\right)$, where $e_{1}=v_{1} v_{1}^{\prime}$ and $v_{1}^{\prime} \neq v_{0}$, is a neighbor of v_{1} in H^{\prime}. Let $x_{5} \in V(P)$ be such that $P\left[x_{0}, x_{5}\right]$ intersects $\eta\left(e_{1}\right)$ regularly from x_{0} to x_{5}, and let the vertices $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be as in the definition of regular intersection. Notice that v_{1} has degree three; thus $\eta\left(v_{1}\right)$ consists of a unique vertex by condition (8) in the definition of embedding. Let $v_{1}^{\prime \prime}$ be the third neighbor of v_{1}. By (5.2) we may assume that $u \neq v_{1}^{\prime}$.

Assume first that x_{2}, x_{3}, x_{4} are pairwise distinct. The path $P\left[x_{4}, x_{6}\right]$ proves that a linear extension of H is isomorphic to a matching minor of G, unless x_{6} is a protected vertex of $\eta(u)$ and u is adjacent to v in H. Let $i \in\{1,2\}$ be such that u is adjacent to v_{i} in H^{\prime}. Consider the graph obtained from $\eta(H) \cup P\left[x_{4}, x_{0}\right]$ by deleting the interior of $\eta\left(v_{i} u\right)$; the path $P\left[x_{2}, x_{3}\right]$ proves that the linear extension $H^{\prime \prime}+\left(v_{0}^{\prime}, v_{1}^{\prime}\right)$ of H is isomorphic to a matching minor of G, where $H^{\prime \prime}$ is obtained from H by bisplitting of the vertex v so that one of the new outer vertices is adjacent to v_{1}^{\prime} and u, the other outer vertex is adjacent to all other neighbors of v and v_{0}^{\prime} is the new inner vertex.

Thus we may assume that $x_{2}=x_{3}=x_{4}$. Again the path $P\left[x_{4}, x_{6}\right]$ proves that a linear extension of H is isomorphic to a matching minor of G, unless x_{6} is a protected vertex of $\eta(u)$ and u is adjacent to v_{1}^{\prime} in H. Thus we may assume that x_{6} is a protected vertex of $\eta(u)$ and u is adjacent to v_{1}^{\prime} in H. If v_{1}^{\prime} has degree at least four, then let $H^{\prime \prime}$ be obtained from H^{\prime} by bisplitting v_{1}^{\prime} in such a way that one of the new vertices is adjacent to v_{1} and u, and let z be the new vertex. Then $H^{\prime \prime}+\left(v_{0}, z\right)$ is a linear extension of H and is clearly isomorphic to a matching minor of G. If v_{1}^{\prime} has degree three we replace $\eta\left(v_{1}^{\prime} u\right)$ by $P\left[x_{4}, x_{6}\right]$ and notice that (P, Q) can be easily converted to a v_{0}-augmentation (P^{\prime}, Q^{\prime}) of type A of the embedding thus obtained. (Notice that the terminus of P^{\prime} does not belong to $\eta\left(v_{2}\right)$, because H^{\prime} is obtained from H by bisplitting v.) Hence the theorem follows from (5.1).

For the next lemma we need the following generalization of v_{0}-augmentations. Let $v_{0} \in V(H)$ have degree two, and let v_{1}, v_{2} be its neighbors. For $i=1,2$ let E_{i} be the set of edges of H incident with v_{i}, except for the edge $v_{0} v_{i}$, and let $E_{1} \cap E_{2}=\emptyset$. Let R be the interior of $\eta\left(v_{0}\right)$, let M_{1} be a perfect matching of $G \backslash V(\eta(H))$, let $x \in V(R)$, let M_{2} be a perfect matching of $R \backslash x$, and let $M=M_{1} \cup M_{2} \cup M(\eta)$. Let P be an M-alternating path with one end x and the other end u in $\bigcup\left\{\eta(v): v \in V(H)-\left\{v_{0}, v_{1}, v_{2}\right\}\right\}$. We say that P is a weak v_{0}-augmentation of η. It follows that P has no internal vertex in $\bigcup_{v \in V(H)-\left\{v_{0}\right\}} \eta(v)$. This is indeed a generalization of v_{0}-augmentation. For let (P, Q) be a v_{0}-augmentation of η. If Q is null, then P is a weak v_{0}-augmentation of η, and otherwise $Q \cup S \cup P$ is a weak v_{0}-augmentation of η, where S is a subpath of $\eta\left(v_{0}\right)$ with one end the end of P and the other end an end of Q.
(5.4) Let H, G be graphs, let $\eta: H \hookrightarrow G$ be an embedding, let v_{0} be a vertex of H of degree two belonging to no triangle of H, and let R be a weak v_{0}-augmentation of η. Then there exist an embedding $\eta^{\prime}: H \hookrightarrow G$ and a v_{0}-augmentation (P, Q) of η^{\prime} such that $P \cup Q \cup \eta^{\prime}(H) \subseteq$ $R \cup \eta(H)$.

Proof. We may assume that R is minimal in the sense that there does not exist an embedding $\eta^{\prime}: H \hookrightarrow G$ and a weak v_{0}-augmentation R^{\prime} of η^{\prime} such that $R^{\prime} \cup \eta^{\prime}(H)$ is a proper subgraph of $R \cup \eta(H)$. It follows that R has the confluence property introduced in the proof of (4.5). Let v_{1}, v_{2} be the neighbors of v_{0}, and let E be the set of all edges of H incident with a neighbor of v_{0}, but not with v_{0} itself.

Let a, b be the ends of R, where $a \in V\left(\eta\left(v_{0}\right)\right)$ and let z_{1}, z_{2} be the ends of $\eta\left(v_{0}\right)$. Assume first that R has a vertex x such that $R[a, x]$ includes an internal vertex of $\eta(e)$ for no edge $e \in E$, and $R[x, b]$ includes no vertex of $\eta\left(v_{0}\right)$. Let Ω be a path octopus with head a and graph $\eta\left(v_{0}\right)$. We apply (3.5) to Ω and $R[a, x]$ to produce a path octopus Ω^{\prime} with head z and ends z_{1} and z_{2} and a path R^{\prime} with ends z and x. Define η^{\prime} so that $\eta^{\prime}\left(v_{0}\right)$ is the graph of Ω^{\prime} and otherwise η^{\prime} coincides with η. Let P be a maximal subpath of $R^{\prime} \cup R[x, b]$ with no internal vertex in $\eta^{\prime}\left(v_{0}\right)$ containing b and let Q be a maximal nonempty subpath of $R^{\prime} \backslash V(P)$ with no internal vertex in $\eta^{\prime}\left(v_{0}\right)$ if such a path exists, and otherwise let Q be the null graph. It is easy to check that (P, Q) is a v_{0}-augmentation of η^{\prime}.

Thus we may assume that the assumption of the previous paragraph does not hold. Thus there exists an edge $e \in E$ such that when following R starting from a at some point we encounter an internal vertex of $\eta(e)$, and later an internal vertex of $\eta\left(v_{0}\right)$, say t. Let T be the component of $R \cap \eta\left(v_{0}\right)$ containing t. Let the ends of e be v_{1} and v_{1}^{\prime}, where v_{1} is adjacent to v_{0}, and let the ends of $\eta(e)$ be u_{1} and u_{1}^{\prime}, where u_{1} belongs to $\eta\left(v_{1}\right)$ and u_{1}^{\prime} belongs to $\eta\left(v_{1}^{\prime}\right)$. Let S be the component of $R[a, t] \cap \eta(e)$ that is closest to u_{1}^{\prime} on $\eta(e)$. Let t_{1}, t_{2} be the ends of T, where
a, t_{1}, t_{2}, b occur on R in the order listed, and let s_{1}, s_{2} be the ends of S chosen similarly. If t_{2} lies at an even distance from a on $\eta\left(v_{0}\right)$, then $R\left[t_{2}, b\right]$ is a weak v_{0}-augmentation of η, contrary to the minimality of R. Thus t_{1} lies at an even distance from a on $\eta\left(v_{0}\right)$. It follows from the confluence property that s_{1} is an inbound vertex of $\eta(e)$ (that is, its distance from u_{1} on $\eta(e)$ is even). Thus s_{2} is an outbound vertex, and hence $R\left[t_{1}, s_{2}\right] \cup \eta(e)\left[s_{2}, u_{1}^{\prime}\right]$ is a weak v_{0}-augmentation of η, contrary to the minimality of R.

Let H and G be graphs, let H^{\prime} be obtained from H by bisplitting a vertex v, and let v_{0} be the new inner vertex. Let $\eta: H^{\prime} \hookrightarrow G$, and let (P, Q) be a v_{0}-augmentation of η. We say that (P, Q) is strongly minimal if there exists no graph $H^{\prime \prime}$ obtained from H by bisplitting v, an embedding $\eta^{\prime \prime}: H^{\prime \prime} \hookrightarrow G$ and (letting $v_{0}^{\prime \prime}$ denote the new inner vertex of $H_{0}^{\prime \prime}$) a $v_{0}^{\prime \prime}$-augmentation ($P^{\prime \prime}, Q^{\prime \prime}$) of $\eta^{\prime \prime}$ such that $\eta^{\prime \prime}\left(H^{\prime \prime}\right) \cup P^{\prime \prime} \cup Q^{\prime \prime}$ is a proper subgraph of $\eta\left(H^{\prime}\right) \cup P \cup Q$.
(5.5) Let H and G be graphs. Let H^{\prime} be obtained from H by bisplitting a vertex v, let v_{0} be the new inner vertex, and let $\eta: H^{\prime} \hookrightarrow G$. Then no v_{0}-augmentation of η of type C is strongly minimal.

Proof. Let v_{1}, v_{2} be the new outer vertices of H^{\prime}, let (P, Q) be a v_{0}-augmentation of η of type C, let a, b be the ends of P with $a \in V\left(\eta\left(v_{0}\right)\right)$, and let $x_{1}, x_{2}, e_{1}, e_{2}$ be as in the definition of augmentation of type C . The vertex v_{1} has degree three; let $e_{1}^{\prime} \notin\left\{e_{1}, v_{1} v_{0}\right\}$ be the third incident edge. Let $H^{\prime \prime}$ be obtained from H by bisplitting v into new outer vertices $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and new inner vertex $v_{0}^{\prime \prime}$, where $v_{1}^{\prime \prime}$ is incident with e_{1} and e_{2}, and $v_{2}^{\prime \prime}$ is incident with all the remaining edges of H incident with v. The embedding η can be modified to produce an embedding $\eta^{\prime \prime}: H^{\prime \prime} \hookrightarrow G$ with $\eta^{\prime \prime}(H) \subseteq P \cup \eta(H)$ by defining $\eta^{\prime \prime}\left(v_{2}^{\prime \prime}\right)=\eta\left(v_{2}\right)$, by defining $\eta^{\prime \prime}\left(v_{1}^{\prime \prime}\right)$ to be the graph with vertex set $\left\{x_{2}\right\}$, by letting $\eta^{\prime \prime}\left(e_{2}\right)$ be a subpath of $\eta\left(e_{2}\right)$ with end x_{2}, by letting $\eta^{\prime \prime}\left(e_{1}\right)$ be the union of a subpath of $P\left[x_{2}, a\right]$ with a suitable subpath of $\eta\left(e_{1}\right)$, and by letting $\eta^{\prime \prime}\left(e_{1}^{\prime}\right)=\eta\left(v_{0}\right) \cup$ $\eta\left(v_{1} v_{0}\right) \cup \eta\left(v_{2} v_{0}\right) \cup \eta\left(e_{1}^{\prime}\right)$. Now $P\left[x_{2}, b\right] \backslash x_{2}$ is a weak $v_{0}^{\prime \prime}$-augmentation of $\eta^{\prime \prime}$. By (5.4) there exists an embedding $\xi: H^{\prime \prime} \hookrightarrow G$ and a $v_{0}^{\prime \prime}$-augmentation ($P^{\prime \prime}, Q^{\prime \prime}$) of $\eta^{\prime \prime}$ such that

$$
P^{\prime \prime} \cup Q^{\prime \prime} \cup \xi\left(H^{\prime \prime}\right) \subseteq P\left[x_{2}, b\right] \cup \eta^{\prime \prime}\left(H^{\prime \prime}\right) \subseteq P \cup \eta(H)
$$

but $P^{\prime \prime} \cup Q^{\prime \prime} \cup \xi\left(H^{\prime \prime}\right)$ does not use the edge of P incident with a, contrary to the weak minimality of (P, Q).
(5.6) Let H and G be graphs, let H^{\prime} be obtained from H by bisplitting a vertex v, let v_{0} be the new inner vertex, and let $\eta: H^{\prime} \hookrightarrow G$. Then no v_{0}-augmentation of η of type D is strongly minimal.

Proof. Let v_{1}, v_{2} be the new outer vertices of H^{\prime}, let (P, Q) be a v_{0}-augmentation of η of type D, let a, b be the ends of P with $a \in V\left(\eta\left(v_{0}\right)\right)$, and let i, e, x be as in the definition of augmentation of type D . We may assume that $i=1$. Let $H^{\prime \prime}$ be obtained from H by bisplitting v into new outer vertices $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}$ and new inner vertex $v_{0}^{\prime \prime}$, where $v_{1}^{\prime \prime}$ is incident with all the edges of H incident with v_{1} in H^{\prime} except e (note that $v_{0} v_{1} \notin E(H)$), and $v_{2}^{\prime \prime}$ is incident with all the remaining edges of H incident with v. The embedding η can be modified to produce an embedding $\eta^{\prime \prime}: H^{\prime \prime} \hookrightarrow G$ with $\eta^{\prime \prime}(H) \subseteq P \cup \eta(H)$ by defining $\eta^{\prime \prime}\left(v_{1}^{\prime \prime}\right)=\eta\left(v_{1}^{\prime}\right)$ and letting $\eta^{\prime \prime}\left(v_{2}^{\prime \prime}\right)$ be a suitable subgraph of $\eta\left(v_{2}\right) \cup \eta\left(v_{0}\right) \cup \eta\left(v_{0} v_{2}\right) \cup P[a, x] \cup Q$. Now $P[x, b] \backslash x$ includes a weak $v_{0}^{\prime \prime}$-augmentation
of $\eta^{\prime \prime}$. By (5.4) there exists an embedding $\xi: H^{\prime \prime} \hookrightarrow G$ and a $v_{0}^{\prime \prime}$-augmentation ($P^{\prime \prime}, Q^{\prime \prime}$) of $\eta^{\prime \prime}$ such that

$$
P^{\prime \prime} \cup Q^{\prime \prime} \cup \xi\left(H^{\prime \prime}\right) \subseteq P[x, b] \cup \eta^{\prime \prime}\left(H^{\prime \prime}\right) \subseteq P \cup \eta(H)
$$

but $P^{\prime \prime} \cup Q^{\prime \prime} \cup \xi\left(H^{\prime \prime}\right)$ does not use one of the edges of $\eta\left(v_{0}\right)$ incident with a, contrary to the weak minimality of (P, Q).

We summarize (5.1), (5.3), (5.5), and (5.6) into the following.
(5.7) Let H and G be graphs, where H has minimum degree at least three, let H^{\prime} be obtained from H by bisplitting a vertex v, let v_{0} be the new inner vertex, let $\eta: H^{\prime} \hookrightarrow G$ be an embedding and assume that there exists a v_{0}-augmentation of η. Then a linear extension of H is isomorphic to a matching minor of G.

Proof. We may assume that the v_{0}-augmentation is strongly minimal. By (4.5) it is of type A, B, C, or D. By (5.5) and (5.6) it is of type A or B, and so the result holds by (5.1) and (5.3).

We say that an embedding $\eta: H \hookrightarrow G$ is a homeomorphic embedding if $\eta(v)$ has exactly one vertex for every $v \in V(H)$ of degree at least three. The next lemma motivates this definition.
(5.8) Let H and G be graphs. Then there exists an embedding $\eta: H \hookrightarrow G$ which is not a homeomorphic embedding if and only if a graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of G.

Proof. Suppose that $\eta: H \hookrightarrow G$ and that for some vertex $v \in V(H)$ of degree at least three its image $\eta(v)$ has more than one vertex. Then there exists a branch B of $\eta(v)$ with length greater than zero. The argument from the last paragraph of the proof of (4.4) applied to $\eta(v)$ and B, provides us with an embedding into G of a graph H_{1} obtained from H by bisplitting v and therefore by (4.2) the graph H_{1} is isomorphic to a matching minor of G.

On the other hand let a graph H^{\prime}, obtained from H by bisplitting some vertex v into new outer vertices v_{1} and v_{2} and new inner vertex v_{0}, be isomorphic to a matching minor of G. Then by (4.2) there exists an embedding $\eta^{\prime}: H^{\prime} \hookrightarrow G$. Let J be the subgraph of H induced by $\left\{v_{0}, v_{1}, v_{2}\right\}$. Define an embedding $\eta: H \hookrightarrow G$ by saying that $\eta(v)=\eta^{\prime}(J), \eta(v u)=\eta^{\prime}\left(v_{i} u\right)$ for $i \in\{1,2\}$ and all neighbors $u \neq v_{0}$ of v_{i}, and otherwise η coincides with η^{\prime}. Clearly $\eta(v)$ has more than one vertex and therefore η is not a homeomorphic embedding.

The following theorem and its corollary are the main results of this section.
(5.9) Let G be a brick, let H be a graph of minimum degree at least three, and let $\eta: H \hookrightarrow G$. If η is not a homeomorphic embedding, then a linear extension of H is isomorphic to a matching minor of G.

Proof. Let v be a vertex of H of degree at least three such that $\eta(v)$ has at least two vertices. By axiom (8) in the definition of an embedding the vertex v has degree at least four. We apply (4.4) to H, G, η and v. If outcome (4.4)(1) holds then (5.9) holds by (5.7).

Therefore we may assume that (2) of (4.4) holds, and let $\eta_{2}, P, p_{1}, p_{2}, B_{1}, B_{2}, Q_{1}$ and Q_{2} be as in (4.4). Let G^{\prime} be the graph obtained from $\eta_{2}(H) \cup P \cup Q_{1} \cup Q_{2}$ by bicontracting all exposed
vertices, except those in $B_{1} \cup B_{2}$. Note that G^{\prime} is a matching minor of G and therefore it suffices to prove that a linear extension of H is isomorphic to a matching minor of G^{\prime}. If both Q_{1} and Q_{2} are null, then the graph G^{\prime} is isomorphic to a bisubdivision of a graph obtained from H by two bisplits and adding an edge joining the two new inner vertices. Thus a linear extension of H is isomorphic to a matching minor of G.

Therefore we may assume that Q_{2} is not null. Let u be the common end of B_{1} and B_{2} in G^{\prime} and let u_{1} and u_{2} be the other ends of B_{1} and B_{2} correspondingly. If Q_{1} is not null, denote its ends by q and q^{\prime} so that $q \in B_{1}\left[p_{1}, u_{1}\right]$ and let $q=q^{\prime}=p_{1}$ otherwise. If u has degree at least four in G^{\prime} then the graph $G^{\prime \prime}$ obtained from G^{\prime} by deleting the interiors of $B_{1}\left[u, q^{\prime}\right], B_{1}\left[p_{1}, q\right]$ and Q_{2} can be bicontracted to a graph obtained from H by two bisplits and Q_{2} can be bicontracted to an edge joining the two new inner vertices. Thus again a linear extension of H is isomorphic to a matching minor of G.

Therefore we may assume that u has degree three in G^{\prime}. Hence there exists a unique vertex $w \in V(H)$ such that $u \in \eta_{2}(v w)$. Now $G^{\prime \prime}$ can be bicontracted to a graph obtained from H by bisplitting v and Q_{2} can be bicontracted to an edge joining the new inner vertex to w. We deduce that a linear extension of H is isomorphic to a matching minor of G, as desired.

The next result follows immediately from (5.8) and (5.9).
(5.10) Let G be a brick, let H be a graph of minimum degree at least three, and assume that a graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of G. Then a linear extension of H is isomorphic to a matching minor of G.

6. The hierarchy of extensions

For the sake of exposition let us define a split extension of a graph H to be any graph obtained from H by bisplitting a vertex. We have seen in the previous section that if a split extension of H is isomorphic to a matching minor of G, then the conclusion of Theorem (1.11) holds. The purpose of this short section is to define other types of extensions and to give an ordering on these extensions, and to reformulate (4.5). The ordering reflects the order in which these extensions will be dealt with. We will be proving theorems of the form "if such an such extension is isomorphic to a matching minor of G, then an extension that is higher on our list of priorities is also isomorphic to a matching minor of G." Of course, the highest priority extensions are linear extensions.

Let us begin the definitions. The lowest on our list will be the following. Let H be a graph, let $v \in V(H)$ be a vertex of degree at least three, and let v_{1}, v_{2} be two distinct neighbors of v in H. Let H^{\prime} be obtained from H by bisubdividing the edge $v v_{1}$, and let x, y be the new vertices numbered so that x is adjacent to v. We say that the graph $H+\left(y, v_{2} v\right)$ is a vertex-parallel extension of H. We say that $H+\left(y, v_{2}\right)$ is an edge-parallel extension of H.

Let v be a vertex of degree 3 in a graph H and let v_{1}, v_{2} and v_{3} be its neighbors. We say that K is obtained from H by replacing v by a triangle if K is obtained from H by deleting the vertex v and adding the vertices u_{1}, u_{2}, u_{3} and edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}, u_{1} v_{1}, u_{2} v_{2}$ and $u_{3} v_{3}$.

Let H be a graph, let v be a vertex of H of degree at least three, and let v_{1} and v_{2} be two neighbors of v. Let K be obtained from H by bisubdividing the edges v, v_{1} and v, v_{2} and let $x_{1}, y_{1}, x_{2}, y_{2}$ be the new vertices numbered so that $v_{1} y_{1} x_{1} v x_{2} y_{2}$ is a path in K. Let $K^{\prime}=K+$ $\left(x_{1}, y_{2}\right)+\left(x_{2} y_{1}\right)$, and let $J=K^{\prime}$, or let J be obtained from K^{\prime} by replacing one or both of the vertices x_{1}, x_{2} by triangles. We say that J is a cross extension of H, and that v is its hub. See Fig. 10.

Fig. 10. A cross extension.

Fig. 11. A cube extension.

Let u be a vertex of H of degree three and let u_{1}, u_{2} and u_{3} be its neighbors. Let H_{0} be obtained from H by bisubdividing each of the edges $u u_{1}, u u_{2}$ and $u u_{3}$. Let the new vertices be y_{1}, y_{2}, y_{3} and z_{1}, z_{2}, z_{3} in such a way that $u_{1} y_{1} z_{3} u, u_{2} y_{2} z_{1} u$ and $u_{3} y_{3} z_{2} u$ are paths. Let $H_{1}:=H_{0}+\left(y_{1}, z_{2}\right)+\left(y_{2}, z_{3}\right)+\left(y_{3}, z_{1}\right)$, let H_{2} be obtained from H_{1} by replacing z_{1} by a triangle, let H_{3} be obtained from H_{2} by replacing z_{2} by a triangle, and let H_{4} be obtained from H_{3} by replacing z_{3} by a triangle. Then each of the graphs $H_{1}, H_{2}, H_{3}, H_{4}$ is called a cube extension of H. See Fig. 11 .

Let H be a graph, let $u v \in E(H)$, and let H^{\prime} be obtained from H by bisubdividing $u v$, where the new vertices x, y are such that x is adjacent to u and y. Let $x^{\prime} \in V(H)-\{u\}$ and $y^{\prime} \in V(H)-\{v\}$ be not necessarily distinct vertices such that not both belong to $\{u, v\}$. In those circumstances we say that $H^{\prime}+\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)$ is a quadratic extension of H. Now let $a b \in$ $E(H)-\{u v\}$ be such that $a \neq v$ and $u \neq b$, let $H^{\prime \prime}$ be obtained from H^{\prime} by bisubdividing $a b$, and let x^{\prime}, y^{\prime} be the new vertices. Then the graph $H^{\prime \prime}+\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)$ is called a quartic extension of H.

We are now ready to define the promised linear order on extensions. We define that linear extensions are better than quartic extensions, quartic extensions are better than quadratic extensions, which in turn are better than cross extensions, which are better than cube extensions, which are better than edge-parallel extensions, and those are better than vertex-parallel extensions. The linear order is depicted on Fig. 12.

Fig. 12. The linear order on extensions.

For later convenience we reformulate (4.5) in a form more suitable for applications. To do so we will need a definition, but before we can state it, we need to introduce a convention. Let G be a graph, let $w \in V(G)$, and let $u v$ be an edge of G not incident with w. Then the graph $G^{\prime}=G+(w, u v)$ has two new vertices, and it will be convenient to have a default notation for them. We shall use τ_{1} and τ_{2} to denote the new vertices, so that τ_{1} is adjacent to u, w and τ_{2} in G^{\prime}. We shall extend this convention naturally to more complicated scenarios, as exemplified by the following illustration. For instance, if $a b \in E(G)-\{u v\}$, then $G^{\prime \prime}=G+(w, u v)+\left(\tau_{2}, a b\right)$ means the graph $G^{\prime}+\left(\tau_{2}, a b\right)$, and its new vertices are denoted by τ_{3} and τ_{4} so that τ_{3} is adjacent to a, τ_{2} and τ_{4} in $G^{\prime \prime}$. In general, the new vertices will be numbered $\tau_{1}, \tau_{2}, \tau_{3}, \ldots$ in the order they arise as the input graph is read from left to right. Sometimes we will use $\rho_{1}, \rho_{2}, \ldots$ rather than $\tau_{1}, \tau_{2}, \ldots$ in order to avoid confusion.

Now we are ready for the definition. Let J, G be graphs, let v_{0} be a vertex of J of degree two, and let v_{1}, v_{2} be the neighbors of v_{0}. We wish to reformulate the outcomes of (4.5). Let $v \in V(J)-\left\{v_{0}, v_{1}, v_{2}\right\}$, let $i \in\{1,2\}$, and for $j=1,2$ let v_{j}^{\prime} be a neighbor of v_{j} other than v_{0}. We define the following graphs:

- $A_{1}(v)=J+\left(v_{0}, v\right)$,
- $A_{2}(v)=J+\left(v_{0}, v_{1} v_{0}\right)+\left(\tau_{2}, v\right)$,
- $B_{1}\left(v_{i}^{\prime} v_{i}, v\right)=J+\left(v_{0}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{2}, v\right)$,
- $B_{2}\left(v_{i}^{\prime} v_{i}, v\right)=J+\left(v_{0}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{2}, v_{i} \tau_{2}\right)+\left(\tau_{4}, v\right)$,
- $B_{3}\left(v_{i}^{\prime} v_{i}, v\right)=J+\left(v_{0}, v_{i} v_{0}\right)+\left(\tau_{2}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{4}, v\right)$,
- $B_{4}\left(v_{i}^{\prime} v_{i}, v\right)=J+\left(v_{0}, v_{i} v_{0}\right)+\left(\tau_{2}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{4}, v_{i} \tau_{4}\right)+\left(\tau_{6}, v\right)$,
- $C_{1}\left(v_{i}^{\prime} v_{i}, v_{3-i}^{\prime} v_{3-i}\right)=J+\left(v_{0}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{2}, v_{3-i}^{\prime} v_{3-i}\right)$,
- $C_{2}\left(v_{i}^{\prime} v_{i}, v_{3-i}^{\prime} v_{3-i}\right)=J+\left(v_{0}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{2}, v_{i} \tau_{2}\right)+\left(\tau_{4}, v_{3-i}^{\prime} v_{3-i}\right)$,
- $C_{3}\left(v_{i}^{\prime} v_{i}, v_{3-i}^{\prime} v_{3-i}\right)=J+\left(v_{0}, v_{i} v_{0}\right)+\left(\tau_{2}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{4}, v_{3-i}^{\prime} v_{3-i}\right)$,
- $C_{4}\left(v_{i}^{\prime} v_{i}, v_{3-i}^{\prime} v_{3-i}\right)=J+\left(v_{0}, v_{i} v_{0}\right)+\left(\tau_{2}, v_{i}^{\prime} v_{i}\right)+\left(\tau_{4}, v_{i} \tau_{4}\right)+\left(\tau_{6}, v_{3-i}^{\prime} v_{3-i}\right)$.

Sometimes we will omit the arguments when they will be clear from the context and write, e.g., B_{3} instead of $B_{3}\left(v_{i}^{\prime} v_{i}, v\right)$. The graphs A_{1}, \ldots, C_{4} correspond to augmentations of types A, B and C, shown in Figs. 7-9. The following lemma gives the promised reformulation of the outcomes of (4.5).
(6.1) Let J be a graph, let G be a brick, let v_{0} be a vertex of J of degree two, let v_{1}, v_{2} be the neighbors of v_{0}, for $i=1,2$ let $v_{i}^{\prime} \neq v_{0}$ be a neighbor of v_{i}, assume that v_{1} is not adjacent to v_{2}, assume that every vertex $v \in V(J)-\left\{v_{0}\right\}$ has a neighbor in $V(J)-\left\{v_{1}, v_{2}\right\}$, and assume that there exists an embedding $J \hookrightarrow G$. Then one of the following holds:
(A) there exists a vertex $v \in V(J)-\left\{v_{0}, v_{1}, v_{2}\right\}$ such that $A_{1}(v) \hookrightarrow G$ or $A_{2}(v) \hookrightarrow G$,
(B) there exist a vertex $v \in V(J)-\left\{v_{0}, v_{1}, v_{2}\right\}$ and indices $i \in\{1,2\}$ and $j \in\{1,2,3,4\}$ such that v_{i} has degree three and $B_{j}\left(v_{i}^{\prime} v_{i}, v\right) \hookrightarrow G$,
(C) there exist indices $i \in\{1,2\}$ and $j \in\{1,2,3,4\}$ such that v_{1}, v_{2} have degree three and $C_{j}\left(v_{i}^{\prime} v_{i}, v_{3-i}^{\prime} v_{3-i}\right) \hookrightarrow G$,
(D) some split extension of J is isomorphic to a matching minor of G.

Proof. Let $\eta: J \hookrightarrow G$. We may assume that η is a homeomorphic embedding, for otherwise (D) holds by (5.8). By changing η we may assume that $\eta\left(v_{1}\right)$ and $\eta\left(v_{2}\right)$ each have exactly one vertex, even if v_{1} or v_{2} has degree less than three. By (4.4) there exists an embedding $\eta^{\prime}: J \hookrightarrow G$ and a v_{0}-augmentation (P, Q) of η^{\prime}. We may assume that (P, Q) is minimal, and hence by (4.5) it is of type A, B, C or D. Similarly as above, we may assume that η^{\prime} is a homeomorphic embedding. Let P have origin $a \in V\left(\eta^{\prime}\left(v_{0}\right)\right)$ and terminus $b \in V\left(\eta^{\prime}(u)\right)$. We say that (P, Q) is good if either u has degree not equal to two, or u has degree two and b is at even distance from either end of $\eta^{\prime}(u)$ (recall that $\eta^{\prime}(u)$ is an even path when u has degree two, and otherwise $\eta^{\prime}(u)$ has exactly one vertex).

Suppose (P, Q) is not good. Then u has degree two and b is at odd distance from the ends of $\eta(u)$. Let u^{\prime} be a neighbor of u in $V(J)-\left\{v_{1}, v_{2}\right\}$ and let b^{\prime} and $b^{\prime \prime}$ be the ends of $\eta(u)$, such that $b^{\prime} \in V\left(\eta\left(u u^{\prime}\right)\right)$. Let G^{\prime} be obtained from $\eta(H) \cup P \cup Q$ by contracting the even path $\eta(u)\left[b, b^{\prime}\right] \cup \eta\left(u u^{\prime}\right)$. Define $\eta^{\prime}: J \hookrightarrow G^{\prime}$ as follows. Let $\eta^{\prime}(u)=\eta(u)\left[b^{\prime \prime}, b\right] \backslash b, \eta^{\prime}\left(u u^{\prime}\right)$ is a length one subpath of $\eta(u)\left[b, b^{\prime \prime}\right]$ with one end at b and η^{\prime} is otherwise equal to η. Note that (P, Q) is a good augmentation of η^{\prime}. Note also that G^{\prime} is a matching minor of G.

Therefore we may assume that (P, Q) is a good augmentation of η of type $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D . Now if (P, Q) is of type A, then outcome (A) holds, and similarly for type D , and, by (5.2), for type B . Thus we may assume that (P, Q) is of type C . From the symmetry we may assume that P crosses an edge incident with v_{1}, and by (5.2) we may assume that it crosses the edge $v_{1} v_{1}^{\prime}$. In particular, v_{1} has degree at most three. But it has degree exactly three by axiom (7) in the definition of an embedding, because $\eta\left(v_{1} v_{1}^{\prime}\right)$ has at least one internal vertex. The existence of (P, Q) implies, by the same argument as above, that there is an integer $j \in\{1,2,3,4\}$ such that $C_{j}\left(v_{1}^{\prime} v_{1}, v_{2}^{\prime \prime} v_{2}\right) \hookrightarrow G$ for some neighbor $v_{2}^{\prime \prime}$ of v_{2} other than v_{0}. Let $L=C_{1}\left(v_{1}^{\prime} v_{1}, v_{2}^{\prime \prime} v_{2}\right) \backslash v_{0} v_{2} \backslash$ $\tau_{1} \tau_{2}$ if $j=1$, and let it be defined analogously for $j \geqslant 2$. If v_{2} has degree at least four, then L
is isomorphic to a bisubdivision of a split extension of H, and hence the lemma holds. Thus we may assume that v_{2} has degree at most three, but it has degree exactly three by the same reason as v_{1}. If $v_{2}^{\prime}=v_{2}^{\prime \prime}$, then (C) holds, and so we may assume not. If $j=1$, then by considering L and the edges $\tau_{1} \tau_{2}$ and $v_{0} v_{2}$ we deduce that $C_{1}\left(v_{1}^{\prime} v_{1}, v_{2}^{\prime} v_{2}\right) \hookrightarrow G$. An analogous argument works for $j=4$, while for $j \in\{2,3\}$ the analogous argument proves that $C_{5-j}\left(v_{1}^{\prime} v_{1}, v_{2}^{\prime} v_{2}\right) \hookrightarrow G$. Thus (C) holds, as desired.

7. Using 3-connectivity

A graph G is matching covered if it is connected and every edge of G belongs to a perfect matching of G. Thus every brick is matching covered.
(7.1) Let H and G be graphs such that H has minimum degree at least three, G is matching covered, and H is isomorphic to a matching minor of G. If H is not isomorphic to G, then either a linear or split extension of H is isomorphic to a matching minor of G, or there exists a homeomorphic embedding $\eta^{\prime}: H \hookrightarrow G$ such that $\eta^{\prime}(e)$ has at least three edges for some $e \in$ $E(H)$.

Proof. By (4.2) there exists an embedding $\eta: H \hookrightarrow G$. We may assume that η is a homeomorphic embedding, for otherwise the lemma holds by (5.8). We may also assume that $\eta(e)$ has exactly one edge for each $e \in E(H)$. Thus $\eta(H)$ is isomorphic to H. But G is not isomorphic to H, and hence there exists an edge e of G with exactly one end in $\eta(H)$. Let M_{1} be a perfect matching of G containing e, and let M_{2} be a perfect matching of $G \backslash V(\eta(H))$. (This exists, because $\eta(H)$ is a central subgraph of G.) The component of $M_{1} \Delta M_{2}$ containing e is a path with both ends in $\eta(H)$; let $u, v \in V(H)$ be such that P has one end in $\eta(v)$ and the other end in $\eta(u)$. If u and v are not adjacent in H, then by letting $\eta(u v)=P$ the embedding η can be extended to an embedding $H+u v \hookrightarrow G$, and hence a linear extension of H is isomorphic to a matching minor of G. On the other hand, if u and v are adjacent in H, then P has at least three edges, because in that case the unique edge of G between $\eta(u)$ and $\eta(v)$ belongs to $\eta(u v)$. Thus we obtain the desired homeomorphic embedding by replacing $\eta(u v)$ by P.

Let G be a graph, let $A, B \subseteq V(G)$, let M be a perfect matching of $G \backslash(A \cup B)$, and let $k \geqslant 0$ be an integer. We say that the sequence of paths ($P, Q_{1}, Q_{2}, \ldots, Q_{k}$) is an (A, B)-hook with respect to M if the following conditions hold:
(1) P has ends $p_{0} \in A-B$ and $p_{k+1} \in B-A$, and is otherwise disjoint from $A \cup B$,
(2) for $i=1,2, \ldots, k, Q_{i}$ is an even path with ends $p_{i} \in V(P)-\left\{p_{0}, p_{k+1}\right\}$ and $q_{i} \in A \cap B$, and is otherwise disjoint from $A \cup B \cup V(P)$,
(3) $V\left(Q_{i}\right) \cap V\left(Q_{j}\right) \subseteq\left\{q_{i}, q_{j}\right\}$ for all distinct indices $i, j \in\{1,2, \ldots, k\}$,
(4) the graph $P \cup Q_{1} \cup Q_{2} \cup \cdots \cup Q_{k} \backslash(A \cup B)$ is M-covered, and
(5) the vertices $p_{0}, p_{1}, p_{2}, \ldots, p_{k}, p_{k+1}$ are distinct and occur on P in the order listed.

See Fig. 13.
(7.2) Let G be a matching covered graph, let $A, B \subseteq V(G)$, and let M be a perfect matching of $G \backslash(A \cup B)$. If $A-B$ and $B-A$ are both nonempty and belong to the same component of $G \backslash(A \cap B)$, then there exists an (A, B)-hook with respect to M.

Fig. 13. An (A, B)-hook.
Proof. Suppose for a contradiction that the graph G does not satisfy the lemma, and choose (A, B) violating the lemma with $A \cup B$ maximum. Let e be an edge of G with one end in $A-B$ and the other end in $V(G)-A$. Let M^{\prime} be a perfect matching of G containing e, and let P_{0} be the component of $M \triangle M^{\prime}$ containing e. Then P_{0} is a path with one end in $A-B$, the other end in $A \cup B$, and otherwise disjoint from $A \cup B$. If the other end of P_{0} is in $B-A$, then the sequence with sole term P_{0} is a required (A, B)-hook, and so we may assume that the other end of P_{0} is in A. Let $A^{\prime}:=A \cup V\left(P_{0}\right)$. Then $A^{\prime} \cap B=A \cap B$. By the maximality of $A \cup B$ there exists an $\left(A^{\prime}, B\right)$-hook $h=\left(P, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$.

Let $p_{0} \in A^{\prime}$ be an end of P. If $p_{0} \in A$, then h is an (A, B)-hook, and the lemma holds. Thus we may assume that p_{0} is an internal vertex of P_{0}. Let P_{1} and P_{2} be the two subpaths of P_{0} with common end p_{0} and union P_{0}. Exactly one of them, say P_{1}, has the property that $P_{1} \cup P \cup Q_{1} \cup Q_{2} \cup \cdots \cup Q_{k} \backslash(A \cup B)$ is M-covered. If the other end of P_{1} is in $A-B$, then $\left(P \cup P_{1}, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$ is a desired (A, B)-hook. Thus we may assume that P_{1} has one end in $A \cap B$, in which case $\left(P \cup P_{2}, P_{1}, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$ is a desired (A, B)-hook.
(7.3) Let H and G be graphs, where H has minimum degree at least three and is isomorphic to a matching minor of G and G is a brick. If H is not isomorphic to G, then a vertex-parallel, edge-parallel or a linear extension of H is isomorphic to a matching minor of G.

Proof. By (4.2) and (5.9) we may assume that there exists a homeomorphic embedding $\eta: H \hookrightarrow$ G. By (7.1) we may assume that there exists an edge $u v \in E(H)$ such that $\eta(u v)$ has at least three edges. Let $A=V(\eta(u v))$ and let B consist of $V(\eta(H))$, except the internal vertices of $\eta(u v)$. Then $A-B$ and $B-A$ are nonempty and $|A \cap B|=2$. Thus $A-B$ and $B-A$ belong to the same component of $G \backslash(A \cap B)$, because G is 3-connected. We have $A \cup B=V(\eta(H))$, and hence $G \backslash(A \cup B)$ has a perfect matching, say M, because $\eta(H)$ is a central subgraph of G. By (7.2) there exists an (A, B)-hook $h=\left(P, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$ with respect to M. We may choose $\eta, u v$ and h so that k is minimum. If $k=0$, then by considering the path P we conclude that a required extension is isomorphic to a matching minor of G.

Thus we may assume that $k>0$. Let the notation be as in the definition of (A, B)-hook. Thus p_{0} is an internal vertex of $\eta(u v)$, and from the symmetry we may assume it is located at even distance from $\eta(v)$ on $\eta(u v)$. We have $q_{i} \in\{\eta(u), \eta(v)\}$ for all $i=1,2, \ldots, k$. We properly twocolor the graph $\eta(u v) \cup P$ using the colors black and white so that $\eta(v)$ is black and $\eta(u)$ is white. For convenience let $q_{0}:=p_{0}$. We will show that $q_{0}, q_{1}, q_{2}, \ldots, q_{k}$ all have the same color.

Fig. 14. An extension J of H.

Indeed, suppose for some $i \in\{0,1, \ldots, k-1\}$ the vertices q_{i} and q_{i+1} have different color. We replace $\eta(u v)\left[q_{i}, q_{i+1}\right]$ by $Q_{i} \cup P\left[p_{i}, p_{i+1}\right] \cup Q_{i+1}$ to obtain an embedding $\eta^{\prime \prime}: H \hookrightarrow G$. Then the sequence $h^{\prime}=\left(P\left[p_{i+1}, p_{k+1}\right], Q_{i+2}, Q_{i+3}, \ldots, Q_{k}\right)$ is an $\left(A^{\prime}, B^{\prime}\right)$-hook, where A^{\prime} and B^{\prime} are defined in the same way as A and B but relative to $\eta^{\prime \prime}$. But h^{\prime} contradicts the minimality of k. This proves our claim that $q_{0}, q_{1}, q_{2}, \ldots, q_{k}$ all have the same color; in particular, $q_{1}=q_{2}=$ $\cdots=q_{k}=\eta(v)$.

The graph $\eta(H) \cup Q_{k} \cup P\left[p_{k}, p_{k+1}\right]$ has a matching minor isomorphic to a desired extension of H, unless p_{k+1} belongs to $\eta(v w)$ for some neighbor w of v other than u. By using the argument of the previous paragraph we deduce that p_{k+1} is an internal vertex of $\eta(v w)$ located at even distance from $\eta(v)$ on $\eta(v w)$. Let J be obtained from H as follows. First we bisubdivide the edges $u v$ and $v w$; let the new vertices be p_{0}^{\prime}, r_{0} and $p_{k+1}^{\prime}, r_{k+1}$ correspondingly, where p_{0}^{\prime} is adjacent to u and p_{k+1}^{\prime} is adjacent to w. Denote resulting graph by H^{\prime}. Then we add new vertices $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{k}^{\prime}$ and $r_{1}, r_{2}, \ldots, r_{k}$ in such a way that $p_{0}^{\prime} p_{1}^{\prime} \ldots p_{k}^{\prime} p_{k+1}^{\prime}$ is a path, and $p_{i}^{\prime} r_{i} v$ is a path for all $i=1,2, \ldots, k$, and there are no other edges incident with the new vertices. This completes the definition of J. See Fig. 14. Now η can be converted to an embedding $\eta^{\prime}: J \hookrightarrow G$ in a natural way; thus, for instance, $\eta^{\prime}\left(p_{i}^{\prime}\right)$ is the graph with vertex-set $\left\{p_{i}\right\}$.

We apply (6.1) to the graphs J and G and the vertex r_{0}; let J^{\prime} be the resulting graph, and let $\eta^{\prime \prime}: J^{\prime} \hookrightarrow G$. Suppose outcome (D) of (6.1) holds. Then either a split extension of H is isomorphic to a matching minor of G, in which case the desired result follows from (5.9), or J^{\prime} is obtained from J by splitting v. Let v_{1} and v_{2} be the new outer vertices and v_{0} the new inner vertex. As we may assume that no split extension of H is isomorphic to a matching minor of G, we have that $\left|N_{J^{\prime}}\left(v_{i}\right) \cap N_{H^{\prime}}(v)\right| \geqslant 2$ for at most one $i \in\{1,2\}$, where $N_{J^{\prime}}\left(v_{i}\right)$ and $N_{H^{\prime}}(v)$ denote the neighborhoods of v_{i} and v in J^{\prime} and H^{\prime} correspondingly. Without loss of generality let $\left|N_{J^{\prime}}\left(v_{1}\right) \cap N_{H^{\prime}}(v)\right| \leqslant 1$. Assume first $N\left(v_{1}\right) \cap N_{H^{\prime}}(v)=\emptyset$, then we can choose $1 \leqslant i<i^{\prime} \leqslant k$ such that $r_{i}, r_{i^{\prime}} \in N\left(v_{1}\right)$ and $r_{j} \notin N\left(v_{1}\right)$ for every j such that $1 \leqslant j<i$ or $i^{\prime}<j \leqslant k$. The image of the hook $h^{\prime}=$ $\left(p_{0}^{\prime} p_{1}^{\prime} \ldots p_{i}^{\prime} r_{i} v_{1} r_{i^{\prime}} p_{i^{\prime}}^{\prime} p_{i^{\prime}+1}^{\prime} \ldots p_{k+1}^{\prime}, p_{1}^{\prime} r_{1} v_{2}, \ldots, p_{i-1}^{\prime} r_{i-1} v_{2}, v_{1} v_{0} v_{2}, p_{i^{\prime}+1}^{\prime} r_{i^{\prime}+1} v_{2}, \ldots\right.$) under $\eta^{\prime \prime}$ contradicts the minimality of k. Assume now $\left|N_{J^{\prime}}\left(v_{1}\right) \cap N_{H^{\prime}}(v)\right|=1$. From the symmetry between r_{0} and r_{k+1} we may assume $r_{0} \in N\left(v_{2}\right)$. Let i be minimal such that $r_{i} \in N\left(v_{1}\right)$ then $i \leqslant k$
and the image of the hook $h^{\prime}=\left(p_{0}^{\prime} p_{1}^{\prime} \ldots p_{i}^{\prime} r_{i} v_{1}, p_{1}^{\prime} r_{1} v_{2}, \ldots, p_{i-1}^{\prime} r_{i-1} v_{2}\right)$ under $\eta^{\prime \prime}$ contradicts the minimality of k. We assume now that one of the outcomes (A), (B) or (C) of (6.1) holds.

Throughout the rest of the proof let $z \in V(J)-\left\{v, p_{0}^{\prime}, r_{0}\right\}$. Outcome (C) cannot hold, because v has degree at least four in J. Assume next that either $J^{\prime}=A_{1}(z)$, in which case we put $\tau_{1}=$ $\tau_{2}=v_{0}$, or that $J^{\prime}=A_{2}(z)=J+\left(r_{0}, p_{0}^{\prime} r_{0}\right)+\left(\tau_{2}, z\right)$, in which case τ_{1} and τ_{2} have their usual meaning. If $z \in(V(H)-\{u\}) \cup\left\{r_{k+1}, p_{k+1}^{\prime}\right\}$, then $J+\left(\tau_{2}, z\right)$ is isomorphic to a bisubdivision of a suitable extension of H. If $z=u$ we replace $\eta(u v)$ by $\eta^{\prime \prime}\left(u \tau_{2} r_{0} \tau_{1} p_{0}^{\prime} p_{1}^{\prime} r_{1} v\right)$ and the hook $h^{\prime}=\left(P\left[p_{1}, p_{k+1}\right], Q_{2}, Q_{3}, \ldots, Q_{k}\right)$ contradicts the minimality of k. If $z=r_{i}$ for some $1 \leqslant i \leqslant k$ then the hook $h^{\prime}=\left(\eta^{\prime \prime}\left(\tau_{2} r_{i} p_{i}^{\prime}\right) \cup P\left[p_{i}, p_{k+1}\right], Q_{i+1}, Q_{i+2}, \ldots, Q_{k}\right)$ contradicts the minimality of k. Finally if $z=p_{i}^{\prime}$ for some $1 \leqslant i \leqslant k$ we replace $\eta(u v)$ by $\eta^{\prime \prime}\left(u p_{0}^{\prime} \tau_{1} r_{0} \tau_{2} p_{i}^{\prime} r_{i} v\right)$ and the hook $h^{\prime}=\left(P\left[p_{i}, p_{k+1}\right], Q_{i+1}, Q_{i+2}, \ldots, Q_{k}\right)$ contradicts the minimality of k. This completes the case $J^{\prime}=A_{i}$.

Since v has degree at least four in J we assume that $J^{\prime}=B_{i}\left(p_{1}^{\prime} p_{0}^{\prime}, z\right)$ for some $i \in\{1,2,3,4\}$. Note that J^{\prime} contains $J^{\prime \prime}=A_{j}(z) \backslash p_{1}^{\prime} p_{0}^{\prime}$ as a matching minor for some $j \in\{1,2\}$, and unless $z=u$ the argument from the previous paragraph provides us with a suitable extension or a contradiction. If $z=u$ we replace $\eta(u v)$ by $\eta^{\prime}\left(u \tau \tau^{\prime} \tau^{\prime \prime} p_{1}^{\prime} r_{1} v\right)$, where $\tau=\tau^{\prime}=\tau^{\prime \prime}=\tau_{2 i}$ if $i \in\{1,2\}$ and $\tau=\tau_{2 i-2}, \tau^{\prime}=\tau_{2 i-3}, \tau^{\prime \prime}=\tau_{2 i-4}$ if $i \in\{3,4\}$. The hook $h^{\prime}=\left(P\left[p_{1}, p_{k+1}\right], Q_{2}, Q_{3}, \ldots, Q_{k}\right)$ now contradicts the minimality of k.

8. Vertex-parallel and edge-parallel extensions

The purpose of this section is to replace vertex-parallel and edge-parallel extensions in the statement of (7.3) by extensions that are closer to linear extensions. Our first goal is to prove that if a brick G has a matching minor isomorphic to a vertex-parallel extension of a 2 -connected graph H, then it also has a matching minor isomorphic to a better extension of H. We will proceed in two steps; in the intermediate step we will produce a better extension or one that is "almost better," the following. Let H be a graph, let u be a vertex of degree at least three, let u_{1} and u_{2} be distinct neighbors of u, and let $H^{\prime}=H+\left(u_{1}, u u_{1}\right)+\left(\tau_{2}, u_{2} u\right)$. We say that H^{\prime} is a semi-edge-parallel extension of H.
(8.1) Let H be a graph of minimum degree at least three, and let G be a brick. If a vertex-parallel extension of H is isomorphic to a matching minor of G, then an edge-parallel, a semi-edgeparallel, a linear, a cross, or a split extension of H is isomorphic to a matching minor of G.

Proof. Let u_{0} be the vertex of H with neighbors u_{1} and u_{2} such that the graph H_{2} defined below is isomorphic to a matching minor of G. Let H_{1} be obtained from H by bisubdividing the edges $u_{0} u_{1}$ and $u_{0} u_{2}$ exactly once, and let $x_{1}, y_{1}, x_{2}, y_{2}$ be the new vertices, numbered so that $u_{2} y_{2} x_{2} u_{0} x_{1} y_{1} u_{1}$ is a path. The graph H_{2} is defined as $H_{1}+\left(y_{1}, y_{2}\right)$. By (6.1) applied to $J=H_{2}$ and the vertex x_{1} there exists a graph $J^{\prime} \hookrightarrow G$ satisfying (A), (B), (C) or (D) of that lemma. If J^{\prime} is a split extension of J, then the graph obtained from $J^{\prime} \backslash y_{1} y_{2}$ by bicontracting y_{1} and y_{2} is a split extension of H. Thus if (D) holds, then the theorem holds, and so we may assume that (A), (B) or (C) holds. Throughout this proof let $v \in V(J)-\left\{u_{0}, x_{1}, y_{1}\right\}$. The symbols $\tau_{1}, \tau_{2}, \ldots$ will refer to the new vertices of J^{\prime} according to the convention introduced prior to (6.1).

Assume first that $J^{\prime}=A_{1}=J+\left(x_{1}, v\right)$. If $v=u_{1}$, then J^{\prime} is isomorphic to a semi-edge-parallel extension of H. If $v=x_{2}$, then $H+\left(u_{1}, u_{0} u_{2}\right) \hookrightarrow G$; if $v=y_{2}$, then $H+$ $\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow G$; and in all other cases $H+\left(v, u_{0} u_{1}\right) \hookrightarrow G$. In the last case, if v is not adjacent to u_{1}, then $H+\left(v, u_{1}\right)$ is a linear extension of H, and otherwise $H+\left(v, u_{0} u_{1}\right)$ is an
edge-parallel extension of H. The same argument will be used later. We will also use later the fact that the inclusions above did not use the edge $y_{1} y_{2}$. This completes the case $J^{\prime}=A_{1}$.

Now we assume that $J^{\prime}=A_{2}=J+\left(x_{1}, x_{1} u_{0}\right)+\left(\tau_{2}, v\right)$. If $v=x_{2}$, then $H+\left(u_{2}, u_{1} u_{0}\right) \hookrightarrow G$; if $v=y_{2}$, then by deleting the edge $y_{1} y_{2}$ and bicontracting y_{1} we see that a semi-edge-parallel extension of H is isomorphic to a minor of G; if $v=u_{1}$, then the graph $A_{1} \backslash x_{1} \backslash y_{1}$ is isomorphic to a bisubdivision of H, and by considering the path $y_{2} y_{1} x_{1} \tau_{1}$ we deduce that $H+\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow G$; and in all other cases $H+\left(v, u_{1} u_{0}\right) \hookrightarrow G$. This completes the case $J^{\prime}=A_{2}$.

Let $j \in\{1,2,3,4\}$ and let $J^{\prime}=B_{j}\left(y_{2} y_{1}, v\right)$. We have $A_{1}(v) \backslash y_{1} y_{2} \hookrightarrow B_{j}\left(y_{2} y_{1}, v\right)$ for $j=$ 1,2 and $A_{2}(v) \backslash y_{1} y_{2} \hookrightarrow B_{j}\left(y_{2} y_{1}, v\right)$ for $j=3$, 4 (if $j=1$ we delete the edges $y_{2} \tau_{1}$ and $y_{1} \tau_{2}$ and analogously for $j \geqslant 2$). Since the arguments of the previous two paragraphs did not use the edge $y_{1} y_{2}$, except for the cases of $A_{1}\left(u_{1}\right)$ and $A_{2}\left(u_{1}\right)$, we may assume that $J^{\prime}=B_{j}\left(y_{2} y_{1}, u_{1}\right)$, for some $j \in\{1,2,3,4\}$. But $H+\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow B_{j}\left(y_{2} y_{1}, u_{1}\right)$ (consider the path $u_{1} \tau_{2} \tau_{1} y_{2}$ when $j=1)$. This completes the cases $J^{\prime}=B_{j}\left(y_{2} y_{1}, v\right)$.

Our next step is to handle the cases $J^{\prime}=B_{j}\left(x_{2} u_{0}, v\right)$ and $J^{\prime}=C_{j}\left(x_{2} u_{0}, y_{2} y_{1}\right)$. If $j \leqslant 2$, then $H+\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow G$, and if $j \geqslant 3$, then $H_{1}+\left(x_{1}, x_{1} u_{0}\right)+\left(\rho_{2}, x_{2} u_{0}\right) \hookrightarrow G$ and $H_{1}+$ $\left(x_{1}, x_{1} u_{0}\right)+\left(\rho_{2}, x_{2} u_{0}\right)$ after bicontraction of y_{1} and y_{2} becomes isomorphic to a semi-edgeparallel extension of H. (We are using " ρ " instead of " τ," because the " τ " notation is reserved for vertices of J^{\prime}.)

Thus the only remaining cases are $J^{\prime}=C_{j}\left(y_{2} y_{1}, x_{2} u_{0}\right)$. If $j=1$, then by considering the path $x_{1} \tau_{1} \tau_{2} \tau_{3}$ we deduce that $H+\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow G$; for $j=2$ the argument is analogous. For $j=3$ notice that $C_{3}\left(y_{2} y_{1}, x_{2} u_{0}\right) \backslash \tau_{1} y_{1} \backslash y_{2} \tau_{3} \backslash x_{1} \tau_{2} \backslash \tau_{4} \tau_{5}$ is isomorphic to a bisubdivision of H. By considering the edge $\tau_{4} \tau_{5}$ we see that $H+\left(u_{1}, u_{2} u_{0}\right) \hookrightarrow G$. Finally, $C_{4}\left(y_{2} y_{1}, x_{2} u_{0}\right)$ has a matching minor isomorphic to a semi-edge-parallel extension of H. To see that, consider the edge $x_{1} \tau_{1}$ and path $\tau_{2} \tau_{3} \tau_{4} \tau_{5} \tau_{6} \tau_{7}$. (The last argument applies to $j=3$ as well, but for the sake of the next proof we wish to avoid semi-parallel extensions as much as possible.)
(8.2) Let H be a 2-connected graph of minimum degree at least three, and let G be a brick. If a semi-edge-parallel extension of H is isomorphic to a matching minor of G, then an edge-parallel, a linear, a cross, a cube or a split extension of H is isomorphic to a matching minor of G, unless H is isomorphic to K_{4} and G has a matching minor isomorphic to the Petersen graph.

Proof. By hypothesis there exists a vertex u_{0} of H with distinct neighbors u_{1} and u_{2} such that the graph H_{3} is isomorphic to a matching minor of G, where $H_{1}, H_{2}, x_{1}, y_{1}, x_{2}, y_{2}$ are defined as in the proof of (8.1), and $H_{3}=H_{2}+\left(x_{2}, u_{2}\right)$. We may assume that u_{0} has degree exactly three, for otherwise $H_{3} \backslash u_{2} y_{2} \backslash x_{2} u_{0}$ is isomorphic to a bisubdivision of a split extension of H, and hence a split extension of H is isomorphic to a matching minor of G. Let u_{3} be the third neighbor of u_{0}. Since $H_{3} \hookrightarrow G$, either a split extension of H is isomorphic to a matching minor of G, or one of the graphs $H_{3}, H_{4}=H_{2}+\left(x_{2}, y_{2} u_{2}\right), H_{5}=H_{2}+\left(x_{2}, u_{2}^{\prime} u_{2}\right)$, where $u_{2}^{\prime} \neq u_{0}$ is a neighbor of u_{2}, has a homeomorphic embedding into G. Graphs H_{3}, H_{4} and H_{5} are shown on Fig. 15. Let J denote that graph, and let it be chosen so that $J \neq H_{3}$, if possible. This choice implies that if a split extension of J is isomorphic to a matching minor of G, then so is a split extension of H. Let $x_{2}^{\prime}, y_{2}^{\prime}$ be the new vertices of H_{4} and H_{5}. We apply (6.1) to J and the vertex x_{1}, and so we may assume that (A), (B), or (C) holds, for otherwise the theorem holds. Let J^{\prime} be the graph satisfying (A), (B) or (C). The symbols $\tau_{1}, \tau_{2}, \ldots$ will again refer to the new vertices of J^{\prime}.

Let us assume first that either $J=H_{3}$, or that y_{2}^{\prime} has degree two in J^{\prime}. Then by deleting the edge $x_{2} u_{2}$ (and bicontracting y_{2}^{\prime} if $J \neq H_{3}$) we may use the proof of (8.1). By that argument

Fig. 15. The graphs H_{3}, H_{4} and H_{5} used in (8.2).
the theorem holds, unless $J^{\prime}=A_{1}\left(u_{1}\right), J^{\prime}=A_{2}\left(y_{2}\right), J^{\prime}=B_{j}\left(y_{2} y_{1}, y_{2}\right), J^{\prime}=B_{j}\left(x_{2} u_{0}, v\right), J^{\prime}=$ $C_{j}\left(x_{2} u_{0}, y_{2} y_{1}\right)$ or $J^{\prime}=C_{4}\left(y_{2} y_{1}, x_{2} u_{0}\right)$ for some $j \in\{3,4\}$ and $v \in V(J)-\left\{x_{1}, y_{1}, u_{0}\right\}$.

If $J^{\prime}=A_{1}\left(u_{1}\right)$, then $J^{\prime} \backslash u_{1} y_{1} \backslash x_{1} u_{0} \backslash x_{2} u_{2}$ is isomorphic to a bisubdivision of H, and by considering the edge $u_{2} x_{2}$ we deduce that $H+\left(u_{2}, u_{0} u_{3}\right) \hookrightarrow G$. If $J^{\prime}=A_{2}\left(y_{2}\right)$ we delete the edge $y_{1} y_{2}$, bicontract the vertex y_{1} and apply the previous argument.

Next, let $J^{\prime}=B_{3}\left(y_{2} y_{1}, y_{2}\right)$. The graph obtained from J^{\prime} by deleting the edges $y_{1} \tau_{4}$ and $\tau_{3} y_{2}$ and bicontracting the vertices y_{1} and τ_{4} is isomorphic to $A_{2}\left(y_{2}\right)$. Thus $H+\left(u_{2}, u_{0} u_{3}\right) \hookrightarrow G$. Similarly if $J^{\prime}=B_{4}\left(y_{2} y_{1}, y_{2}\right)$ we delete the edges $y_{1} \tau_{5}, \tau_{4} \tau_{6}$ and $\tau_{3} y_{2}$ and bicontract the vertices y_{1}, τ_{4} and τ_{6} to demonstrate that $H+\left(u_{2}, u_{0} u_{3}\right) \hookrightarrow G$.

Our next step is to handle the cases $J^{\prime}=B_{j}\left(x_{2} u_{0}, v\right)$ and $J^{\prime}=C_{j}\left(x_{2} u_{0}, y_{2} y_{1}\right)$. Assume first that $j=3$. If $v \notin\left\{u_{2}, x_{2}, y_{2}\right\}$, then by considering the edge $\tau_{4} v$ we deduce that $H+\left(v, u_{0} u_{2}\right) \hookrightarrow$ $B_{3}\left(x_{2} u_{0}, v\right) \hookrightarrow G$, and similarly $H+\left(u_{2}, u_{1} u_{0}\right) \hookrightarrow C_{3}\left(x_{2} u_{0}, y_{2} y_{1}\right) \hookrightarrow G$. For the cases $v \in$ $\left\{u_{2}, x_{2}, y_{2}\right\}$ let $L_{3}=B_{3}\left(x_{2} u_{0}, v\right) \backslash y_{1} y_{2} \backslash x_{1} \tau_{2} \backslash \tau_{1} u_{0} \backslash \tau_{4} v \backslash x_{2} u_{2}$. By considering the edge $\tau_{4} v$ we deduce that $H+\left(u_{2}, u_{0} u_{3}\right) \hookrightarrow G$ if $v \in\left\{u_{2}, x_{2}\right\}$ and $H+\left(u_{3}, u_{2} u_{0}\right) \hookrightarrow G$ if $v=y_{2}$. Now assume $j=4$. If $v \notin\left\{u_{2}, x_{2}, y_{2}\right\}$, then by considering the edge $\tau_{6} v$ we deduce that $H+$ $\left(v, u_{2} u_{0}\right) \hookrightarrow B_{4}\left(x_{2} u_{0}, v\right) \hookrightarrow G$. If $v=u_{2}$ then let $L_{4}=B_{4}\left(x_{2} u_{0}, u_{2}\right) \backslash x_{2} \backslash y_{2} \backslash x_{1} \tau_{1} \backslash \tau_{4} \tau_{6} \backslash \tau_{5} u_{0}$. By considering the edge $x_{1} \tau_{1}$ we deduce that $H+\left(u_{3}, u_{0} u_{1}\right) \hookrightarrow G$. If $v=x_{2}$ we get the same result by considering the graph obtained from L_{4} by adding the path $x_{2} y_{2} u_{2}$, and if $v=y_{2}$ we add the path $y_{2} x_{2} u_{2}$ instead. The graph $C_{4}\left(x_{2} u_{0}, y_{2} y_{1}\right)$ has a matching minor isomorphic to a cross extension of H (delete the edges $\tau_{7} y_{2}$ and $x_{2} u_{2}$; the cross extension has two vertices replaced by triangles). This concludes the cases $J^{\prime}=B_{j}\left(x_{2} u_{0}, v\right)$ and $J^{\prime}=C_{j}\left(x_{2} u_{0}, y_{2} y_{1}\right)$.

The graph $C_{4}\left(y_{2} y_{1}, x_{2} u_{0}\right)$ also has a matching minor isomorphic to a cross extension of H. To see that, delete the edges $u_{2} y_{2}$ and $x_{2} \tau_{7}$; the cross extension has two vertices replaced by triangles.

We may therefore assume that $J=H_{4}$ or $J=H_{5}$, and that y_{2}^{\prime} has degree three in J^{\prime}. Thus $J^{\prime}=A_{j}\left(y_{2}^{\prime}\right)$ or $J^{\prime}=B_{j}\left(y_{2} y_{1}, y_{2}^{\prime}\right)$ or $J^{\prime}=B_{j}\left(x_{2} u_{0}, y_{2}^{\prime}\right)$ for some j. Assume first that $J^{\prime}=$
$A_{j}\left(y_{2}^{\prime}\right)$. If $J=H_{4}$, then J^{\prime} is isomorphic to a cross extension of H (with one or two vertices replaced by triangles depending on the value of j), and so we may assume that $J=H_{5}$. If $j=2$, then by considering the edge $\tau_{2} y_{2}^{\prime}$ we deduce that $H+\left(u_{0}, u_{2} u_{2}^{\prime}\right) \hookrightarrow G$, and so we may assume that $j=1$. We may assume that $u_{2}^{\prime}=u_{1}$, for otherwise by considering the edge $x_{1} y_{2}^{\prime}$ we deduce that $H+\left(u_{1}, u_{2} u_{2}^{\prime}\right) \hookrightarrow G$. Now there is symmetry among u_{0}, u_{1}, u_{2}, and since we could assume u_{0} had degree three, we may also assume u_{1} and u_{2} have degree three in H. The graph $K:=J^{\prime} \backslash u_{0} x_{1} \backslash x_{2} y_{2} \backslash u_{2} y_{2}^{\prime}$ is isomorphic to a bisubdivision of H. If u_{2} is not adjacent to u_{3}, then let $u_{2}^{\prime \prime}$ be the third neighbor of u_{2}; by considering K and the edge $x_{2} y_{2}$ we see that $H+\left(u_{3}, u_{2} u_{2}^{\prime \prime}\right) \hookrightarrow G$, as desired. Thus we may assume that u_{2} is adjacent to u_{3}, and by symmetry we may also assume that u_{1} is adjacent to u_{3}. But H is 2 -connected, and hence u_{3} is not a cutvertex; thus H is isomorphic to K_{4}. It follows that J^{\prime} is isomorphic to the Petersen graph, as desired. This completes the case $J^{\prime}=A_{j}\left(y_{2}^{\prime}\right)$.

Now let $J^{\prime}=B_{j}\left(y_{2} y_{1}, y_{2}^{\prime}\right)$ or $J^{\prime}=B_{j}\left(x_{2} u_{0}, y_{2}^{\prime}\right)$. If $J=H_{4}$, then J^{\prime} is isomorphic to a cube extension of H, and so we may assume that $J=H_{5}$. If $J^{\prime}=B_{j}\left(y_{2} y_{1}, y_{2}^{\prime}\right)$ and $j=1$, then by considering the path $y_{2} \tau_{1} \tau_{2} y_{2}^{\prime}$ we deduce that $H+\left(u_{2}^{\prime}, u_{2} u_{0}\right) \hookrightarrow G$. The argument for $j>1$ is analogous. Thus we may assume that $J^{\prime}=B_{j}\left(x_{2} u_{0}, y_{2}^{\prime}\right)$. If $j=1$, then by considering the path $\tau_{2} y_{2}^{\prime}$ we deduce that $H+\left(u_{2}^{\prime}, u_{0} u_{2}\right) \hookrightarrow G$. The argument is analogous for $j>1$ with the proviso that when j is even the conclusion is $H+\left(u_{2}^{\prime}, u_{2} u_{0}\right) \hookrightarrow G$.

We now turn our attention to edge-parallel extensions. Let us recall that G / v denotes the graph obtained from the graph G by bicontracting the vertex v.
(8.3) Let H be a graph of minimum degree at least three, and let G be a brick. If an edgeparallel extension of H is isomorphic to a matching minor of G, then a cross, cube, linear, quadratic, quartic or split extension of H is isomorphic to a matching minor of G.

Proof. By hypothesis there exists a vertex $u_{0} \in V(H)$ of degree at least three with neighbors u_{1} and u_{2} such that the graph $H_{2}:=H+\left(u_{2}, u_{1} u_{0}\right)$ is isomorphic to a matching minor of G. Let y_{1}, x_{1} be the new vertices of H_{2}; thus $u_{0} x_{1} y_{1} u_{1}$ is a path of H_{2}. Let $H_{1}:=H_{2} \backslash u_{2} y_{1}$. Since $H_{2} \hookrightarrow G$, either a split extension of H is isomorphic to a matching minor of G, or one of the graphs $H_{2}, H_{3}=H_{1}+\left(y_{1}, u_{0} u_{2}\right), H_{4}=H_{1}+\left(y_{1}, u_{2}^{\prime} u_{2}\right)$, where $u_{2}^{\prime} \neq u_{0}$ is a neighbor of u_{2}, has a homeomorphic embedding into G. Graphs H_{2}, H_{3} and H_{4} are shown on Fig. 16. Let J denote that graph, and let it be chosen so that $J \neq H_{2}$, if possible. This choice implies that if a split extension of J is isomorphic to a matching minor of G, then so is a split extension of H. Let x_{2}, y_{2} be the new vertices of H_{3} and H_{4}. If $J=H_{2}$ let $x_{2}:=u_{2}$ and let y_{2} be undefined. We apply (6.1) to J and the vertex x_{1}, and so we may assume that (A), (B), or (C) holds, for otherwise the theorem holds. Let J^{\prime} be the graph satisfying (A), (B) or (C). Throughout this proof let $v \in V(J)-\left\{x_{1}, y_{1}, u_{0}\right\}$ and once again the symbols $\tau_{1}, \tau_{2}, \ldots$ will refer to the new vertices of J^{\prime}.

We first notice that if u_{0} has degree at least four, then $H_{2} \backslash u_{0} u_{2}$ is isomorphic to a split extension of H, and so we may and will assume that u_{0} has degree three. Let u_{3} be the third neighbor of u_{0}. We now show that we may assume that if $J=H_{4}$, then u_{2} has degree three. Indeed, if $J=H_{4}$ and u_{2} has degree at least four then $H_{4} \backslash u_{0} u_{2} / x_{1}$ is isomorphic to a split extension of H. So in the case $J=H_{4}$ let $u_{2}^{\prime \prime}$ be the third neighbor of u_{2}. Let L be obtained from J^{\prime} by deleting $u_{0} u_{2}$ and all the "new" edges. Thus, for instance, if $J^{\prime}=A_{2}(v)$, then $L=$ $J^{\prime} \backslash u_{0} u_{2} \backslash x_{1} \tau_{1} \backslash \tau_{2} v$. Then $L / u_{0} / y_{2}$ is isomorphic to H.

Fig. 16. The graphs H_{2}, H_{3} and H_{4} used in (8.3).

Assume first that $J^{\prime}=A_{1}(v)=J+\left(x_{1}, v\right)$. If $v=y_{2}$, then $J \in\left\{H_{3}, H_{4}\right\}$, and J^{\prime} is a cross extension of H if $J=H_{3}$, and a quartic or cross extension of H if $J=H_{4}$. Thus we may assume that $v \neq y_{2}$, and hence we may assume (by bicontracting y_{2}) that $J=H_{2}$. It follows that J^{\prime} is a quadratic extension of H, as desired. This completes the case $J^{\prime}=A_{1}$.

Next we assume that $J^{\prime}=A_{2}(v)=J+\left(x_{1}, u_{0} x_{1}\right)+\left(\tau_{2}, v\right)$. Assume first that $v=y_{2}$. If $J=H_{3}$, then J^{\prime} is a cross extension of H, and so we may assume that $J=H_{4}$. But then $J^{\prime} \backslash x_{1} \tau_{1} / x_{1} / \tau_{1}$ is isomorphic to a quadratic extension of H. Thus we may assume that $v \neq y_{2}$, and hence, by bicontracting y_{2}, we may assume that $J=H_{2}$. If $v \neq u_{1}$, then $J^{\prime} \backslash y_{1} u_{2} / y_{1}$ is a quadratic extension of H, and so we may assume that $v=u_{1}$. But then by considering the graph L / u_{0} and edges $x_{1} \tau_{1}$ and $\tau_{2} u_{1}$ we deduce that a quadratic extension of H is isomorphic to a matching minor of G. This completes the case $J^{\prime}=A_{2}$.

Next we handle the cases $J^{\prime}=B_{j}\left(x_{2} y_{1}, v\right)$. We start by assuming that $v=y_{2}$. If $J=H_{3}$, then J^{\prime} is isomorphic to a cube extension of H, and so we may assume that $J=H_{4}$. Recall the definition of L and that u_{2} has degree three. If $j=1$, then by considering L and the edges $x_{1} \tau_{1}$ and $\tau_{2} y_{2}$ we deduce that a quadratic extension of H, namely $H+\left(u_{2}^{\prime \prime}, u_{0} u_{2}\right)+\left(\rho_{2}, u_{3}\right)$, is isomorphic to a matching minor of G. If $j=2$, then by considering the edges $\tau_{2} \tau_{3}$ and $\tau_{4} y_{2}$ we deduce that the quadratic extension $H+\left(u_{2}^{\prime \prime}, u_{2} u_{0}\right)+\left(\rho_{2}, u_{2}\right)$ is isomorphic to a matching minor of G. An analogous argument applies when $j=4$. If $j=3$ then by deleting the edge $x_{1} \tau_{1}$ and bicontracting x_{1} and τ_{1} we deduce that $H+\left(u_{2}^{\prime \prime}, u_{0} u_{2}\right)+\left(\rho_{2}, u_{0}\right) \hookrightarrow G$, as desired. Thus we may assume that $v \neq y_{2}$, and hence, by bicontracting y_{2}, we may assume that $J=H_{2}$. If $j=1$, then by considering L and the edges $x_{1} \tau_{1}$ and $\tau_{2} v$ we deduce that the quadratic extension $H+\left(u_{3}, u_{2} u_{0}\right)+\left(\rho_{2}, v\right)$ is isomorphic to a matching minor of G. Let $j=2$. If $v \neq u_{2}$, then by considering L and the edges $\tau_{2} \tau_{3}$ and $\tau_{4} v$ we deduce that the quadratic extension $H+\left(v, u_{2} u_{0}\right)+$ (ρ_{2}, u_{2}) is isomorphic to a matching minor of G. If $v=u_{2}$ then by considering the graph obtained from L by replacing the edge $x_{1} y_{1}$ by $\tau_{1} x_{1}$ and considering the edges $\tau_{2} \tau_{3}$ and $\tau_{4} u_{2}$ we deduce that the quadratic extension $H+\left(u_{2}, u_{1} u_{0}\right)+\left(\rho_{2}, u_{1}\right)$ is isomorphic to a matching minor of G.

Thus we may assume $j \in\{3,4\}$. Let us assume that $v=u_{1}$. Then we may assume that u_{1} is adjacent to u_{2}, for otherwise $H+\left(u_{1}, u_{2}\right) \hookrightarrow G$ (consider the path $u_{1} \tau_{4} \tau_{3} u_{2}$ when $j=3$ and the analogous path for $j=4$). If $j=3$, then by replacing the edge $u_{1} u_{2}$ by the path $u_{1} \tau_{4} \tau_{3} u_{2}$ we obtain a graph isomorphic to a bisubdivision of H, and by considering the edges $y_{1} \tau_{4}$ and $\tau_{2} \tau_{3}$ we deduce that a quadratic extension of H, namely $H+\left(u_{0}, u_{2} u_{1}\right)+\left(\rho_{2}, u_{0}\right)$, is isomorphic to a matching minor of G. If $j=4$ then by replacing the edge $u_{1} u_{2}$ by the path $u_{1} \tau_{6} \tau_{5} \tau_{4} \tau_{3} u_{2}$, by considering the edges $\tau_{4} \tau_{6}$ and $y_{1} \tau_{5}$ and by bicontracting x_{1} and τ_{3} we deduce that a quadratic extension of H, namely $H+\left(u_{0}, u_{2} u_{1}\right)+\left(\rho_{2}, u_{2}\right)$, is isomorphic to a matching minor of G. Thus we may assume that $v \neq u_{1}$. If $j=3$, then by considering the edge $x_{1} \tau_{1}$ and path $\tau_{2} \tau_{3} \tau_{4} v$ we see that the quadratic extension $H+\left(v, u_{1} u_{0}\right)+\left(\rho_{2}, u_{1}\right)$ is isomorphic to a matching minor of G; an analogous argument gives the same conclusion when $j=4$.

The cases $J^{\prime}=B_{j}\left(u_{2} u_{0}, v\right)$ can be reduced to the cases just handled by noticing that $J \backslash u_{0} u_{2}$ is isomorphic to a bisubdivision of H, and hence J is isomorphic to the edge-parallel extension $H+\left(u_{2}, u_{3} u_{0}\right)$. Similarly the cases $J^{\prime}=C_{j}\left(u_{2} y_{1}, u_{2} u_{0}\right)$ can be reduced to $J^{\prime}=C_{j}\left(u_{2} u_{0}, u_{2} y_{1}\right)$, and so it remains to handle the cases $J^{\prime}=C_{j}\left(u_{2} u_{0}, u_{2} y_{1}\right)$. But in all four of those cases a cross extension of H is isomorphic to a matching minor of G.

The results of this section allow us to strengthen (7.3) as follows.
(8.4) Let H and G be graphs, where H is 2-connected, has minimum degree at least three and is isomorphic to a matching minor of G, and G is a brick. Assume that if H is isomorphic to K_{4}, then G has no matching minor isomorphic to the Petersen graph. If H is not isomorphic to G, then a cross, cube, linear, quadratic or quartic extension of H is isomorphic to a matching minor of G.

Proof. By (7.3) we may assume that a vertex-parallel or an edge-parallel extension of H is isomorphic to a matching minor of G. Thus the result follows from (8.1)-(8.3).

9. Cube and cross extensions

In this section we strengthen (8.4) by eliminating cube and cross extensions from the conclusion.
(9.1) Let H be a graph, let u be a vertex of H of degree three, and let u_{1} and u_{2} be two neighbors of u. Let H_{1} be obtained from H by bisubdividing the edges u_{1} and $u u_{2}$ once, and let $x_{1}, y_{1}, x_{2}, y_{2}$ be the new vertices so that $u_{1} y_{1} x_{1} u x_{2} y_{2} u_{2}$ is a path. Let $H_{2}:=H_{1}+\left(x_{2}, y_{2} x_{2}\right)+$ $\left(\tau_{2}, x_{1}\right)$, let $H_{3}:=H_{1}+\left(x_{2}, y_{2} x_{2}\right)+\left(\tau_{2}, x_{1} y_{1}\right)+\left(\tau_{4}, x_{1}\right)$, and let H_{4} be obtained from H_{2} or H_{3} by replacing exactly one of the vertices $x_{2}, \tau_{1}, \tau_{2}$ by a triangle. Then each of H_{2}, H_{3}, H_{4} has a matching minor isomorphic to a quadratic extension of H.

Proof. Throughout this proof let τ_{1}, τ_{2} denote the new vertices of H_{2}, and let $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ denote the new vertices of H_{3} with the usual numbering convention. We can naturally embed H into H_{2}. By bicontracting y_{1} and y_{2} and considering edges $x_{2} \tau_{1}$ and $x_{1} \tau_{2}$, we see that H_{2} is isomorphic to a bisubdivision of a quadratic extension of H. The graph $H_{3} \backslash \tau_{1} x_{2} \backslash x_{1} u \backslash \tau_{3} \tau_{4}$ is isomorphic to a bisubdivision of H and by bicontracting y_{1}, τ_{3} and τ_{4} and considering edges $\tau_{1} x_{2}$ and $x_{1} u$ we deduce that H_{3} has a matching minor isomorphic to a quadratic extension of H. This completes the proof for H_{2} and H_{3}.

Suppose H_{4} is obtained from H_{2} by replacing τ_{2} with a triangle, then $H_{4} \backslash x_{2} \tau_{1} / x_{2} / \tau_{1} / y_{1}$ is isomorphic to a quadratic extension $H+\left(u_{1}, u u_{2}\right)+\left(\rho_{2}, u\right)$ of H. Similarly if H_{4} is obtained from H_{2} by replacing x_{2} or τ_{1} with a triangle then $H_{4} \backslash x_{1} u / x_{1} / u / y_{1}$ is isomorphic to a quadratic extension of H.

It remains to consider the case when H_{4} be obtained from H_{3} by replacing exactly one of the vertices $x_{2}, \tau_{1}, \tau_{2}$ by a triangle. We need to make the following easy observation. If a graph G_{1} is obtained from a graph G by replacing a vertex $t \in V(G)$ of degree three with a triangle T and G_{2} is obtained from G_{1} by replacing one of the vertices of T by a triangle, then G is isomorphic to a matching minor of G_{2}. Let $H_{2}^{\prime}=H_{1}+\left(x_{1}, y_{1} x_{1}\right)+\left(\rho_{2}, x_{2}\right)$. Clearly a graph obtained from H_{3} by contracting a triangle with vertex set $\left\{x_{2}, \tau_{1}, \tau_{2}\right\}$ is isomorphic to H_{2}^{\prime}. Therefore, by the observation above, H_{4} contains H_{2}^{\prime} as a matching minor and $H_{2}^{\prime} / y_{1} / y_{2}$ is isomorphic to a quadratic extension of H.
(9.2) Let H be a graph of minimum degree at least three, and let G be a brick. If a cube extension of H is isomorphic to a matching minor of G, then a linear, cross or quadratic extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u_{1}, u_{2} and u_{3} be its neighbors. Let H_{0} be obtained from H by bisubdividing each of the edges $u u_{1}, u u_{2}$ and $u u_{3}$. Let the new vertices be y_{1}, y_{2}, y_{3} and z_{1}, z_{2}, z_{3} in such a way that $u_{1} y_{1} z_{3} u, u_{2} y_{2} z_{1} u$ and $u_{3} y_{3} z_{2} u$ are paths. Let $H_{1}:=H_{0}+\left(y_{1}, z_{2}\right)+\left(y_{2}, z_{3}\right)+\left(y_{3}, z_{1}\right)$, and let J be obtained from H_{1} by replacing a subset of $\left\{z_{1}, z_{2}, z_{3}\right\}$ by triangles. If z_{i} is replaced by a triangle, then let the triangle be Z_{i}; otherwise, let Z_{i} denote the graph with vertex-set $\left\{z_{i}\right\}$. By hypothesis the vertex u and graph J may be selected so that J is isomorphic to a matching minor of G. Let $\eta: J \hookrightarrow G$. We may assume that η is a homeomorphic embedding, for otherwise a split extension of H is isomorphic to a matching minor of G and the result holds by (5.9).

When $v \in V(J)$ we will abuse notation and use $\eta(v)$ to denote the unique vertex of the graph $\eta(v)$. With that in mind let $J^{\prime}=\eta(J)$, let $u_{i}^{\prime}=\eta\left(u_{i}\right), u^{\prime}=\eta(u)$ and $z_{i}^{\prime}=\eta\left(z_{i}\right)$. For $i=1,2,3$ let P_{i} denote the path $\eta\left(u_{i} y_{i}\right)$. We may assume that J and η are chosen so that $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|+$ $\left|V\left(P_{3}\right)\right|$ is minimum.

Let Ω_{1} be the octopus with head $\eta\left(Z_{1}\right)$ and tentacles the paths of $\eta(J)$ joining $u^{\prime}, y_{2}^{\prime}$ and y_{3}^{\prime} to Z_{1}, and let Ω_{2} and Ω_{3} be defined analogously. Let Ω_{4} be the octopus with head $\eta\left(J \backslash V\left(Z_{1}\right) \backslash\right.$ $\left.V\left(Z_{2}\right) \backslash V\left(Z_{3}\right) \backslash\left\{y_{1}, y_{2}, y_{3}, u\right\}\right)$ and tentacles P_{1}, P_{2}, P_{3}, let $\mathcal{F}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}, \Omega_{4}\right\}$, and let $Y^{\prime}=\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, u^{\prime}\right\}$. Then $\left(\mathcal{F}, Y^{\prime}\right)$ is a frame in G. Let M be a perfect matching of $G \backslash V(\eta(J))$; then M has a unique extension to a matching M^{\prime} that is Ω_{i}-compatible for all $i=1,2,3,4$. By (2.3) there exist distinct integers $i, j \in\{1,2,3,4\}$ and an M^{\prime}-alternating path S joining vertices v_{i} and v_{j}, where v_{i} belongs to the head of Ω_{i} and v_{j} belongs to the head of Ω_{j}, such that for some edge $e \in E(S) \backslash M^{\prime}$ the two components of $S \backslash e$ may be denoted by S_{i} and S_{j} so that $V\left(S_{i}\right) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{i}\right)$ and $V\left(S_{j}\right) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{j}\right)$.

Assume first that $j=4$. Then from the symmetry we may assume that $i=2$. In this case it will be convenient to allow v_{4} to be an internal vertex of a tentacle of Ω_{4}. By doing so we may assume (by replacing S by its subpath) that v_{4} is the only vertex of $S \cap \Omega_{4}$. If for some $l \in\{1,2,3\}$ we have $v_{4} \in V\left(P_{l}\right)$ and $P_{l}\left[u_{l}^{\prime}, v_{4}\right]$ is even, then let $v=u_{l}$; if $v_{4} \in V\left(P_{l}\right)$ and $P_{l}\left[u_{l}^{\prime}, v_{4}\right]$ is odd, then v is undefined. If v_{4} belongs to $V(\eta(z))$ for some $z \in V(J)$, then let $v=z$. Finally, if $v_{4} \in V\left(\eta\left(z z^{\prime}\right)\right)$ for some edge $z z^{\prime} \in E(H \backslash u)$, then v_{4} is at even distance on $\eta\left(z z^{\prime}\right)$ from exactly one of $\eta(z), \eta\left(z^{\prime}\right)$, say from $\eta(z)$. In that case we put $v=z$. Notice that if v is defined, then
$v \in V(H)-\{u\}$. From the symmetry we may assume $v \neq u_{1}$ and $v_{4} \notin V\left(P_{1}\right)$. By (3.6) the graph $\Omega_{2} \cup S_{2}+e$ includes a triad or tripod T with ends $y_{1}^{\prime}, u^{\prime}, v_{4}$.

We claim that if v_{4} belongs to P_{3}, then the path $P_{3}\left[v_{4}, u_{3}^{\prime}\right]$ is even. Indeed, otherwise by making use of T, Ω_{1} and Ω_{3} we obtain contradiction to the minimality of $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|+$ $\left|V\left(P_{3}\right)\right|$. This proves that if v is undefined then $v_{4} \in V\left(P_{2}\right)$. In that case by deleting the path of $\eta(J)$ joining y_{2}^{\prime} and Z_{1} and by considering the path of $\eta(J)$ joining y_{1}^{\prime} and Z_{3} and using T we deduce that a cross extension of H is isomorphic to a matching minor of G. If v is defined, then one of the following graphs is isomorphic to a matching minor of G :

- $H+\left(v, u u_{1}\right)+\left(\tau_{2}, u u_{2}\right)$, if T is a triad and $Z_{3}=\left\{z_{3}\right\}$,
- $H+\left(v, u u_{1}\right)+\left(\tau_{2}, u_{2} u\right)$, if T is a triad and Z_{3} is a triangle,
- $H+\left(v, u_{1} u\right)+\left(\tau_{2}, \tau_{1} u_{1}\right)$, if T is a tripod.

But each of the above graphs has a matching minor isomorphic to a quadratic extension of H. This completes the case $j=4$.

Thus we may assume that $i=1$ and $j=2$. By (3.6), $\Omega_{1} \cup S_{1}+e$ includes a triad or tripod T_{1} with ends $y_{3}^{\prime}, u^{\prime}, s_{2}$ and $\Omega_{2} \cup S_{2}+e$ includes a triad or tripod T_{2} with ends $y_{1}^{\prime}, u^{\prime}, s_{1}$, where $s_{1} \in V\left(S_{1}\right), s_{2} \in V\left(S_{2}\right)$ are the ends of e. If either T_{1} or T_{2} is a tripod then the required result follows from (9.1) by deleting the path of $\eta(J)$ joining y_{1}^{\prime} and Z_{3} and making use of T_{1} and T_{2}. If both T_{1} and T_{2} are triads then one of the following graphs is isomorphic to a matching minor of G :

- $H+\left(u u_{3}, u u_{1}\right)+\left(\tau_{4}, u u_{2}\right)$, if Z_{3} is not a triangle,
- $H+\left(u u_{3}, u u_{1}\right)+\left(\tau_{4}, u_{2} u\right)$, if Z_{3} is a triangle.

Both of these graphs have matching minors isomorphic to quadratic extensions of H.
(9.3) Let H be a graph, let J be a cross extension of H and let v be the hub of J. If the degree of v in H is at least four then a split extension of H is isomorphic to a matching minor of J.

Proof. Let $x_{1}, y_{1}, x_{2}, y_{2}$ and K^{\prime} be as in the definition of cross extension. If $J=K^{\prime}$ then $J \backslash$ $v x_{1} \backslash x_{2} y_{1} / x_{1}$ is isomorphic to a split extension of H. If $J \neq K^{\prime}$ the argument is analogous.
(9.4) Let H be a graph of minimum degree at least three, and let G be a brick. If a cross extension of H is isomorphic to a matching minor of G, then a linear or quadratic extension of H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u_{1}, u_{2} and u_{3} be its neighbors. Let H_{1} be a cross extension of H obtained by deleting the vertex u and adding the vertices $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}$ and edges $y_{j} u_{j}$ and $y_{j} x_{i}$ for all $i=1,2$ and $j=1,2,3$. Let H_{2} be obtained from H_{1} by replacing x_{1} by the triangle X_{1}, and let H_{3} be obtained from H_{2} by replacing x_{2} by the triangle X_{2}. Let the vertices of X_{1} be a_{1}, a_{2}, a_{3} such that a_{i} is adjacent to y_{i}, and let the vertices of X_{2} be b_{1}, b_{2}, b_{3} such that b_{i} is adjacent to y_{i}. By hypothesis, (9.3) and (5.10) we may assume that there exist a vertex u of H of degree three, a graph $J \in\left\{H_{1}, H_{2}, H_{3}\right\}$, and an embedding $\eta: J \hookrightarrow G$. If $J \neq H_{3}$ we define X_{2} to be the subgraph of J with vertex-set $\left\{x_{2}\right\}$ and let $b_{1}=b_{2}=b_{3}=x_{2}$, and if $J=H_{1}$ we define X_{1} to be the subgraph of J with vertex-set $\left\{x_{1}\right\}$ and let $a_{1}=a_{2}=a_{3}=x_{1}$. By (5.9) we may assume that η is a homeomorphic embedding. Let $J^{\prime}=\eta(J)$, let $u_{i}^{\prime}=\eta\left(u_{i}\right)$,
and $y_{i}^{\prime}=\eta\left(y_{i}\right)$. Let P_{i} denote the path $\eta\left(u_{i} y_{i}\right)$. We may assume that J and η are chosen so that $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|+\left|V\left(P_{3}\right)\right|$ is minimum.

Let Ω_{1} be the octopus with head $\eta\left(X_{1}\right)$ and tentacles $\eta\left(a_{j} y_{j}\right)$, where $j=1,2,3$, and let Ω_{2} be defined analogously. Let Ω_{3} be the octopus with head $\eta\left(J \backslash V\left(X_{1}\right) \backslash V\left(X_{2}\right) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}\right)$ and tentacles P_{1}, P_{2}, P_{3}, let $\mathcal{F}=\left\{\Omega_{1}, \Omega_{2}, \Omega_{3}\right\}$, and let $Y^{\prime}=\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$. Then $\left(\mathcal{F}, Y^{\prime}\right)$ is a frame in G. Let M be a perfect matching of $G \backslash V(\eta(J))$; then M has a unique extension to a matching M^{\prime} that is Ω_{i}-compatible for all $i=1,2,3$. By (2.3) there exist distinct integers $i, j \in\{1,2,3\}$ and an M^{\prime}-alternating path S joining vertices v_{i} and v_{j}, where v_{i} belongs to the head of Ω_{i} and v_{j} belongs to the head of Ω_{j}, and an edge $e \in E(S) \backslash M^{\prime}$ such that the components of $S \backslash e$ may be denoted by S_{i} and S_{j} so that $V\left(S_{i}\right) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{i}\right)$ and $V\left(S_{j}\right) \cap V(\mathcal{F}) \subseteq V\left(\Omega_{j}\right)$.

Assume first that $j=3$. In this case it will be convenient to allow v_{3} to be an internal vertex of a tentacle of Ω_{3}. By doing so we may assume (by replacing S by its subpath) that v_{3} is the only vertex of $S \cap \Omega_{3}$. If $v_{3} \in V\left(P_{i}\right)$, then let $v=u_{i}$. If v_{3} belongs to $V(\eta(z))$ for some $z \in V(J)$, then let $v:=z$. Finally, if $v \in V\left(\eta\left(z z^{\prime}\right)\right)$ for some edge $z z^{\prime} \in E(J)$, then v_{3} is at even distance on $\eta\left(z z^{\prime}\right)$ from exactly one of $\eta(z), \eta\left(z^{\prime}\right)$, say from $\eta(z)$. In that case we put $v:=z$. We may assume that $v \in V(H)-\left\{u, u_{1}, u_{2}\right\}$, and that if $v_{3} \in V\left(P_{1} \cup P_{2} \cup P_{3}\right)$ then $v_{3} \in V\left(P_{3}\right)$. By (3.6) we may assume that $S \cup \Omega_{i}$ includes a triad or tripod T with ends $y_{1}^{\prime}, y_{2}^{\prime}, v_{3}$. We claim that if v_{3} belongs to P_{3}, then the path $P_{3}\left[v_{3}, u_{3}^{\prime}\right]$ is even. Indeed, otherwise by making use of T and Ω_{3-i} we obtain contradiction to the minimality of $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|+\left|V\left(P_{3}\right)\right|$. We deduce that one of the following graphs is isomorphic to a matching minor of G :

- $H_{1} \backslash x_{1} y_{3}+\left(x_{1}, v\right)$,
- $H_{2} \backslash x_{2} y_{3}+\left(x_{2}, v\right)$,
- $H_{2} \backslash a_{3} y_{3}+\left(a_{3}, v\right)$,
- $H_{3} \backslash a_{3} y_{3}+\left(a_{3}, v\right)$.

But each of the above graphs has a matching minor isomorphic to a quadratic extension of H (in the first case we bicontract y_{3} and consider the edges $x_{1} v$ and $y_{1} x_{2}$). In the second case delete $a_{2} a_{3}$, bicontract its ends and consider the edges $y_{1} a_{1}$ and $x_{2} v$; in the third case delete $y_{1} x_{2}$, bicontract its ends, and consider the edges $a_{1} a_{2}$ and $a_{3} v$; and in the fourth case consider the same two edges, delete $y_{1} b_{1}$ and $b_{2} b_{3}$ and bicontract their ends. This completes the case $j=3$.

Thus we may assume that $i=1$ and $j=2$. Let $s_{1} \in V\left(S_{1}\right)$ and $s_{2} \in V\left(S_{2}\right)$ be the ends of e. We apply (3.7) to $S_{2} \cup \Omega_{2}$ to conclude that $\Omega_{2} \cup S_{2}+e$ has a central subgraph T_{2} such that T_{2} is either a quadropod with ends $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, s_{1}$, or a quasi-tripod, in which case we may assume by symmetry that its ends are $y_{1}^{\prime}, y_{2}^{\prime}, s_{1}$. By (3.6) the graph $\Omega_{1} \cup S_{1}+e$ has a central subgraph T_{1} that is a triad or tripod with ends $y_{1}^{\prime}, y_{3}^{\prime}, s_{2}$. If T_{2} is a quasi-tripod then the theorem holds by (9.1). If T_{2} is a quadropod with ends $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, s_{1}$, then one of the following graphs is isomorphic to a matching minor of G :

- $H_{1} \backslash x_{1} y_{2}+\left(x_{1}, x_{2}\right)$,
- $H_{2} \backslash a_{2} y_{2}+\left(a_{2}, x_{2}\right)$.

Both of these graphs have a matching minor isomorphic to a suitable extension of H. In the first case we get a quadratic extension by bicontracting y_{2} and considering the edges $x_{2} y_{1}$ and $x_{2} x_{1}$. In the second case we get a quadratic extension by deleting $x_{2} y_{1}$, bicontracting y_{1} and y_{2} and considering the edges $x_{2} a_{2}$ and $a_{1} a_{3}$.

Using (9.2) and (9.4) we can upgrade (8.4) to the following statement.
(9.5) Let H and G be graphs, where H is 2-connected and has minimum degree at least three, G is a brick and H is isomorphic to a matching minor of G. Assume that if H is isomorphic to K_{4}, then G has no matching minor isomorphic to the Petersen graph. If H is not isomorphic to G, then a linear, quadratic or quartic extension of H is isomorphic to a matching minor of G.

Proof. This follows immediately from (8.4), (9.2) and (9.4).

10. Exceptional families

We now handle quadratic extensions. The next lemma will show that a quadratic extension gives rise to a linear extension, unless it is of one of the following two types. Let $H, u, v, x, y, x^{\prime}, y^{\prime}, H^{\prime}$ be as in the definition of quadratic extension; that is, H is a graph, $u v \in E(H), H^{\prime}$ is obtained from H by bisubdividing $u v$, where the new vertices x, y are such that x is adjacent to u and y. Further, $x^{\prime} \in V(H)-\{u\}$ and $y^{\prime} \in V(H)-\{v\}$ do not both belong to $\{u, v\}$. Let $H_{1}=H^{\prime}+\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)$ be a quadratic extension of H. If $y^{\prime}=u, x^{\prime}$ is adjacent to v, and v has degree three, then we say that H_{1} is an alpha extension of H. If $x^{\prime}, y^{\prime} \in V(H)-\{u, v\}$, x^{\prime} is adjacent to v, y^{\prime} is adjacent to u and both u and v have degree three, then we say that H_{1} is a prism extension of H. An alpha and a prism extension are shown in Fig. 17.
(10.1) Let H be a graph of minimum degree at least three, and let K be a quadratic extension of H. Then K has a matching minor isomorphic to a linear, alpha or prism extension of H. Furthermore, if $H, u, v, x, y, x^{\prime}, y^{\prime}, H^{\prime}$ are as in the definition of quadratic extension and $x^{\prime}, y^{\prime} \in$ $V(H)-\{u, v\}$, then K has a matching minor isomorphic to a linear or prism extension of H.

Proof. Let $H, u, v, x, y, x^{\prime}, y^{\prime}, H^{\prime}$ be as in the definition of quadratic extension, and let $K=$ $H^{\prime}+\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)$ be a quadratic extension of H. By symmetry we may assume that $y^{\prime} \neq u$. If y^{\prime} is not adjacent to u, then $H+\left(u, y^{\prime}\right) \hookrightarrow K$, as desired. Thus we may assume that y^{\prime} is adjacent to u. If u has degree at least four, then $K \backslash u y^{\prime}$ is isomorphic to a linear extension of H, as desired. Thus we may assume that u has degree three. If $x^{\prime} \neq v$, then by symmetry K is a prism extension of H, and if $x^{\prime}=v$, then K is an alpha extension of H, as desired.

Fig. 17. (a) An alpha extension; (b) a prism extension.
(10.2) Let K be an alpha extension of a graph H of minimum degree at least three. Then K has a matching minor isomorphic to a linear or prism extension of H.

Proof. Let $H, u, v, x, y, x^{\prime}, y^{\prime}, H^{\prime}$ be as in the definition of quadratic extension, and let $K=$ $H^{\prime}+\left(x, x^{\prime}\right)+\left(y, y^{\prime}\right)$ be an alpha extension of H, where $y^{\prime}=u$. Thus v has degree three and is adjacent to x^{\prime}. There exists a homeomorphic embedding $\eta: H \hookrightarrow K$ with $\eta(v)=x$ and $\eta(z)=z$ for $z \in V(H)-\{v\}$, and by considering $\eta(H)$ and the edges $v x^{\prime}$ and $u y$ we deduce that K is isomorphic to a quadratic extension of H that satisfies the second statement of (10.1). Thus the lemma holds by that statement.

Let H be a graph. By a $f a n$ in H we mean a sequence of vertices $\left(x, y, u_{1}, u_{2}, \ldots, u_{k}\right)$ such that these vertices are pairwise distinct, except that possibly $x=y$, and further $k \geqslant 2$, $u_{1}, u_{2}, \ldots, u_{k}$ all have degree three and form a path in H in the order listed, and for $i=$ $1,2, \ldots, k$ the vertex u_{i} is adjacent to x if i is even, and otherwise it is adjacent to y.
(10.3) Let K be a prism extension of a 3-connected graph H. If K is not a prismoid, a wheel or a biwheel, then K has a matching minor isomorphic to a linear extension of H.

Proof. By hypothesis there exists a fan $\left(x, y, u_{1}, u_{2}\right)$ in H such that $K=H+\left(x, u_{1} u_{2}\right)+$ $\left(y, \tau_{2}\right)$. Let t_{1}, t_{2} denote the new vertices τ_{1}, τ_{2} of K, respectively. Let us choose a maximum integer k such that H has a fan $\left(x, y, u_{1}, u_{2}, \ldots, u_{k}\right)$ such that $H+\left(x, u_{1} u_{2}\right)+\left(y, \tau_{2}\right) \hookrightarrow K$. Let u_{0} be the neighbor of u_{1} other than u_{2} and y. Now $u_{0} \neq u_{k}$, for otherwise H is a wheel or a biwheel (depending on whether x and y are distinct or not). Assume first that $u_{0} \neq x$. There exists an embedding $\eta: H \hookrightarrow K$ such that $\eta\left(u_{1}\right)=t_{2}$. By considering the edges $u_{1} y$ and $x t_{1}$ we deduce that $H+\left(y, u_{0} u_{1}\right)+\left(x, \tau_{2}\right) \hookrightarrow K$, and by using the proof of (10.1) we deduce that either a linear extension of H is isomorphic to a matching minor of K, or that x is adjacent to u_{0} and that u_{0} has degree three. But then the fan $\left(y, x, u_{0}, u_{1}, \ldots, u_{k}\right)$ contradicts the maximality of k. Thus we may assume that $u_{0}=x$, and by symmetry we may assume that u_{k} is adjacent to both x and y. It follows from the 3-connectivity of H that K is a prismoid, as desired.

We now turn to quartic extensions. Again, we will show that a quartic extension gives rise to a linear extension, unless it is of two special types, the following ones. Let H be a graph, and let $u, v, H^{\prime}, x, y, a, b$ be as in the definition of a quartic extension. That is, $u v \in E(H), H^{\prime}$ is obtained from H by bisubdividing $u v$, where the new vertices are x, y numbered so that x is adjacent to u and y, and let $K=H+(x, a b)+\left(\tau_{2}, y\right)$ be a quartic extension of H. If $b=v$ and the vertices u and a are adjacent and both have degree three, then we say that K is a staircase extension of H. If a, b, u, v are pairwise distinct, all have degree three, a is adjacent to u and b is adjacent to v, then we say that K is a ladder extension of H. We also say that the extension is based at u, v, b, a (in that order). A staircase and a ladder extension are shown on Fig. 18.
(10.4) Let H be a graph of minimum degree at least three, and let K be a quartic extension of H. Then K has a matching minor isomorphic to a linear, staircase or ladder extension of H.

Proof. If a and u are not equal or adjacent, then $H+a u \hookrightarrow K$ (delete $x \tau_{1}$ and bicontract its ends), and hence the theorem holds. Assume now that a and u are adjacent. If both u and a have degree at least four, then $K \backslash a u$ is a linear extension of H. If exactly one of a, u has degree three, say a does, then the graph obtained from $K \backslash a u$ by bicontracting a is isomorphic to a

Fig. 18. (a) A staircase extension; (b) a ladder extension.
linear extension of H. Thus if $a \neq u$, and either they are not adjacent or one of them has degree at least four, then a linear extension of H is isomorphic to a matching minor of K. By symmetry the same conclusion holds about the vertices v and b, and the lemma follows.
(10.5) Let K be a staircase extension of a 3-connected graph H. If H has at least five vertices, then a linear or ladder extension of H is isomorphic to a matching minor of K.

Proof. Let $K=H^{\prime}+x_{1} x_{2}+y_{1} y_{2}$, where H^{\prime} is obtained from H by bisubdividing the edges $v v_{1}$ and $v v_{2}$ so that $v_{1} y_{1} x_{1} v x_{2} y_{2} v_{2}$ is a path of H^{\prime}, and assume that v_{1}, v_{2} have degree three and are adjacent to each other. Let $v_{1}^{\prime}, v_{2}^{\prime}$ be the third neighbors of v_{1} and v_{2}, respectively. If v_{1}^{\prime} and v_{2}^{\prime} are not equal or adjacent, then $H+v_{1}^{\prime} v_{2}^{\prime} \hookrightarrow K$ (bicontract v_{1} and v_{2} in $K \backslash v_{1} v_{2}$), and so the lemma holds. If v_{1}^{\prime} and v_{2}^{\prime} are adjacent, then K can be regarded as a ladder extension of H, and if $v_{1}^{\prime}=v_{2}^{\prime}$, then the 3 -connectivity of H implies that it is isomorphic to K_{4}, contrary to hypothesis.

A fence in a graph H is a sequence $\left(u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}\right)$ of distinct vertices of H such that $k \geqslant 2$, each of theses vertices has degree three, $u_{1} u_{2} \ldots u_{k}$ and $v_{1} v_{2} \ldots v_{k}$ are paths and u_{i} is adjacent to v_{i} for all $i=1,2, \ldots, k$.
(10.6) Let K be a ladder extension of a 3 -connected graph H on an even number of vertices. If K is not a ladder or a staircase, then K has a matching minor isomorphic to a linear extension of H.

Proof. By hypothesis there exists a fence ($u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{k}, v_{k}$) in H such that $K=H^{\prime}+$ $x_{1} y_{1}+x_{2} y_{2}$, where H^{\prime} is obtained from H by bisubdividing $u_{1} u_{2}$ and $v_{1} v_{2}$ and $x_{1}, x_{2}, y_{1}, y_{2}$ are the new vertices numbered so that $u_{1} x_{1} x_{2} u_{2} v_{2} y_{2} y_{1} v_{1}$ is a cycle in H^{\prime}. We may assume that the fence is chosen with k maximum. Let u_{0}, v_{0} be the third neighbors of u_{1}, v_{1}, respectively. Assume first that $u_{0} \neq v_{0}$. Since the quartic extension of H based at $u_{0}, u_{1}, v_{1}, v_{0}$ is isomorphic to K, the argument in the proof of (10.4) shows that either a linear extension of H is isomorphic to a matching minor of K, or that u_{0} and v_{0} are adjacent and both have degree three. We may assume the latter, for otherwise the lemma holds. By the maximality of k the sequence ($u_{0}, v_{0}, u_{1}, v_{1}, \ldots, u_{k}, v_{k}$) is not a fence in H, and hence we may assume that $u_{0}=u_{k}$ or $u_{0}=v_{k}$. But H is 3 -connected, and so in the former case K is a planar ladder, and in the latter case it is a Möbius ladder. Thus we may assume that $u_{0}=v_{0}$. The ladder extension of H based
at $u_{k-1} u_{k} v_{k} v_{k-1}$ is clearly isomorphic to K, and hence the above argument shows that we may assume that the third neighbors of u_{k} and v_{k} are equal. Since H is 3 -connected and has an even number of vertices, it is a staircase.

The following result summarizes the previous lemmas.
(10.7) Let K be a quadratic or quartic extension of a 3-connected graph H on an even number of vertices, and assume that K is not a prismoid, wheel, biwheel, ladder or staircase. Then a linear extension of H is isomorphic to a matching minor of K.

Proof. If H is isomorphic to K_{4}, then K is not a staircase extension of H, because K is not a staircase. Thus the lemma follows from the results of this section.

We are now ready to prove Theorem (1.11).
Proof of (1.11). Let H and G be as stated therein, and assume that they are not isomorphic. Assume first that either H is not isomorphic to K_{4}, or G has no matching minor isomorphic to the Petersen graph. By (9.5) we may assume that a quadratic or quartic extension K of H is isomorphic to a matching minor of G. It follows from the hypothesis of (1.11) that K is not a prismoid, wheel, biwheel, ladder or staircase. Thus K has a matching minor isomorphic to a linear extension of H by (10.7), and hence so does G, as desired. Thus we may assume that H is isomorphic to K_{4} and G has a matching minor isomorphic to the Petersen graph. But G is not isomorphic to the Petersen graph by hypothesis. Since we have already shown that (1.11) holds when H is the Petersen graph, we may now apply it to deduce that G has a matching minor isomorphic to a linear extension of the Petersen graph. The Petersen graph has, up to isomorphism, a unique linear extension, and this linear extension has a matching minor isomorphic to the staircase on eight vertices. But the latter graph has a matching minor isomorphic to K_{4}, the staircase on four vertices, contrary to hypothesis.

11. A generalization

In this section we state a generalization of (1.11), and point out how it follows from the theory that we developed. Let G be a graph with a perfect matching. Let us recall that a barrier in G is a set $X \subseteq V(G)$ such that $G \backslash X$ has at least $|X|$ odd components, and that bricks are 3-connected graphs with perfect matchings and no barriers of size at least two. Braces almost have no barriers, either, for if X is a barrier in a brace and X has at least two elements, then X is one of the two color classes of G. We use this fact to weaken the condition on bricks. Let $s \geqslant 0$ be an integer. We say that a set $X \subseteq V(G)$ is an s-barrier in G if $G \backslash X$ has $|X|-1$ odd components such that the union of the remaining components of $G \backslash X$ has at least s vertices. We say that a graph is an s-brick if it is 3 -connected and has no s-barrier of size at least two. Thus bricks are 1 -bricks and braces are 2-bricks. Our proof of (1.11) actually proves the following more general theorem. A pinched staircase is a graph obtained from a staircase by contracting the edge $v_{1} v_{2}$, where the vertices v_{1} and v_{2} are as in the definition of a staircase.
(11.1) Let $s \geqslant 0$ be an integer, G be an s-brick other than the Petersen graph, and let H be a 3 -connected matching minor of G on at least $s+1$ vertices. Assume that if H is a planar ladder, then there is no strictly larger planar ladder L with $H \hookrightarrow L \hookrightarrow G$, and similarly for Möbius
ladders, wheels, lower biwheels, upper biwheels, staircases, pinched staircases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some matching minor of G is isomorphic to a linear extension of H.

Proof. The proof follows the proof of (1.11), with the following minor modifications. In (2.2) the set R_{k} is not required to be odd, but instead must have at least s vertices. The proof goes through with the obvious changes. Then the definition of octopus needs to be changed to permit heads with even number of vertices, and in the definition of frame we need to add a condition guaranteeing that the heads of $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k-1}$ are odd and that the head of Ω_{k} has at least s vertices. The assumption that H has at least $s+1$ vertices will guarantee that this additional condition is satisfied whenever (2.3) is applied. Finally, in (10.6) the assumption that H has an even number of vertices can be replaced by assuming that K is not a pinched staircase.

Clearly (11.1) implies (1.11) on taking $s=1$. Let us now turn to braces. Let L be a linear extension of a brace H. Then L need not be a brace, but if L is bipartite, then it is a brace. Furthermore, if L is isomorphic to a matching minor of a bipartite graph, then L itself is bipartite. Thus (11.1) implies (1.9) by taking $s=2$. The third application of (11.1) is to factor-critical graphs. A graph G is factor-critical if $G \backslash v$ has a perfect matching for every vertex $v \in V(G)$. It is easy to see that every 1 -brick on an odd number of vertices is factor-critical. Thus the following immediate corollary of (11.1) gives a generation theorem for a subclass of factor-critical graphs.
(11.2) Let G be a 1-brick on an odd number of vertices, and let H be a 3-connected matching minor of G. Assume that if H is a wheel, then there is no strictly larger wheel W with $H \hookrightarrow$ $W \hookrightarrow G$, and similarly for pinched staircases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some matching minor of G is isomorphic to a linear extension of H.

Unfortunately, a linear extension of a 1-brick need not be a 1-brick.

Acknowledgment

William McCuaig informed us in September 2003 that he obtained a theorem similar to (1.11).

References

[1] M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, How to build a brick, Discrete Math. 306 (2006) 2383-2410.
[2] J. Edmonds, Maximum matching and a polyhedron with (0, 1) vertices, J. Res. Nat. Standards B 69 (1965) 125-130.
[3] J. Edmonds, L. Lovász, W.R. Pulleyblank, Brick decompositions and matching rank of graphs, Combinatorica 2 (1982) 247-274.
[4] P.W. Kasteleyn, Graph theory and crystal physics, in: F. Harary (Ed.), Graph Theory and Theoretical Physics, Academic Press, New York, 1967, pp. 43-110.
[5] C.H.C. Little, F. Rendl, Operations preserving the Pfaffian property of a graph, J. Aust. Math. Soc. Ser. A 50 (1991) 248-257.
[6] L. Lovász, Some algorithmic problems on lattices, in: L. Lovász, E. Szemerédi (Eds.), Theory of Algorithms, Proc. Colloq. Pécs, Hungary, 1984.
[7] L. Lovász, Matching structure and the matching lattice, J. Combin. Theory Ser. B 43 (1987) 187-222.
[8] L. Lovász, M. Plummer, Matching Theory, Ann. Discrete Math., vol. 29, North-Holland, Amsterdam, 1986.
[9] W. McCuaig, Brace generation, J. Graph Theory 38 (2001) 124-169.
[10] W. McCuaig, Pólya's permanent problem, Electron. J. Combin. 11 (2004), 83 pp.
[11] W. McCuaig, N. Robertson, P.D. Seymour, R. Thomas, Permanents, Pfaffian orientations, and even directed circuits (Extended abstract), Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, May 4-6, 1997, El Paso, Texas, United States, pp. 402-405.
[12] S. Norine, Drawing Pfaffian graphs, in: Graph Drawing, 12th International Symposium, in: Lecture Notes in Comput. Sci., vol. 3383, 2005, pp. 371-376.
[13] N. Robertson, P.D. Seymour, R. Thomas, Permanents, Pfaffian orientations, and even directed circuits, Math. Ann. 150 (1999) 929-975.
[14] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[15] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961) 441-455.
[16] V.V. Vazirani, M. Yannakakis, Pfaffian orientations, $0-1$ permanents, and even cycles in directed graphs, Discrete Appl. Math. 25 (1989) 179-190.

[^0]: E-mail address: thomas@math.gatech.edu (R. Thomas).
 ${ }^{1}$ Partially supported by NSF under Grant No. DMS-0200595.
 2 Partially supported by NSF under Grant No. DMS-0200595 and by ONR under Grant No. N00014-01-1-0608.

