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Abstract

A brick is a 3-connected graph such that the graph obtained from it by deleting any two distinct vertices
has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the
matching decomposition procedure of Kotzig, and Lovdsz and Plummer. We prove a “splitter theorem” for
bricks. More precisely, we show that if a brick H is a “matching minor” of a brick G, then, except for a
few well-described exceptions, a graph isomorphic to H can be obtained from G by repeatedly applying a
certain operation in such a way that all the intermediate graphs are bricks and have no parallel edges. The
operation is as follows: first delete an edge, and for every vertex of degree two that results contract both
edges incident with it. This strengthens a recent result of de Carvalho, Lucchesi and Murty.
© 2007 Robin Thomas. Published by Elsevier Inc. All rights reserved.
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1. Introduction

All graphs in this paper are finite and simple; that is, may not have loops or multiple edges. The
following well-known theorem of Tutte [15] describes how to generate all 3-connected graphs,
but first a definition. Let v be a vertex of a graph H, and let N1, N; be a partition of the neighbors
of v into two disjoint sets, each of size at least two. Let G be obtained from H \ v (we use \
for deletion and — for set-theoretic difference) by adding two vertices v; and v, where v; has
neighbors N; U {v3_;}. We say that G was obtained from H by splitting a vertex. Thus for
3-connected graphs splitting a vertex is the inverse of contracting an edge that belongs to no
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triangle. A wheel is a graph obtained from a cycle by adding a vertex joined to every vertex of
the cycle.

(1.1) Every 3-connected graph can be obtained from a wheel by repeatedly applying the opera-
tions of adding an edge between two nonadjacent vertices and splitting a vertex.

A graph is a minor of another if the first can be obtained from a subgraph of the second by
contracting edges. Seymour [14] extended (1.1) as follows.

(1.2) Let H be a 3-connected minor of a 3-connected graph G such that H is not isomorphic to
K4 and G is not a wheel. Then a graph isomorphic to G can be obtained from H by repeatedly
applying the operations of adding an edge between two nonadjacent vertices and splitting a
vertex.

Our objective is to prove an analogous theorem for bricks, where a brick is a 3-connected bi-
critical graph, and a graph G is bicritical if G \ u \ v has a perfect matching for every two distinct
vertices u, v € V(G). A related notion is that of a brace, by which we mean a connected bipartite
graph such that every matching of size at most two is contained in a perfect matching. Bricks
and braces are important, because they are the building blocks of the matching decomposition
procedure of Kotzig, and Lovdsz and Plummer [8], which we now briefly review.

Let G be a graph, and let X € V(G). We use §(X) to denote the set of edges with one end
in X and the other in V(G) — X. A cut in G is any set of the form §(X) for some X C V(G).
A cut Cistightif |C N M| = 1 for every perfect matching M in G. Every cut of the form § ({v}) is
tight; those are called frivial, and all other tight cuts are called nontrivial. Let 6 (X) be a nontrivial
tight cut in a graph G, let G| be obtained from G by identifying all vertices in X into a single
vertex and deleting all resulting parallel edges, and let G, be defined analogously by identifying
all vertices in V(G) — X. Then many matching-related problems can be solved for G if we are
given the corresponding solutions for G| and G2. As an example, consider lat(G), the matching
lattice of a graph G, defined as the set of all integer linear combinations of characteristic vectors
of perfect matchings of G. It is not hard to see that a description of lat(G) can be read off from
descriptions of lat(G1) and lat(G,). We will return to the matching lattice shortly.

The above decomposition process can be iterated, until we arrive at graphs with no nontrivial
tight cuts. Lovdsz [7] proved that the list of indecomposable graphs obtained at the end of the
procedure does not depend on the choice of tight cuts made during the process. These indecom-
posable graphs were characterized by Edmonds, Lovasz and Pulleyblank [2,3]:

(1.3) Let G be a connected graph such that every edge of G belongs to a perfect matching. Then
G has no nontrivial tight cut if and only if G is a brick or a brace.

Coming back to the matching lattice, Lovasz [6] proved that if G is a brace, then lat(G)
consists of all integral vectors w € Z£(G) such that w(8(v)) = w(8(v")) for every two vertices
v, v’ € V(G). This is not true for bricks, because the Petersen graph is a counterexample. How-
ever, Lovasz [7] proved the following deep result.

(1.4) Let G be a brick other than the Petersen graph. Then 1at(G) consists precisely of all vectors
w € ZE©G) such that w(S(v)) = w(8(V")) for every two vertices v,v' € V(G).
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Our motivation for generating bricks came from Pfaffian orientations [4]. An orientation D
of a graph G is Pfaffian if every even cycle C such that G \ V(C) has a perfect matching has
an odd number of edges directed in either direction of the cycle. A graph is Pfaffian if it has
a Pfaffian orientation. This is an important concept, because the number of perfect matchings
in a Pfaffian graph can be computed efficiently [4]. No polynomial-time algorithm to recognize
Pfaffian graphs is known, even though there is one for bipartite graphs [11,13], using a structure
theorem obtained in [10,13]. The above-mentioned tight cut decomposition procedure can be
used to reduce the Pfaffian graph decision problem to bricks and braces [5,16]. Thus it remains to
understand which bricks have a Pfaffian orientation, but that seems to be a much harder problem
than the corresponding question for braces. Using the main theorem of this paper we managed
to shed some light on this perplexing question, but the structure of Pfaffian graphs remains a
mystery. We will report on these findings elsewhere. A characterization of Pfaffian graphs in
terms of drawings in the plane (with crossings) has been recently obtained by the first author [12].

Let us now describe our theorem. We need a few definitions first. Let G be a graph, and
let vg be a vertex of G of degree two incident with the edges e; = vov; and e; = vovy. Let
H be obtained from G by contracting both e and e, and deleting all resulting parallel edges.
We say that H was obtained from G by bicontracting or bicontracting the vertex vy, and write
H = G/vp. Let us say that a graph H is a reduction of a graph G if H can be obtained from
G by deleting an edge and bicontracting all resulting vertices of degree two. By a prism we
mean the unique 3-regular planar graph on six vertices. The following is a generation theorem of
de Carvalho, Lucchesi and Murty [1].

(1.5) If G is a brick other than K4, the prism, and the Petersen graph, then some reduction of G
is a brick other than the Petersen graph.

Thus if a brick G is not the Petersen graph, then the reduction operation can be repeated until
we reach K4 or the prism. By reversing the process (1.5) can be viewed as a generation theorem.
It is routine to verify that (1.5) implies (1.4), and that demonstrates the usefulness of (1.5). Our
main theorem strengthens (1.5) in two respects. (We have obtained our result independently of
[1], but later. We are indebted to the authors of [1] for bringing their work to our attention.)
The first strengthening is that the generation procedure can start at graphs other than K4 or the
prism, as we explain next. Let a graph J be a subgraph of a graph G. We say that J is a central
subgraph of G if G \ V (J) has a perfect matching. We say that a graph H is a matching minor
of G if H can be obtained from a central subgraph of G by repeatedly bicontracting vertices
of degree two. Thus if H can be obtained from G by repeatedly taking reductions, then H is
isomorphic to a matching minor of G. We will denote the fact that G has a matching minor
isomorphic to H by writing H < G. This is consistent with our notation for embeddings, to be
introduced in Section 4. Since every brick has a matching minor isomorphic to K4 or the prism
by [8, Theorem 5.4.11], the following implies (1.5).

(1.6) Let G be a brick other than the Petersen graph, and let H be a brick that is a matching mi-
nor of G. Then a graph isomorphic to H can be obtained from G by repeatedly taking reductions
in such a way that all the intermediate graphs are bricks not isomorphic to the Petersen graph.

We say that a graph H is a proper reduction of a graph G if it is a reduction in such a way that
the bicontractions involved do not produce parallel edges. We would like to further strengthen
(1.6) by replacing reductions by proper reductions; such an improvement is worthwhile, because



772 S. Norine, R. Thomas / Journal of Combinatorial Theory, Series B 97 (2007) 769-817

| (%
@

() (

| .

Fig. 1. Exceptional families.

in applications it reduces the number of cases that need to be examined. Unfortunately, (1.6) does
not hold for proper reductions, but all the exceptions can be conveniently described. Let us do
that now. We refer to Fig. 1(a)—(e).

Let C; and C; be two vertex-disjoint cycles of length n > 3 with vertex-sets {u, ua, ..., u,}
and {vy, va, ..., v,} (in order), respectively, and let G be the graph obtained from the union of
C1 and C, by adding an edge joining u; and v; for eachi =1,2,...,n. We say that G is a
planar ladder. Let G, be the graph consisting of a cycle C with vertex-set {uy, us, ..., u2,} (in
order), where n > 2 is an integer, and n edges with ends u; and u,4+; fori =1,2,..., n. We say
that G, is a Mobius ladder. A ladder is a planar ladder or a Mobius ladder. Let G be a planar
ladder as above on at least six vertices, and let G3 be obtained from G by deleting the edge uju>
and contracting the edges ujv1 and upv,. We say that G3 is a staircase. Let t > 2 be an integer,
and let P be a path with vertices vy, v2, ..., Vs in order. Let G4 be obtained from P by adding
two distinct vertices x, y and edges xv; and yv; fori = 1,7 and all eveni € {1,2,...,¢} and
j=1,tandallodd j € {1,2,...,t}. Let G5 be obtained from G4 by adding the edge xy. We say
that G5 is an upper prismoid, and if t > 4, then we say that G4 is a lower prismoid. A prismoid
is a lower prismoid or an upper prismoid. We are now ready to state our main theorem.



S. Norine, R. Thomas / Journal of Combinatorial Theory, Series B 97 (2007) 769-817 773

(1.7) Let H, G be bricks, where H is isomorphic to a matching minor of G. Assume that H is
not isomorphic to K4 or the prism, and G is not a ladder, wheel, staircase or prismoid. Then a
graph isomorphic to H can be obtained from G by repeatedly taking proper reductions in such
a way that all the intermediate graphs are bricks not isomorphic to the Petersen graph.

If H is a brick isomorphic to a matching minor of a brick G and G is a ladder, wheel, staircase
or prismoid, then H itself is a ladder, wheel, staircase or prismoid, and can be obtained from a
graph isomorphic to G by taking (possibly improper) reductions in such a way that all intermedi-
ate graphs are bricks. Thus (1.7) implies (1.6). (Well, this is not immediately clear if the graph H
from (1.6) is a K4 or a prism, but in those cases the implication follows with the aid of the next
theorem.)

As a counterpart to (1.7) we should describe the starting graphs for the generation process of
(1.7). Notice that K4 is a wheel, a Mobius ladder, a staircase and an upper prismoid, and that the
prism is a planar ladder, a staircase and a lower prismoid. Later in this section we show

(1.8) Let G be a brick not isomorphic to K4, the prism or the Petersen graph. Then G has a mat-
ching minor isomorphic to one of the following seven graphs: the graph obtained from the prism
by adding an edge, the lower prismoid on eight vertices, the staircase on eight vertices, the
staircase on ten vertices, the planar ladder on ten vertices, the wheel on six vertices, and the
Mobius ladder on eight vertices.

McCuaig [9] proved an analogue of (1.7) for braces. To state his result we need another excep-
tional class of graphs, depicted in Fig. 1(f). Let C be an even cycle with vertex-set vy, vy, ..., vy
in order, where ¢ > 2 is an integer and let Gg be obtained from C by adding vertices vy;41 and
v2:+2 and edges joining vy, to the vertices of C with odd indices and vy;7 to the vertices of C
with even indices. Let G7 be obtained from G¢ by adding an edge va;1v2:42. We say that G7 is
an upper biwheel, and if t > 3 we say that Gg is a lower biwheel. A biwheel is a lower biwheel
or an upper biwheel. McCuaig’s result is as follows.

(1.9) Let H, G be braces, where H is isomorphic to a matching minor of G. Assume that if H is a
planar ladder; then it is the largest planar ladder matching minor of G, and similarly for Mébius
ladders, lower biwheels and upper biwheels. Then a graph isomorphic to H can be obtained
from G by repeatedly taking proper reductions in such a way that all the intermediate graphs are
braces.

Actually, (1.9) follows from a version of our theorem stated in Section 11.

Let us now introduce terminology that we will be using in the rest of the paper. Let
H, G, vy, vy, 12, €1, ex be as in the definition of bicontraction. Assume that both v{ and v, have
degree at least three and that they have no common neighbors except vp; then no parallel edges
are produced during the contraction of e and e;. Let v be the new vertex that resulted from the
contraction. If both v; and v, have degree at least three, then we say that G was obtained from H
by bisplitting the vertex v. We call vy the new inner vertex and vy and vy the new outer vertices.

Let H be a graph. We wish to define a new graph H” and two vertices of H”. Either H” = H
and u, v are two nonadjacent vertices of H, or H” is obtained from H by bisplitting a vertex, u is
the new inner vertex of H” and v € V(H") is not adjacent to u, or H” is obtained by bisplitting
a vertex of a graph obtained from H by bisplitting a vertex, and u and v are the two new inner
vertices of H”. Finally, let H' = H” + (u, v). We say that H’ is a linear extension of H (see
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Fig. 2. Linear extensions of H.

Fig. 2). Thus H’ is a linear extension of H if and only if H is a proper reduction of H'. By
the cube we mean the graph of the 1-skeleton of the 3-dimensional cube. Notice that the cube
and K33 are bipartite, and hence are not bricks. Using this terminology (1.7) can be restated in
a mildly stronger form. It is easy to check that if G’ is obtained from a brick G by bisplitting
a vertex into new outer vertices v and vy, then {v, vp} is the only set X € V(G’) such that
|X|>2and G’ \ X has at least | X| odd components. Thus a linear extension of a brick is a brick,
and hence (1.10) implies (1.7).

(1.10) Let G be a brick other than the Petersen graph, and let H be a 3-connected matching
minor of G not isomorphic to Ka, the prism, the cube, or K3 3. If G is not isomorphic to H and G
is not a ladder, wheel, biwheel, staircase or prismoid, then a linear extension of H is isomorphic
to a matching minor of G.

The main step in the proof of (1.10) is the following.
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(1.11) Let G be a brick other than the Petersen graph, and let H be a 3-connected matching mi-
nor of G. Assume that if H is a planar ladder, then there is no strictly larger planar ladder L with
H — L — G, and similarly for Mobius ladders, wheels, lower biwheels, upper biwheels, stair-
cases, lower prismoids and upper prismoids. If H is not isomorphic to G, then some matching
minor of G is isomorphic to a linear extension of H.

It is routine to verify that if G is a ladder, wheel, biwheel, staircase or prismoid, G’ is a linear
extension of G, and H is a 3-connected matching minor of G not isomorphic to K4, the prism,
the cube, or K3 3, then G’ has a matching minor isomorphic to a linear extension of H. Thus
(1.11) implies (1.10), and we omit the details. The proof of (1.11) will occupy the rest of the
paper. However, assuming (1.11) we can now deduce (1.8).

Proof of (1.8), assuming (1.11). Let G be a brick not isomorphic to K4, the prism or the Petersen
graph. By [8, Theorem 5.4.11], G has a matching minor M isomorphic to K4 or the prism.
Since M is not bipartite, it is not a biwheel, a planar ladder on 4k vertices, or a Mobius ladder
on 4k + 2 vertices. Thus if a prismoid, wheel, ladder or staircase larger than M is isomorphic
to a matching minor of G, then G has a matching minor as required for (1.8). Thus we may
assume that the hypothesis of (1.11) is satisfied, and hence a matching minor of G is isomorphic
to a linear extension of M. But K4 does not have any linear extensions, and the prism has,
up to isomorphism, exactly one, namely the graph obtained from it by adding an edge. This
proves (1.8). O

Here is an outline of the paper. First we need to develop some machinery; that is done in
Sections 2—4. In Section 5 we prove a first major step toward (1.11), namely that the theorem
holds provided a graph obtained from H by bisplitting a vertex is isomorphic to a matching
minor of G. Then in Section 6 we reformulate our key lemma in a form that is easier to apply,
and introduce several different types of extensions. In Section 7 we use the 3-connectivity of G
to show that at least one of those extensions of H is isomorphic to a matching minor of G, and
in Sections 8-10 we gradually eliminate all the additional extensions. Theorem (1.11) is proved
in Section 10. Finally, in Section 11 we state a strengthening of (1.11) that can be obtained
by following the proof of (1.11) with minimal changes. We delegate the strengthening to the
last section, because the statement is somewhat cumbersome and perhaps of lesser interest. Its
applications include (1.11), (1.9) and a generation theorem for a subclass of factor-critical graphs.

A word about notation. If H is a graph, and u, v € V(H) are distinct nonadjacent vertices,
then H + (u, v) or H + uv denotes the graph obtained from H by adding an edge with ends u
and v. Now let u, v € V(H) be adjacent. By bisubdividing the edge uv we mean replacing the
edge by a path of length three, say a path with vertices u, x, y, v, in order. Let H' be obtained
from H by this operation. We say that x, y (in that order) are the new vertices. Thus y, x are
the new vertices resulting from subdividing the edge vu (we are conveniently exploiting the
notational asymmetry for edges). Now if w € V(H) — {u}, then by H + (w, uv) we mean the
graph H' + (w, x). Notice that the graphs H + (w, uv) and H + (w, vu) are different. In the same
spirit, if a, b € V (H) are adjacent vertices of H with {u, v} # {a, b}, then we define H + (uv, ab)
to be the graph H' + (x, ab).
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2. Octopi and frames

Let H be a graph with a perfect matching, and let X € V (H) be a set of size k. If H \ X has at
least k odd components, then X is called a barrier in H. The following is easy and well known.

(2.1) A brick has no barrier of size at least two.

Now if H and X are as above and H is a subgraph of a brick G, then X cannot be a barrier
in G.If H is a central subgraph of G, then we get the following useful outcome. In the application
R1, Ry, ..., R will be the components of G \ X.

(2.2) Let G be a brick and let H be a subgraph of G. Let M be a perfect matching of G\ V (H)
and let V(H) be a disjoint union of X, Ry, Ry, ..., Ry, where k > 2, | X| < k and |R;| is odd for
everyi € {1,2,...,k}. Then there exist distinct integers i, j € {1,2, ..., k} and an M-alternating
path joining a vertex in R; to a vertex in R;.

Proof. Suppose for a contradiction that the lemma is false, and let H be a maximal subgraph of
G that satisfies the hypothesis of the lemma, but not the conclusion.

By (2.1) there exists an edge e; € E(G) with one end v € R; for some i € {1,2,...,k} and
the other end u € V(G) — R; — X. Without loss of generality we may assume that i = 1. If
u € V(H) then the path with edge-set {e1} is as required. Thus u ¢ V (H), and hence u is incident
with an edge e; € M. Let w be the other end of e;; then clearly w ¢ V(H). Let X' = X U {u},
Riy1 = {w}, M' = M — {ez} and construct H’ by adding the vertices u and w and edges e;
and e, to H. By the maximality of H the graph H’, matching M’ and sets X', Ry, Ra, ..., Rg+1
satisfy the conclusion of the lemma. Thus for some distinct integers i, j € {1, 2, ...,k + 1} there
exists an M'-alternating path P joining a vertex in R; to a vertex in R;. Since H does not satisfy
the conclusion of the lemma we may assume that j =k + 1. Let P’ be the graph obtained from
P by adding the edges e; and e;. If i > 1, then P’ is a path and satisfies the conclusion of the
lemma.

Thus we may assume thati = 1. Let H" = HUP',M" =M — E(P') and R{ = R{ UV (P").
Then the graph H”, matching M"” and sets X, R}, R, ..., Ri also satisfy the conclusion of the
lemma by the maximality of H. Thus we may assume that there is an M”-alternating path Q
joining a vertex in R] to a vertex in R; for some j € {2, 3, ..., k}. If neither of the ends of Q lies
in V(P’) then Q is a required path for H. If one of them, say x, is in V (P’), we add to Q one of
the subpaths of P’ with end x to obtain a required path. O

To motivate the next definitions, let us consider the following example. Let G be a brick that
has a matching minor isomorphic to K4. Later in the proof there will come a step when one will
be able to deduce that G has a matching minor isomorphic to the graph H depicted in Fig. 3.
Unfortunately, H is not a brick, because the set {a, b, c} is a barrier. So we try to apply (2.2).
More precisely, G has a central subgraph J isomorphic to a graph obtained from H by repeatedly
bisubdividing edges of H;leta’,b’,c’, x', y' € V(J) correspond to a, b, ¢, x, y, respectively. By
applying (2.2) we deduce that one of a number of outcomes holds, including a possibility that
G has a matching minor isomorphic to J + (x’, y’a’). The latter graph, however, is not a brick
and the only brick matching minor it contains is K4. Thus we need a strengthening of (2.2) in
the case when each R; has a restricted structure, what we call an octopus. Let us introduce the
necessary definitions.
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Fig. 3. A graph H, containing K4 as a matching minor.

Fig. 4. An octopus §2 and an £2-compatible matching.

Let H be a graph, let C be a subgraph of H with an odd number of vertices, and let
Pi, Py, ..., P, be odd paths in H. For i = 1,2, ...,k let u; and v; be the ends of P;. If for
distinct i, j =1,2,...,k we have V(P;) N V(C) ={u;} and V(P;) NV (P;) € {u;, v;}, then we
say that 2 = (C, Py, P», ..., Py) is an octopus in H. We say that the paths Py, P, ..., Py are
the tentacles of §2, C is the head of §2 and v; are the ends of £2. We define the graph of £2 to
be CU P U P, U---U Py, and by abusing notation slightly we will denote this graph also by £2.
We say that a matching M in G is §2-compatible if every tentacle is M -alternating and no vertex
of C is incident to an edge of M. See Fig. 4. Then in the example above each component of
J\ {d’,b’, '} can be turned into an octopus §2, and the perfect matching in G \ V(J) can be
extended to an §2-compatible matching in G.

Let G be a graph, and let £ > 1 be an integer. We say that the pair (F, X) is a frame in G if
X CV(G) and F ={£21, §22, ..., §2;} satisfy

(1) £21, §2,, ..., §2; are octopi,

(2) fori =1,2,...,k the ends and only the ends of £2; belong to X,
(3) fordistincti, j € {1,2,...,k}, V(§2;)) NV (£2;) C X,

@) |X| <k.
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We say that £21, §2, ..., £2 are the components of (F, X). We define the graph of (F, X) to
be 21 U 2, U--- U £2, and denote it by F, again abusing notation. Thus in the above example
G has a frame (F, {a’, b/, ¢'}) with three components. The following is the main result of this
section. We say that a graph H is M-covered if a subset of M is a perfect matching of H.

(2.3) Let G be a brick, let M be a matching in G, and let (F, X) be a frame in G such that
G\ (V(F)UX) is M-covered and M is S2-compatible for each §2 € F. Then there exists an M -
alternating path P joining vertices of the heads of two different components §21, §22 of (F, X).
Moreover, there is an edge e € E(P)— M such that the two components of P \ e can be numbered
Py and P> in such a way that V(P;) N V(F) C V(£2;) fori =1,2.

Proof. We say that a subpath Q of a path P is an F-jump in P if the ends of Q belong to different
components of F and Q is otherwise disjoint from F. Let F = {£21, 23, ..., §2¢} and let C;
denote the vertex-set of the head of £2;. By (2.2) applied to X, C1, Ca, ..., Ci there exists an M-
alternating path joining vertices of the heads of two different components of (F, X). Choose such
path P with the minimal number of F-jumps in it. We prove that P satisfies the requirements of
the theorem.

Let v; € C1 and v, € C; be the ends of P. Since P is M-alternating and M is §2;-compatible
forall i =1,2,...,k, it follows that no internal vertex of P belongs to C;. Suppose that P N
T # ¥ for some tentacle T of £2;, where i > 3. Let {vg} =V(T)NC; andletve V(P)NV(T)
be chosen so that T'[v, vo] is minimal. For some j € {1, 2} the path P[v;, v]U T[v, vo] is M-
alternating and contradicts the choice of P. Thus V(P)NV(F) C V(£21) UV (£22).

Define a linear order on V (P) so that v > v’ if and only if v € P[vy, v]. Let Py be an F-jump
in P with ends u; € V(£21) and up € V(£2;) chosen so that u; > up and P[vy, u»] is minimal.
Equivalently we can define Py as a second F-jump we encounter if we traverse P from v to vy.
If such an F-jump Py in P does not exist then P contains a unique F-jump. Let e ¢ M be an
edge of this unique F-jump; then P and e satisfy the requirements of the theorem. Therefore we
may assume the existence of Py.

For i € {1, 2} let T; be the tentacle of §2; such that u; € V(T;) and let {w;} = V(T;) N C;.
Let sy € V(T1) N V(P) be chosen so that s; > u; and T7[s;, wi] is minimal. Note that s; # w1,
because the only vertex in V(P) N Cy is vy and s; > u1 > v;. Let s1¢; be the edge of M incident
to s1. We have s1#y € E(T1 N P) as both 71 and P are M-alternating, s; € T1[#, w1] by the
choice of 51 and s7 > #1 as otherwise the path T7[wq, s1]U P[s1, v2] contradicts the choice of P.
Let s, € V(T2) N V(P) be chosen so that sp < s1 and T5[s2, wy] is minimal. Let s, be the edge
of M incident to so. We again have s2ty € To N P, 57 € Ta[t2, wa] and s7 < 1, as otherwise the
path P[vy, s2] U T»[s2, wa] contradicts the choice of P.

Consider P’ = P[s3, s1]. By the choice of s; we have V(P[uz, s1]) N V(Ti[s1, wi]) = {s1}.
Also if s < up we have V(P[sz, uz]) N V(§21) =¥ by the choice of Py. It follows that V (P') N
V(T1[s1, w1]) = {s1}. By the choice of s; we have V(P’) N V(Tz[s2, wz]) = {s2}. Therefore
T [ws, s2]U P’ U Ti[wy, s1] is an M -alternating path contradicting the choice of P. O

3. Two paths meeting

In this section we study the following problem. Let G be a graph, let M be a matching, and
let P; and P, be two M -alternating paths. In the applications we will be permitted to replace the
matching M by a matching M’ saturating the same set of vertices, and to replace the paths P
and P, by a pair of M’-alternating paths with the same ends. Thus we are interested in graphs
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that are minimal in the sense that there is no replacement as above upon which an edge of G may
be deleted. The main result of this section, Theorem (3.3) below, asserts that there are exactly
four types of minimally intersecting pairs of M -alternating paths, three of which are depicted in
Fig. 5. We start with two auxiliary lemmas.

(3.1) Let M be a matching in G, let P be an M -alternating path with ends x and y, let C be an
M -alternating cycle such that x and y have degree at most two in PUC and let M' = MAE(C).
Then there exists an M'-alternating path Q with ends x and y satisfying E(Q) € E(P)AE(C).

Proof. Let H be the subgraph of G with vertex-set V(G) and edge-set E(P)AE(C). Then x, y
have degree one in H, every other vertex of H has degree zero or two, and if it has degree two,
then it is incident with an edge of M’. Thus some component of H is an M’-alternating path
joining x and y, as desired. O

(3.2) Let M be a matching in G, let P be an M-alternating path with ends w and v, and let R
be a path with ends v and z such that R \ v is M-covered, v is incident with no edge of M, and
w ¢ V(R). Let M' = MAE(R). Then there exists an M'-alternating path Q with ends w and z
satisfying E(Q) € E(P)AE(R).

Proof. This follows similarly as (3.1) by considering the graph with edge-set E(P)AE(R). O

Let G be a graph, let M be a matching in G, and let P and Q be two M -alternating paths in G.
For the purpose of this definition let a segment be a maximal subpath of P N Q, and let an arc
be a maximal subpath of O with no internal vertex or edge in P. We say that P and Q infersect
transversally if either they are vertex-disjoint, or there exist vertices qo, g1, - .., g7 € V(Q) such
that

(1) qo0,91,-..,q7 occur on Q in the order listed, and go and g7 are the ends of Q,

(2) 92,491,493, 94, g6, g5 all belong to P and occur on P in the order listed,

(3) if go € V(P), then qo = q1 = g2 = g3, and otherwise Q[qo, g1] is an arc,

(4) if g7 € V(P), then g7 = g6 = g5 = q4, and otherwise Qlgsg, 7] is an arc,

(5) Qlgs, g4] is a segment,

(6) either g1 = q» = g3, or q1, g2, g3 are pairwise distinct, Q[q1, 2] is a segment, Q[q2, g3] is
an arc and ¢ is not an end of P, and

(7) either g4 = g5 = g, OF g4, g5, q¢ are pairwise distinct, Q[gs, ge¢] is a segment, Q[qa, g5] is
an arc and g5 is not an end of P.

It follows that the definition is symmetric in P and Q. There are four cases of transversal in-
tersection depending on the number of components of P N Q; the three cases when P and Q
intersect are depicted in Fig. 5, where matching edges are drawn thicker. We shall prove the
following lemma.

(3.3) Let M be a matching in a graph G and let Py and P> be two M -alternating paths, where
P; has ends s; and t;. Assume that s1, s2, 11 and ty have degree at most two in Py U P,. Then
there exist a matching M’ saturating the same set of vertices as M and two M'-alternating paths
Q1 and Qy such that MAM' C E(Py) U E(P»), Q; has ends s; and t; and Q1 and Q> intersect
transversally.
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Fig. 5. Three cases of transversal intersection.

Unfortunately, for later application we need a more general, but less nice result, the following.
Please notice that it immediately implies (3.3) on taking r = f;.

(3.4) Let M be a matching in a graph G and let Py and P> be two M -alternating paths, where
P; has ends s; and t;. Assume that sy, s3, t1 and t, have degree at most two in P; U Py. Let
r € V(P,), and let P, = P>[s»,r). Then one of the following conditions holds:

(1) There exist a matching M’ saturating the same set of vertices as M and two M'-alternating
paths Q1 and Q2 such that Q; has ends s; and t;, MAM' C E(P1) UE(P)), Q1 € PLUP;,
and Q1 U Q> is a proper subgraph of P1 U P;

(2) r # t, and there exists an M -alternating path R € P; U Pz/ with ends sy and t| such that R
and Py intersect transversally,

3) P2’ intersects P transversally.

Proof. We may assume that G = P; U P, and (1) does not hold. We shall refer to this as the
minimality of G.

We claim that Py U P; contains no M-alternating cycles. Suppose for a contradiction there
exists an M-alternating cycle C € P U P}. Let M' = MAE(C) and let Q1, Q> be the two M’-
alternating paths obtained by applying (3.1) to P; and P,, respectively. Since P; and P, are
M -alternating and their union includes C, they either share an edge of M N E(C), say e, or P
and P, have the same ends. In the later case replacing P> by P; contradicts the minimality of G,
and so we may assume the former. Now Q; € P{U Pz/ and QU Q» is a subgraph of (P1U P) \ e,
contradicting the minimality of G.

For the purpose of this proof let us define an arc as a maximal subpath of P, that has at least
one edge or contains an end of P; and has no internal vertex or edge in P;. Define segment as
a maximal subpath of P; N P,. We say that two vertices of P; have the same biparity if their
distance on Pj is even, and otherwise we say they have opposite biparity. We claim that the
ends of every arc have the same biparity. To see that, let P,[s, t] be an arc with ends of opposite
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biparity. There are two cases. Either both end-edges of Pj[s, ¢] belong to M, or both of them do
not. If they do, then P;[s,#] U Pz/[s, t] is an M-alternating cycle, and if they do not, then Pl/ , P>
contradict the minimality of G, where P is obtained from P; by replacing the interior of Pj[s, 7]
by P2’[s, t]. (Notice that the edge of Pi[s, ¢] incident with s does not belong to Pl’ or P,.) This
proves our claim that the ends of every arc have the same biparity.

We may assume that there is an arc with both ends on P, for otherwise (3) holds. Let
Pz’[uo, vp] be such an arc. Since uq, vy have the same biparity, exactly one end-edge of Pi[ug, vol
belongs to M, say the one incident with ug. Then the unique segment incident with uq, say
Pi[ug, v1] = Pjluo, v] has the property that v lies between ug and v on Py. Let Pj[vi,u;] be
the unique arc incident with v;. Then either u; is an end of Pz’, or u1, v have the same biparity,
opposite to the biparity of ug, vo.

We claim that either u; is an end of P}, or u| lies between vy and vg on P;. To prove this claim
we need to prove that neither u( nor vg lie between u1 and vy on Pj. To this end suppose first
that u lies between 1| and v; on Py. Then P{" and P, contradict the minimality of G, where P|’
is obtained from P; by replacing the interior of Pj[u1, vg] by Pz’[ul, vo] (the edge of Pj[v1, vol
incident with v; does not belong to Pl” U P»). Suppose now that vy lies between u and vy on P;.
Then Pz’[vo, u1]U Plug, vo] is an M-alternating cycle, a contradiction. This proves that either
u1 is an end of PZ/, or u lies between v; and vg on Pj.

Now assume that Pz’[uo, vo] is chosen so that Pj[ug, vo] is maximal, and let u, v; be as
in the previous paragraph. If u; is an end of P, we stop, and so assume that it is not. Recall
that u1, v; have opposite biparity from ug, vg. Thus the unique segment incident with u1, say
Pi[u1, v2] = Pj[uy, v2] has the property that v; lies between vy and u1 on Py. Now let P;[v2, uz]
be the unique arc incident with v. By the result of the previous paragraph either u is an end
of P}, or u, lies between v; and vy on Pj. By arguing in this manner we arrive at a sequence of
vertices ug, vg, - - -, Uk+1, Vk+1 such that

(i) ug,vi,u2,v3, ..., Vks1,..., U3, V2, U1, Vg occur on Pj in the order listed,
(ii) ujyq is anend of P;,
(iii) Py[u;,v;]arearcs fori =0,1,...,k+1,and
@iv) Pilu;, vi4+1] are segments fori =0, 1, ..., k.

It follows that u;, v; have the same biparity and that their biparity depends on the parity of i.
Let P;i[vg, v6] be the unique segment incident with vg. Then vy lies between v6 and ug on Pj.
Let P;[v, uy] be the unique arc incident with v;. The maximality of P;[u¢, vo] and the result of
the previous paragraph imply that either u(, is an end of Py, or that u, vo, v(), u(, occur on Py in
the order listed. In the latter case by an analogous argument there exists a sequence of vertices
Us Vs - - s uﬁ(ur] , U]/(,+] such that

: / !/ / / I i / li / . :

Q) ug, vl,.uz, U3y oo Vg s - oo U3, V), U, Uy OCCUT O P; in the order listed,
(i1) ”;c/+1 is an end of P»,
(iii) Pj[u;,v!] are arcs fori =0,1,...,k 41, and
@iv) Pyilu, vlfH] are segments fori =0, 1,...,k".

Suppose r = t. Then k = 0, for otherwise P; and the path obtained from P, by replacing the
interior of P>[vg, u1] by P1[vg, 1] contradict the minimality of G. Similarly, either u6 is an end
of P, or k' =0. Thus (3) holds.
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Therefore we may assume r # 2. Suppose s3 7 u(,. Then without loss of generality we assume
52 = upy1. We define Ry = Pj[s2, ux] U Pilug, t1] and Ry = Py[s2, vk] U Py[vg, 11]. For some
ie{l,2} R C PlU P2’ is an M -alternating path with ends s, and #; such that R; and P; intersect
transversally. Thus (2) holds.

It remains to consider the case when s, = uf) and ugy1 =r. If k =0, then (3) holds, and so
we may assume that k > 1. We claim that E (P[vi+1, vi] N P2) = . Suppose for a contradiction
Pr[x, y] € Pi[vk+1, vk] is a segment, and let P,[x, y] be chosen so that P>[y, f2] is minimal.
If x € V(P1[vk, y]) define Qy = P>[s2, vi] U Pilvk, x] U Ps[x, 2], and otherwise define Q; =
P52, vk+1] U Prlvgs1, x]1U Po[x, t2]. As E(P1[vg+1, 0] N PZ/) = () we see that Q; is an M-
alternating path. We replace P> with Q2 to contradict the minimality of G.

Now we claim E(Pj[vi—1, ur] N P2) = . Again suppose Pr[x, y] C Pi[vk—1, ux] is a seg-
ment, and let P>[x, y] be chosen so that P,[y, ;] is minimal. If x € V(Pi[vr_1, y]) define
0> = Pr[s2, vg—1]U Pi[vg—1, x]U Pa[x, 2], and otherwise define Qr = P>[s2, vi] U Pyvg, x]U
Palx, t2]. As E(P1[vi+1, vk] N P2) = 0 we see that Q3 is an M -alternating path. Again we re-
place P, with Q> to contradict the minimality of G.

Now let Q2 = Py[sy, vk—1]1 U Pilvg—1, url U Polug, tr]. As E(Pilvg—1,ur]l N Pr) =@ we
see that Q; is an M-alternating path and replacing P, with O, we once again contradict the
minimality of G. O

We deduce several corollaries of (3.4). Let §2 be an octopus in a graph G, where §2 consists
of two tentacles and a head C with V (C) = {v}. Then the graph of £2 is a path. We say that §2 is
a path octopus with head v. The head of a path octopus can be moved along 2 in the sense that
if v/ € V(£2) is at even distance from v in £2, then there is another path octopus with the same
graph and head v’. The next lemma will use this fact.

(3.5) Let G be a graph, let 2 be a path octopus in G with head v and ends vy and v, let z be
the neighbor of vy in $2, let M be an S2-compatible matching, and let P be an M-alternating
path in G\ vi \ v2 with ends v and w ¢ V(§2). Then there exist a path octopus 2" with head z
and ends v\ and vo, an $2'-compatible matching M’, and a path P’ with ends 7 and w such that
E(2) CE(R2UP), zv; € E(2)), v1 ¢ V(P'), M coincides with M' on G \ (V(P) U V(£2)),
QUP\V(R2'UP)is M'-covered, and P’ intersects 2’ \ vy transversally.

Proof. Since M is §2-compatible, v is incident with no edge of M. Let R = 2[z, v], let M’ =
MAE(R), and let £2' be the octopus with graph §2 and head z. Then M’ is an §2’-compatible
matching. By (3.2) there exists an M'-alternating path P’ with ends z and w such that E(P’) C
E(P)AE(R). By (3.3) we may assume, by replacing the tentacle £2'[z, v2] and path P’, that P’
intersects 2"\ v; = £2’[z, vp] transversally, as desired. O

Let P, P>, P3 be odd paths in a graph H. For i =1,2,3 let u; and v; be the ends of P;.
If u1 = up» = u3 and otherwise P, P», P3 are pairwise disjoint, then we say that the octopus
with tentacles Pj, P, and P3 and a head the graph with vertex-set {u1} is a friad in H. Assume
now that Py, P>, P3 are pairwise disjoint, and let Q1, Q2, Q3 be three odd paths such that for
{i, j, k} ={1,2, 3} the ends of Qy are u; and u ;. Assume further that Py, P, P3, Q1, Q2, Q3 are
pairwise disjoint, except for common ends in the set {u, u3, u3}. In those circumstances we say
that an octopus with tentacles Pj, P, and P3 and head Q1 U Q> U Q3 is a tripod in H.
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(3.6) Let G be a graph. Let T be a triad or tripod in G with ends vy, vo and v3. Let M be
a T-compatible matching, and let P be an M-alternating path in G \ v \ v2 with one end in
the head of T and another end w ¢ V (T). Assume that the edge of P incident with w does not
belong to M. Then there exist a triad or tripod T' € T U P with ends vy, v, and w and a T'-
compatible matching M’ such that M is identical to M' on G\ V(P UT) and (T U P)\ V(T")
is M'-covered.

Proof. If T is a triad then the result follows immediately from (3.5). If T is a tripod, then for
i e{l,2,3} let P;, Q;,u;, v; be as in the definition of tripod. Extend M to Q1, Q> and Q3 in
such a way that Q1 U Q2 U Q3 \ u; is M-covered. Let T” be the path octopus with tentacles Pj
and P, U Q1 U Q. Extend P along Q1 U Q> U Q3 to a path P” so that P” is an M -alternating
path with ends w and u;. It remains to apply (3.5) to P” and T”. 0O

Let Q be an even path with ends u; and u3, let up = u; and u4 = u3, and fori =1, 2, 3,4 let
P; be an odd path with ends u; and v;, disjoint from Q except for u;, and such that the paths P;
are pairwise disjoint, except that P; and P, share a common end u = u3 and Pz and P4 share a
common end u#3 = u4. In those circumstances we say that the octopus with head Q and tentacles
Py, Py, P3, Py is a quadropod.

Now let Py, P>, P3, Q1, Q2, O3 be as in the definition of tripod, except that Q> and Q3 are
allowed to intersect beyond the vertex u. Suppose there exists a perfect matching M of O, U
03\ u1 \uz\uz such that Q, and Q3 are M -alternating and intersect transversally. Then we say
that the octopus §2 with tentacles Pj, P, and P3 and a head Q1 U Q, U Q3 is a quasi-tripod in
H. Clearly every tripod is a quasi-tripod. It follows from the definition of transversal intersection
that O, N Q3 consists of one or two paths, one of which contains the vertex u;. By shortening
both 0> and Q3 and extending P; we may assume that one of the components of Q0> N Q3 has
vertex-set {u1}. If that is the only component of Q> N Q3, then £2 is a tripod; otherwise £2 looks
as depicted in Fig. 6.

3.7) Let G be a graph. Let T be a triad or tripod in G with ends vy, vy and v3. Let M be a
T -compatible matching, and let P be an M -alternating path in G \ {v1, v2, v3} with one end in
the head of T and another end w ¢ V (T). Assume that the edge of P incident with w does not

Fig. 6. A quasi-tripod.
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belong to M. Then there exist an octopus T' C T U P and a T'-compatible matching M’ such
that M is identical to M’ on G\ V(P UT), the graph (T U P)\ V(T") is M’-covered and either
T' is a quasi-tripod with ends v;, v; and w, for some distinct indices i, j € {1,2,3}, or T isa
quadropod with ends vy, vy, v3 and w.

Proof. We may assume that G = T U P and that there do not exist a triad or tripod 7* with ends
v1, v and v3, a T’-compatible matching M’ and an M’-alternating path P’ in G \ {vy, v2, v3}
with one end in the head of T’ and the other end w such that w ¢ V(T"), (T U P)\ V(T' U P")
is M’-covered and P’ U T’ is a proper subgraph of G. We refer to this as the minimality of G.

Let the tentacles of T be Py, P, P3, where P; has one end v;, and let u; be the other end of
P;. If T is a tripod, then let Q; be as in the definition of tripod, and otherwise let Q; be the null
graph. We say that a vertex v of P; is inbound if P;[v, u;] is even and we say that v is outbound
otherwise.

Letug € V(P NT) be chosen to minimize P[w, ug]. If T is a triad and u¢ is inbound, then T U
Plw, up] is a required quadropod. If T is a tripod and ug € V (P;) is inbound then by replacing
Pi[vi, up] by P[w, ug] in T we obtain a required quasi-tripod. If T is a tripod and ug € V (Q;),
then we may assume from the symmetry that Q;[uo, u;] is even, in which case by replacing P;
by P[w, up] we obtain a required quasi-tripod.

Therefore for the rest of the proof we may assume that ug € V (P;) and that u¢ is outbound.
Letr € V(T) NV (P) — V(Pr) be chosen to minimize P[w, r] and if no such r exists let » # w
be the end of P. Apply (3.4) to Py and P with 51 = v1, t; = u; and sp = w. Outcome (3.4)(1)
does not hold by the minimality of G. If (3.4)(2) holds, then by considering the path guaranteed
therein we obtain a desired quasi-tripod or quadropod. Thus we may assume (3.4)(3) holds, and
hence P intersects P[w, r] transversally.

Let vy be such that P[vg, uo] is a component of P N Py, and let u be such that P[vg, u]
is a maximal path with no internal vertex or edge in T. If u € V(P;), then by the definition
of transversal intersection the vertices vy, vg, 1o, #, u; occur on P; in the order listed and u is
inbound. By considering 7' U P[w, u] and deleting P3 \ u3 and the interior of O3 we obtain a re-
quired quasi-tripod. Thus we may assume that u ¢ V (Py), and hence u = r. If r is not outbound,
then a similar argument gives a required quasi-tripod.

It follows that for the remainder of the proof we may assume that » € V(P,), and that 7 is
outbound. Let M/ be the unique perfect matching of Q1 U Q> U Q3 \ u1,and let M™ = M U M.
We can extend P along Q1 U Q> U Q3 to an M -alternating path P so that u; is an end of
PT. Apply (3.2) to P and P;[vg, u1] to produce an M’-alternating path P’ with ends w and
vo, where M’ = M+ AP;[uy, vo]. Let T’ be obtained from T U P[vy, 7] by deleting the interiors
of P>[r,us] and Q»; then T’ is a triad with ends vy, v2, v3. But now 7’ and P’ contradict the
minimality of G. O

4. Embeddings and main lemma

In this section we first formalize the notion of a matching minor by introducing the concept
of an embedding, and show in (4.2) below that a graph H has a matching minor isomorphic to
a graph G if and only if there is an embedding H < G. Then we study the following question.
Suppose that n: H < G is an embedding, G is a brick, and vy € V (H) has degree two. Since
bricks have no vertices of degree two, there is a subgraph of G that “fixes” this violation of being
a brick. What can we say about this subgraph? The answer leads to the notion of vy-augmentation
of . We define this concept formally, and then prove two results about its existence. The second,
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(4.4), will be used when some graph obtained from H by bisplitting a vertex is isomorphic to a
matching minor of G; otherwise we will use (4.3), the first of these results. Finally, we classify
all “minimal” vp-augmentations into one of four types.

Let 7’ be a tree, and let T be obtained from 7’ by subdividing every edge an odd number of
times. Then V(T’) C V(T). The vertices of T that belong to V (T”) will be called old and the
vertices of V(T') — V(T’) will be called new. We say that T is a barycentric tree. Please note that
the partition into old and new vertices depends on T (there is an ambiguity concerning vertices
of degree two). We shall assume that each barycentric tree has a fixed partition into new and old
vertices. By a branch of a barycentric tree T we mean a subpath of 7 with ends old vertices and
all internal vertices new.

We need to formalize the concept of matching minor. Let H and G be graphs. A weak em-
bedding of H to G is a mapping n with domain V (H) U E(H) such that for v, v’ € V(H) and
e,e' ¢ E(H),

(1) n(v) is a barycentric subtree in G,

(2) if v # v/, then n(v) and n(v') are vertex-disjoint,

(3) n(e) is an odd path with no internal vertex in any 1 (v) or n(e’) for ¢’ # e,

(4) if e = uuy, then the ends of n(e) can be denoted by xy, x; in such a way that x; is an old
vertex of n(u;), and

() G\ Usevmnuem) V (n(x)) has a perfect matching.

The next lemma will show that H is isomorphic to a matching minor of G if and only if there is a
weak embedding of H to G. Then we will show that such a weak embedding can be chosen with
two additional properties. Thus we say that a weak embedding from H to G is an embedding if,
in addition, it satisfies

(6) if v has degree one then 7(v) has exactly one vertex,

(7) if v € V(H) has degree two and e, e; are its incident edges, then 7 (v) is an even path with
ends x1, x», say, and n(e1), n(e2) both have length one, one has x| as its end and the other
has x; as its end, and

(8) if v has degree at least three and x is an old vertex of n(v) of degree d, then x is an end of
n(e) for at least 3 — d distinct edges e.

For every subgraph H' of H define n(H') = Uer(H)UE(H) n(x). We denote the fact that n is an
embedding of H into G by writing n: H — G.

Let T € H be a barycentric tree, and let (X, Y) be the unique partition of V(T') into two
independent sets with X including all the old vertices. The vertices of X will be called protected
and the vertices of Y will be called exposed.

@4.1) Let H and G be graphs. There exists a weak embedding of H to G if and only if H is
isomorphic to a matching minor of G.

Proof. If n: H — G then a graph isomorphic to H can be obtained from the central subgraph
n(H) of G by repeatedly bicontracting exposed vertices of 7(v) and internal vertices of n(e) for
veV(H) and e € E(H). Thus H is a matching minor of G.

To prove the converse we may assume that H is a matching minor of G. Thus there exist
graphs Hy, H, ..., Hi such that H] = H, Hj is a central subgraph of G, and fori =2,3,...,k
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the graph H;_ is obtained from H; by bicontracting a vertex. We define n; : Hy — G by saying
that if v € V(Hy), then ng(v) is the graph with vertex-set {v}, and if e € E(Hy), then ni(e) is
the graph consisting of e and its ends. It is clear that n; satisfies (1)—-(5). We now construct a
sequence of mappings satisfying (1)—(5). Assuming that n; has been defined we define ;1 as
follows. Let v be the vertex of H; whose bicontraction produces H;_1, let x, y be the neighbors
of v, and let w be the new vertex of H;_;.Forz € V(H;_1) UE(H;_1) —{w} let n;_1(2) = n; (2),
and let n;—1 (w) = n; (x) Un; (y) Un; (v) Un;(xv) Un;(yv). This completes the construction. It is
clear that n; satisfies (1)—(5). O

We now show that if there is a weak embedding of H to G, then there is an embedding of H
to G.

(4.2) Let H and G be graphs. There exists an embedding of H to G if and only if H is isomorphic
to a matching minor of G.

Proof. By (4.1) it suffices to show that if 7 is a weak embedding of H to G, then there exists an
embedding of H to G.

It is easy to modify 7 so that it satisfies conditions (6) and (7). Thus we may choose a mapping
n with domain V (H) U E(H) satisfying (1)—(7) such that the total number of old vertices in 1 (v)
over all vertices v € V(H) of degree at least three is minimum. We claim that 7 satisfies (8) as
well.

To prove that n satisfies (8) let v € V(H) have degree at least three, let x be an old vertex of
n(v), and let d be the degree of x in n(v). If d =2 and x is not an end of n(e) for any e € E(G),
then we change the barycentric structure of n(v) by declaring x to be a new vertex. The new
embedding thus obtained contradicts the minimality of . If d = 0, then x is the unique vertex of
n(v), and it is an end of n(e) for all the (at least three) edges e incident with v by (4). Thus we
may assume that d = 1. If x is not an end of any 7n(e), then we remove from 7(v) the vertex x
and all internal vertices of Q, where Q is the unique subpath of n(v) between x and the nearest
old vertex. Then the set of vertices removed has a perfect matching, because Q is even by the
definition of barycentric subdivision, and hence the new embedding satisfies (5). Thus the new
embedding contradicts the minimality of 1. To complete the proof we may therefore suppose
for a contradiction that x is incident with 5(e) for exactly one e € E(H). By (4) one end of e
is v; let u be the other end. If u has degree at most two, then we define a new embedding by
moving x and the internal vertices of Q from 7 (v) to n(u), and changing 7(e) accordingly. If
u has degree at least three, then we move x and all internal vertices of Q from n(v) to n(e). In
either case the new embedding contradicts the minimality of 5. Thus 7 satisfies (8), and hence it
is an embedding H <— G, as desired. O

Let T be an even subpath of a graph H, and let T be regarded as a barycentric tree, with its
ends designated as old and all internal vertices designated as new. Let us recall that the notions
of protected and exposed were defined prior to (4.1). Let P be a path with one end, say v, in the
interior of T and no other vertex in 7. If v is exposed, then let Q be the null graph, and if v is
protected, then let Q be a path with ends exposed vertices g1, g2 € V(T) and otherwise disjoint
from H U P such that v lies on T between g and g5. In those circumstances we say that Q is a
cap for P at v with respect to T and H.



S. Norine, R. Thomas / Journal of Combinatorial Theory, Series B 97 (2007) 769-817 787

Letn: H — G. For every edge e = uv € E(H) the path n(e) is odd. Let P, denote its interior
(that is, the path obtained by deleting the ends), and let M, be the unique perfect matching of P,
(possibly M, = ). We define M (n) to be the union of M, over all e € E(H).

Now let vg € V(H) have degree two, and let vy, v be its neighbors. For i = 1,2 let E; be the
set of edges of H incident with v;, except for the edge vov;, and let E1 N Ey = . Let M| be a
perfect matching of G\ V(n(H)), and let M = M; U M (n). Let P be an M -alternating path with
one end x € V(n(vg)) and the other end u in | J{n(v): v € V(H) — {vo, v1, v2}} with the property
that if P intersects 1n(e) for some ¢ € E(H) not incident with vg, vy, or vy, then P and 7(e)
intersect in a path and have a common end. Let S denote the path 1 (vg) U n(vovi) Un(vovz); then
S is obtained from n(vg) by appending two edges, one at each end. Let Q be an M-alternating
cap for P at x with respect to S and n(H). We say that the pair (P, Q) is a vg-augmentation of .
It follows that P and Q have no internal vertices in UUGV( )y N(v). We say that x is the origin
and u is the terminus of P. See Figs. 7-9 for example.

Our first result about augmentations is the following.

(4.3) Let H be a graph on at least four vertices, let vy be a vertex of H that has exactly two
neighbors vi and vy, and let v and vy be not adjacent. Let G be a brick and let n: H — G
be an embedding such that both n(vy) and n(vy) have exactly one vertex. Then there exist an
embedding ' : H — G and a vy-augmentation of .

Proof. Define E, E> and M as in the definition of vg-augmentation. The path n(vg) U n(vovy) U
n(vov2) is even and can therefore be regarded as path octopus, which we denote by £21. Let £2; be
the octopus with the set of tentacles {n(e): e € E; U E>} and head n(H \ vo \ v1 \ v2). The head of
£2, is non-null, because H has at least four vertices. We can convert M to a matching M + so that
M is £2;-compatible for i = 1, 2. We apply (2.3) to the frame ({£21, £22}, V(n(v1)) UV (n(v2)))
and denote the resulting path by R. Let R have ends r; € V(£21) and r, € V(§22) and let e €
E(R) be such that each of the components R; = R[s;, ;] of R\ e intersects only one of the
octopi £21 and £25.

By (3.5) we may assume, by changing M ™, Ry, and 1(vg), that there exist an M T -alternating
path P; with ends p1 € V (17(vp)) and s1, and an M+ -alternating cap Q for Py at p; with respect
to £21 and n(H) such that P; U Q1 C R;. We may also assume that r, is the only vertex of R in
the head of £2,. If r, € n(v) for some v € V(H), then let R/2 be the null graph, and if r» € n(e) for
some ¢ € E(H), then let Ré be an M -alternating subpath of 7(e) with one end r, and the other
in n(v) for some v € V(H). Then (P; U Ry U R),, Q1) is a desired vp-augmentation of . O

In the next section we will need the following lemma.

(4.4) Let H be a graph, and let v be a vertex of H of degree at least four, let G be a brick, and
let n: H — G be such that n(v) has at least two vertices. Then either

(1) there exist a graph H) obtained from H by bisplitting v, an embedding n1: Hy — G and a
vo-augmentation of 1, where vy is the new inner vertex of Hy, or

(2) there exist an embedding ny: H — G, a path P with ends p1 and pj in the interiors of
different branches, say By and Bj, of n2(v) and otherwise disjoint from ny(H) and for
i =1, 2 there exists a cap Q; for P at p; with respect to B; and ny(H) such that Q1 and Q>
are disjoint.
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Proof. Denote the branches of (v) by By, Bz, ..., B,. They can be considered as octopi, which
we denote by 21, £22, ..., £2,, respectively. Let £29 be the octopus with the set of tentacles
{n(e): e isincident to v} and head n(H \ v), let X be the set of old vertices of n(v), and let
F ={820, 21, §22, ..., £2,}. We can extend a perfect matching of G \ n(H) to a matching M so
that M is §2-compatible for every 2 € F. Clearly | X| = n + 1. Therefore (F, X) is a frame. We
apply (2.3) to it and denote the resulting path by R. Furthermore, there is an edge e € E(R) such
that each of the components R; = R[s;, r;] of R\ e intersects only one of the octopi of F.

If for some i € {1, 2} the path R; intersects §2; for j > 1 we may assume, by changing M,
and £2;, that there exist an M-alternating path P; with ends p; € V(B;) and s;, and an M-
alternating cap Q; for P; at p; with respect to B; and n(H) such that P; U Q; € R; U B;. If this
happens for both R and R, define P = P; U P, + e and outcome (2) holds.

Therefore we may assume that R; intersects £29 and R; intersects §2; for some j > 1, and
furthermore that r, is the only vertex of R in the head of £2¢. If r; € n(v) for some v € V(H),
then let Ré be the null graph, and if r, € n(e) for some e € E(H), then let Ré be an M -alternating
subpath of 7(e) with one end r, and the other in (v) for some v € V(H).

Let 771 and T, be the two components of the graph obtained from 7 (v) by removing the internal
vertices of B;. Let H; be obtained from H by splitting v into new outer vertices vy and vy and
new inner vertex v in such a way that v; is adjacent to a neighbor u of v in H if n(uv;) has an
end in T;. Let n1(v;) = T;, let n1(vg) be By minus its ends, let 71 (vivo) and 11 (vovg) be the two
end-edges of B and let n1(x) = n(x) for all other x € V(H)U E(H1). Then (P U Ré Ule}, O1)
is a vg-augmentation of n; and outcome (1) holds. O

Let H and G be graphs, let n: H <— G, let vg be a vertex of H of degree two, and let (P, Q) be
a vp-augmentation of 7. We say that 5 is minimal if there exists no embedding n': H < G and a
vo-augmentation (P, Q’) of i’ such that ' (H) U P’ U Q' is a proper subgraph of n(H)U P U Q.
In applications we may assume that our vg-augmentations are minimal. The next lemma will
classify minimal augmentations into four types, which we now introduce.

Let n: H — G, let vg € V(H) have degree two, let v{, vo € V(H) be its neighbors, and let
E1, E> be as in the definition of vg-augmentation. Let i € {1, 2} and e € E;. Let x, be the end of
n(e) that belongs to V ((v;)). We say that an internal vertex x € V(n(e)) is an inbound vertex if
it is at even distance from x, in n(e), and otherwise we say that it is an outbound vertex.

Let M be a matching containing M (), let P be an M -alternating path with ends xo and x5,
and let the vertices xo, x1, X2, X3, X4, X5 appear on P in the order listed. Assume that P[xy, x3]
and P[x3, x4] are subpaths of 7(e), and that otherwise P is disjoint from | J{n(e): e € E; U E3}.
Assume also that x; is an inbound vertex of 7(e), that x, and x3 are outbound, and that either
X7 = X3 = X4, OF X[, X2, X4, X3, X, are pairwise distinct and occur on 7(e) in the order listed. In
those circumstances we say that P intersects n(e) regularly from xo to xs.

Let (P, Q) be a vp-augmentation of 1 and let P have ends a and b where a € V (n(vp)). We
say that (P, Q) is of type A if whenever P intersects 71(e) for some e € E1 U E3, then P and n(e)
intersect in a path whose one end is a common end of P and 7(e). Thus P intersects at most one
n(e), because the common end must be b, and b does not belong to n(vy) U n(va). See Fig. 7.

We say that (P, Q) is of type B if there exist a vertex x € V(P), an index i € {1, 2}, and an
edge e € E; such that the vertex v; has degree at most three, the path P[a, x] intersects n(e)
regularly from a to x, and if P[x, b] \ x intersects n(e’) for some ¢’ € E(H), then P[x,b]\ x
and n(e’) intersect in a path and have a common end. Moreover, if e = ¢/, then we require that
Pla,x] N n(e) be a path. We say that (P, Q) crosses n(e). See Fig. 8.
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Fig. 7. Augmentations of type A.

Fig. 8. Augmentations of type B.

We say that (P, Q) is of type C if there exist vertices x1,xp € V(P) such that a, x1, x3,b
occur on P in the order listed, and there exist distinct edges ey, e>, one in E1 and the other in E»,
such that the end of e; in {v1, vz} has degree at most three, P[a, x] intersects n(e1) regularly
from a to x1, P[x1, x2] has no internal vertices in n(H) and x; is an inbound vertex of n(ez). We
say that (P, Q) crosses n(ey). See Fig. 9.

We say that (P, Q) is of type D if for some i € {1, 2} and some e € E; the vertex v; has degree
at least four and there exists an inbound vertex x of 5(e) such that x € V(P) and P[a, x] has no
internal vertex in n(H).
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Fig. 9. Augmentations of type C.

The following classification of minimal vp-augmentations is the third main result of this sec-
tion.

4.5) Let H and G be graphs, and let n: H — G. Let vo € V(H) have degree two, and let vy, va
be its neighbors. Assume that vy is not adjacent to vy. Then every minimal vy-augmentation of n
is of type A, B, C, or D.

Proof. Let (P, Q) be a minimal vg-augmentation of 1, let xo be the end of P in 1(vo), and let
b be the other end of P. We wish to think of P as being directed away from xq; thus language
such as “the first vertex of P in a set Z”’ will mean the vertex of V (P) N Z that is closest to xg
on P.Let Ej and E» be as in the definition of vg-augmentation.

Let us assume for a moment that P includes an internal vertex of some n(e), where e € E(H)
is not incident with vg, vy, or vy. Let z be the first such vertex on P. The vertex z divides 7(e)
into two subpaths, one even and one odd. Let R be the even one. Then (P[xg,z] U R, Q) is a
vo-augmentation, and hence the minimality of (P, Q) implies that R = P[z,b]. If e € E1 U E3
and z is an outbound vertex, then the same conclusion holds. This will be later referred to as the
confluence property of P.

If P includes an internal vertex of n(e1) for no ey € E1 U E3, then (P, Q) is of type A. Thus
we may assume that P includes such a vertex, and let x; be the first such vertex on P. From the
symmetry we may assume that e; = vjv3 € Ej. If x1 is an outbound vertex, then the confluence
property of P implies that (P, Q) is of type A. Thus we may assume that x; is inbound. If v;
has degree at least four, then (P, Q) is of type D, and so we may assume that v has degree at
most three. It follows from axiom (7) in the definition of an embedding that v; has degree exactly
three.



S. Norine, R. Thomas / Journal of Combinatorial Theory, Series B 97 (2007) 769-817 791

Let x, be the first vertex on P that belongs to n(z) for some z € V(H) U E(H) not equal,
incident or adjacent to vy and not equal to e;. Then x; lies on P between xo and xp. Let P} =
n(er). By (3.4) applied to Py, P, = P, r = x3, s = X, t = b and the ends of P; numbered so
that 51 € V(n(vp)) and #; € V(n(v3)) we deduce that (1), (2), or (3) of (3.4) holds. But (1) does
not hold by the minimality of (P, Q), and if (2) holds, then (R, Q) is a vg-augmentation of type
A or B. Thus we may assume that (3) of (3.4) holds. Since x; is an inbound vertex, this implies
that either there exist vertices yi, y» € V(Pp) such that y; and y, are outbound, P[x{, y1] C P,
x1 € P1[y1, y2] and P[y1, y2] has no internal vertices in n(H), or P[xg, x2] \ x2 intersects n(ey)
regularly from xg to x;. In the former case (P[xg, y2] U Pi[y2, 1], Q) is a vp-augmentation of
n of type B, and hence we may assume that the latter case holds. Thus P[xq, x3] \ x7 intersects
n(ep) regularly from xg to x7, and if xo = t2, then P[xg, x2] \ x» intersects n(ep) in a path.

If x; € U{V(n(v)): v e V(H) — {vo, v, v2}}, then (P, Q) is of type B. Therefore we may
assume that x; € V(n(e2)) for some e; € E(H \ vg) — {e1}. By the confluence property of P we
may assume that e; € E1 U E» and that x; is inbound, for otherwise (P, Q) is of type B.

If ex € E», then (P, Q) is of type C, and the lemma holds. Thus we may assume that e €
E1 —{e1}. Let y be such that n(ez)[x2, ¥] is a component of n(ez) N P. For simplicity of notation
assume that Q is empty. The argument in the other case is similar. As vy has degree three,
axiom (8) in the definition of an embedding implies that the tree n(v) consists a single vertex,
say up. Since xp is inbound it follows that y lies between u; and x> in 7(e2). Let C be the
cycle Plxg, y] U n(ex)[y,u1] U S, where S = n(vo)[xo, u1]. The subgraph of G with edge-set
E(P)AE(C) includes a path with ends xg and b, say P’. Let f be the edge of P[xo, x1] incident
to x1. We define a new embedding n" : H < G by 5/(e1) = n(e1)[x1, 111, n'(e2) = P[x1, x2]1 U
n(e2)[x2, z] (where z # u; is the other end of 5(e2)), n'(v1) is the graph with vertex-set {x;},
we define 7' (vovy) to be the path with edge-set { f}, we define n'(vo) to be the path obtained
from 7 (vg) by replacing 1 (vo)[xo, 1] by P[xo, x1]\ x1, and we define n’(x) = n(x) for all other
x € V(H)U E(H). It follows that (P’, Q) is a vp-augmentation of 7', contrary to the minimality
of (P, Q), because P'U QUn’(H) does not include the edge of 1(e2)[y, x2] incident with x,. O

5. Disposition of bisplits

The purpose of this section is to prove (1.11) under the additional hypothesis that a graph,
say H’, obtained from H by bisplitting some vertex is isomorphic to a matching minor of G. If
that is the case we apply (4.4) and (4.5). We handle the four possible outcomes of (4.5) separately.

(5.1) Let H and G be graphs, where H has minimum degree at least three. Let H' be obtained
Sfrom H by bisplitting a vertex v, and let vy be the new inner vertex. Let  : H' < G, and assume
that there exists a vo-augmentation of n of type A. Then a linear extension of H is isomorphic to
a matching minor of G.

Proof. Let v; and v, be the new outer vertices of H’, let (P, Q) be a vgp-augmentation of 7
of type A, and let a and b be the ends of P, where a € V(n(vg)). Let b € n(u), where u €
V(H) — {vg, v1, v2}. Let us assume first that b is protected. If Q is null, then H' + (vg, u) is
isomorphic to a matching minor of G, and otherwise (by ignoring Q and bicontracting its ends)
we see that H 4 (v, u) is isomorphic to a matching minor of G and is a linear extension of H
unless vu € E(H). If vu € E(H) we assume without loss of generality that uv; € E(H'). Then
n(H'\ uvy) U P U Q is isomorphic to a bisubdivision of a linear extension of H.
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Now let us assume that b is exposed. Let 77, 7> be the two components of n(u) \ b. For each
neighbor w of u in H the path n(uw) has exactly one end in 7(u«); that end is an old vertex by
axiom (4) in the definition of embedding, and hence belongs to either 7} or 75. Fori = 1,2 let
N; be the set of all neighbors w of u such that the end of n(uw) in n(u) belongs to T;. Let Hj
be obtained from H by bisplitting u so that one of the new outer vertices is adjacent to every
vertex of Ny, and the other new outer vertex is adjacent to every vertex of N,. (Here we use that
u has degree at least three.) Let uo be the new inner vertex of Hi. Let H| be defined similarly,
but starting from H’ rather than H, and let the new inner vertex be also ug. If Q is null, then
Hl’ + (vo, ug) is isomorphic to a matching minor of G; otherwise Hy + (v, ug) is isomorphic to
a matching minor of G, as desired. O

(5.2) Let H and G be graphs, let n: H — G be an embedding, let vy be vertex of H of degree
two, and let v be a neighbor of vy of degree three with neighbors vg, v}, v{. Let (P, Q) be a vo-
augmentation of 1) of type B or C that crosses n(viv}). Then there exists an embedding n': H —
G and a vo-augmentation (P', Q") of 0 of the same type as (P, Q) that crosses n'(v(v{) such
thatn’ (HY)UP'U Q' Cn(H)U P U Q and P and P’ have the same terminus.

Proof. We first define n’. Let xo be the end of P in n(vg), let xg be the other end of P, let
x5 € V(P), and let xg, x1, ..., x5 be as in the definition of regular intersection, witnessing that
P[xo, x5] intersects n(viv}) regularly from xq to x5. We define ’(v1) = x1, we define 1’ (viv])
to be the subpath of n(viv}) with one end x| and the other end in 7(v}), we define 1’ (viv{) to
be the union of the complementary subpath of n(viv}) and n(viv{), we define n'(vo) to be a
suitable subgraph of 1(vy) U P U Q, define 1’ (vgvy) to be the edge of P[xg, x1] incident with x1,
and we define n’(x) = n(x) for all other x € V(H) U E(H). Thenn’: H — G.

It is now easy to find subpaths Q" and P of n(vo) U n(vov1) U n(vivy) U P U Q such that
(P"” U P[x4, x¢], Q) is the desired vg-augmentation of n’. O

(5.3) Let H and G be graphs, where H has minimum degree at least three. Let H' be obtained
from H by bisplitting a vertex v, and let vy be the new inner vertex. Let n: H' — G, and assume
that there exists a vo-augmentation of n of type B. Then a linear extension of H is isomorphic to
a matching minor of G.

Proof. Let v; and v, be the new outer vertices of H'. Let (P, Q) be a vg-augmentation of 7
of type B, let xp, x¢ be the ends of P, where xo € V(n(vp)) and x¢ € V(n(u)), and let P cross
n(e1), where e; = vjv| and v} # vy, is a neighbor of vy in H'. Let x5 € V(P) be such that
Plxo, x5] intersects n(ej) regularly from xo to x5, and let the vertices xo, x1, X2, X3, X4, X5 be as
in the definition of regular intersection. Notice that v has degree three; thus 1 (v;) consists of a
unique vertex by condition (8) in the definition of embedding. Let v}’ be the third neighbor of v;.
By (5.2) we may assume that u # v].

Assume first that x», x3, x4 are pairwise distinct. The path P[x4, x¢] proves that a linear ex-
tension of H is isomorphic to a matching minor of G, unless x¢ is a protected vertex of n(u) and
u is adjacent to v in H. Let i € {1, 2} be such that u is adjacent to v; in H'. Consider the graph
obtained from n(H) U P[x4, xo] by deleting the interior of 1 (v;u); the path P[x>, x3] proves that
the linear extension H” 4 (v), v}) of H is isomorphic to a matching minor of G, where H” is
obtained from H by bisplitting of the vertex v so that one of the new outer vertices is adjacent
to v} and u, the other outer vertex is adjacent to all other neighbors of v and vy, is the new inner
vertex.
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Thus we may assume that x, = x3 = x4. Again the path P[x4, x¢] proves that a linear exten-
sion of H is isomorphic to a matching minor of G, unless x¢ is a protected vertex of n(u) and
u is adjacent to v| in H. Thus we may assume that x¢ is a protected vertex of n(u) and u is
adjacent to v} in H. If v} has degree at least four, then let H” be obtained from H' by bisplitting
v} in such a way that one of the new vertices is adjacent to v| and u, and let z be the new ver-
tex. Then H” 4 (vo, z) is a linear extension of H and is clearly isomorphic to a matching minor
of G. If vi has degree three we replace n(v/lu) by P[x4, xe] and notice that (P, Q) can be easily
converted to a vg-augmentation (P’, Q) of type A of the embedding thus obtained. (Notice that
the terminus of P’ does not belong to n(v;), because H' is obtained from H by bisplitting v.)
Hence the theorem follows from (5.1). O

For the next lemma we need the following generalization of vg-augmentations. Let vo € V(H)
have degree two, and let vy, vy be its neighbors. For i = 1,2 let E; be the set of edges of H
incident with v;, except for the edge vgv;, and let E1 N E» = (. Let R be the interior of n(vy),
let M be a perfect matching of G \ V(n(H)), let x € V(R), let M, be a perfect matching of
R\ x,and let M = M U M, U M(n). Let P be an M -alternating path with one end x and the
other end u in | J{n(v): v € V(H) —{vg, v, v2}}. We say that P is a weak vo-augmentation of .
It follows that P has no internal vertex in Uvev( H)—{vo) n(v). This is indeed a generalization
of vp-augmentation. For let (P, Q) be a vp-augmentation of n. If Q is null, then P is a weak
vo-augmentation of 7, and otherwise Q U S U P is a weak vg-augmentation of n, where S is a
subpath of 7(vg) with one end the end of P and the other end an end of Q.

(5.4) Let H,G be graphs, let n: H — G be an embedding, let vy be a vertex of H of degree
two belonging to no triangle of H, and let R be a weak vo-augmentation of 1. Then there exist
an embedding ' : H — G and a vo-augmentation (P, Q) of n’ such that P U Q U n'(H) C
RUn(H).

Proof. We may assume that R is minimal in the sense that there does not exist an embedding
n : H < G and a weak vp-augmentation R’ of 1’ such that R" U n/(H) is a proper subgraph
of RUn(H). It follows that R has the confluence property introduced in the proof of (4.5). Let
v1, vz be the neighbors of vg, and let E be the set of all edges of H incident with a neighbor of
vg, but not with vy itself.

Let a, b be the ends of R, where a € V(1(vg)) and let z1, z» be the ends of 1(vg). Assume
first that R has a vertex x such that R[a, x] includes an internal vertex of n(e) fornoedge e € E,
and R[x, b] includes no vertex of 1(vg). Let §£2 be a path octopus with head a and graph 7n(vp).
We apply (3.5) to £2 and Rla, x] to produce a path octopus £2’ with head z and ends z; and z»
and a path R’ with ends z and x. Define n’ so that n'(vg) is the graph of 2’ and otherwise n’
coincides with 7. Let P be a maximal subpath of R’ U R[x, b] with no internal vertex in n’(vg)
containing b and let Q be a maximal nonempty subpath of R’ \ V(P) with no internal vertex in
1’ (vg) if such a path exists, and otherwise let Q be the null graph. It is easy to check that (P, Q)
is a vp-augmentation of n’.

Thus we may assume that the assumption of the previous paragraph does not hold. Thus there
exists an edge e € E such that when following R starting from a at some point we encounter
an internal vertex of 7(e), and later an internal vertex of n(vg), say t. Let T be the component
of R N n(vp) containing ¢. Let the ends of e be vy and vi, where v; is adjacent to vg, and let
the ends of 7(e) be u and u}, where u; belongs to n(vy) and u} belongs to n(v}). Let S be
the component of R[a, t] N n(e) that is closest to "‘/1 on n(e). Let t1, 1, be the ends of T, where
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a,t1,tr, b occur on R in the order listed, and let 51, 52 be the ends of S chosen similarly. If #, lies
at an even distance from a on n(vg), then R[#2, b] is a weak vg-augmentation of 1, contrary to the
minimality of R. Thus #; lies at an even distance from a on 1(vp). It follows from the confluence
property that s is an inbound vertex of n(e) (that is, its distance from u; on n(e) is even). Thus
s> is an outbound vertex, and hence R[z1, s3] U n(e)[s2, u/l] is a weak vg-augmentation of 7,
contrary to the minimality of R. O

Let H and G be graphs, let H’' be obtained from H by bisplitting a vertex v, and let vy be the
new inner vertex. Let n: H < G, and let (P, Q) be a vp-augmentation of n. We say that (P, Q)
is strongly minimal if there exists no graph H” obtained from H by bisplitting v, an embedding
n":H" — G and (letting v; denote the new inner vertex of H) a v;j-augmentation (P”, Q") of
n” such that n” (H"") U P U Q" is a proper subgraph of n(H") U P U Q.

(5.5) Let H and G be graphs. Let H' be obtained from H by bisplitting a vertex v, let vy be
the new inner vertex, and let n: H' < G. Then no vy-augmentation of n of type C is strongly
minimal.

Proof. Let vy, v, be the new outer vertices of H’, let (P, Q) be a vg-augmentation of n of
type C, let a, b be the ends of P witha € V(n(vp)), and let x1, x2, e1, e be as in the definition of
augmentation of type C. The vertex vy has degree three; let e] ¢ {e1, vivo} be the third incident
edge. Let H” be obtained from H by bisplitting v into new outer vertices v{, v} and new inner
vertex v, where v{ is incident with e; and e, and v} is incident with all the remaining edges
of H incident with v. The embedding 1 can be modified to produce an embedding " : H” — G
with n”(H) € P U n(H) by defining " (v}) = n(v2), by defining ”(v{) to be the graph with
vertex set {xo}, by letting n”(ez) be a subpath of n(ey) with end x,, by letting ”(e1) be the
union of a subpath of P[x, a] with a suitable subpath of 7(e;), and by letting " (e}) = 1(vo) U
n(vivo) U n(vavo) Un(e)). Now Plxz, b]\ x2 is a weak vj-augmentation of n”. By (5.4) there
exists an embedding & : H” < G and a v(j-augmentation (P"”, Q") of " such that

P"UQ"UEH")C Plxa, b1Un"(H") € PUn(H),

but P”U Q" U&(H") does not use the edge of P incident with a, contrary to the weak minimality
of (P,Q). O

(5.6) Let H and G be graphs, let H' be obtained from H by bisplitting a vertex v, let vy be
the new inner vertex, and let n: H < G. Then no vo-augmentation of n of type D is strongly
minimal.

Proof. Let vy, vy be the new outer vertices of H', let (P, Q) be a vp-augmentation of n of type D,
let a, b be the ends of P witha € V(n(vg)), and let i, e, x be as in the definition of augmentation
of type D. We may assume that i = 1. Let H” be obtained from H by bisplitting v into new outer
vertices v, vy and new inner vertex v;, where v{ is incident with all the edges of H incident
with vy in H' except e (note that vov; ¢ E(H)), and v} is incident with all the remaining edges
of H incident with v. The embedding n can be modified to produce an embedding n”: H' — G
with n”(H) € P Un(H) by defining " (v{) = n(v}) and letting 5" (v}) be a suitable subgraph
of n(v2) U n(vo) U n(vovy) U Pla,x]U Q. Now Plx, b] \ x includes a weak vg—augmentation
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of ””. By (5.4) there exists an embedding & : H” < G and a vj-augmentation (P”, Q") of "
such that

P"UQ"UEH") C Plx,b1Un"(H") € P Un(H),

but P’ U Q" U&(H") does not use one of the edges of 1(vg) incident with a, contrary to the
weak minimality of (P, Q). O

We summarize (5.1), (5.3), (5.5), and (5.6) into the following.

(5.7) Let H and G be graphs, where H has minimum degree at least three, let H' be obtained
from H by bisplitting a vertex v, let vy be the new inner vertex, let n: H < G be an embedding
and assume that there exists a vo-augmentation of 1. Then a linear extension of H is isomorphic
to a matching minor of G.

Proof. We may assume that the vg-augmentation is strongly minimal. By (4.5) it is of type A,
B, C, or D. By (5.5) and (5.6) it is of type A or B, and so the result holds by (5.1) and (5.3). O

We say that an embedding n: H < G is a homeomorphic embedding if n(v) has exactly one
vertex for every v € V(H) of degree at least three. The next lemma motivates this definition.

(5.8) Let H and G be graphs. Then there exists an embedding n: H < G which is not a homeo-
morphic embedding if and only if a graph obtained from H by bisplitting a vertex is isomorphic
to a matching minor of G.

Proof. Suppose that n: H < G and that for some vertex v € V(H) of degree at least three its
image 1 (v) has more than one vertex. Then there exists a branch B of n(v) with length greater
than zero. The argument from the last paragraph of the proof of (4.4) applied to n(v) and B,
provides us with an embedding into G of a graph H; obtained from H by bisplitting v and
therefore by (4.2) the graph H is isomorphic to a matching minor of G.

On the other hand let a graph H', obtained from H by bisplitting some vertex v into new outer
vertices v; and vp and new inner vertex vg, be isomorphic to a matching minor of G. Then by
(4.2) there exists an embedding ' : H' < G. Let J be the subgraph of H induced by {vg, v{, v2}.
Define an embedding n: H <> G by saying that n(v) = n'(J), n(vu) = n’'(v;u) for i € {1, 2} and
all neighbors u # vg of v;, and otherwise n coincides with n’. Clearly n(v) has more than one
vertex and therefore 7 is not a homeomorphic embedding. O

The following theorem and its corollary are the main results of this section.

(5.9) Let G be a brick, let H be a graph of minimum degree at least three, and let n: H — G. If
n is not a homeomorphic embedding, then a linear extension of H is isomorphic to a matching
minor of G.

Proof. Let v be a vertex of H of degree at least three such that 5 (v) has at least two vertices. By
axiom (8) in the definition of an embedding the vertex v has degree at least four. We apply (4.4)
to H, G, n and v. If outcome (4.4)(1) holds then (5.9) holds by (5.7).

Therefore we may assume that (2) of (4.4) holds, and let 12, P, p1, p2, B, B2, Q1 and Q5 be
as in (4.4). Let G’ be the graph obtained from 1, (H) U P U Q1 U Q, by bicontracting all exposed



796 S. Norine, R. Thomas / Journal of Combinatorial Theory, Series B 97 (2007) 769-817

vertices, except those in B U B,. Note that G’ is a matching minor of G and therefore it suffices
to prove that a linear extension of H is isomorphic to a matching minor of G’. If both Q; and
Q> are null, then the graph G’ is isomorphic to a bisubdivision of a graph obtained from H by
two bisplits and adding an edge joining the two new inner vertices. Thus a linear extension of H
is isomorphic to a matching minor of G.

Therefore we may assume that Q5 is not null. Let u be the common end of By and B; in G’
and let u1 and u» be the other ends of By and B; correspondingly. If Q1 is not null, denote its
ends by g and ¢’ so that ¢ € Bi[p1,u1] andletg = ¢’ = p; otherwise. If u has degree at least four
in G’ then the graph G” obtained from G’ by deleting the interiors of Bi[u, '], B1[p1, ¢] and
(0> can be bicontracted to a graph obtained from H by two bisplits and Q; can be bicontracted
to an edge joining the two new inner vertices. Thus again a linear extension of H is isomorphic
to a matching minor of G.

Therefore we may assume that u has degree three in G’. Hence there exists a unique vertex
w € V(H) such that u € np(vw). Now G” can be bicontracted to a graph obtained from H by
bisplitting v and Q> can be bicontracted to an edge joining the new inner vertex to w. We deduce
that a linear extension of H is isomorphic to a matching minor of G, as desired. O

The next result follows immediately from (5.8) and (5.9).

(5.10) Let G be a brick, let H be a graph of minimum degree at least three, and assume that a
graph obtained from H by bisplitting a vertex is isomorphic to a matching minor of G. Then a
linear extension of H is isomorphic to a matching minor of G.

6. The hierarchy of extensions

For the sake of exposition let us define a split extension of a graph H to be any graph obtained
from H by bisplitting a vertex. We have seen in the previous section that if a split extension of
H is isomorphic to a matching minor of G, then the conclusion of Theorem (1.11) holds. The
purpose of this short section is to define other types of extensions and to give an ordering on these
extensions, and to reformulate (4.5). The ordering reflects the order in which these extensions will
be dealt with. We will be proving theorems of the form “if such an such extension is isomorphic to
a matching minor of G, then an extension that is higher on our list of priorities is also isomorphic
to a matching minor of G.” Of course, the highest priority extensions are linear extensions.

Let us begin the definitions. The lowest on our list will be the following. Let H be a graph,
let v € V(H) be a vertex of degree at least three, and let vy, vy be two distinct neighbors of v
in H. Let H' be obtained from H by bisubdividing the edge vv;, and let x, y be the new vertices
numbered so that x is adjacent to v. We say that the graph H + (y, vpv) is a vertex-parallel
extension of H. We say that H + (y, vp) is an edge-parallel extension of H.

Let v be a vertex of degree 3 in a graph H and let vy, vy and v3 be its neighbors. We say
that K is obtained from H by replacing v by a triangle if K is obtained from H by deleting the
vertex v and adding the vertices u1, u>, u3 and edges ujus, uous, usuy, ujvy, uovy and u3v3.

Let H be a graph, let v be a vertex of H of degree at least three, and let v; and v, be two
neighbors of v. Let K be obtained from H by bisubdividing the edges v, v; and v, vy and let
X1, Y1, X2, y2 be the new vertices numbered so that vy yjxjvxpy; is a path in K. Let K/ = K +
(x1, y2) + (x2y1), and let J = K’, or let J be obtained from K’ by replacing one or both of the
vertices x1, xp by triangles. We say that J is a cross extension of H, and that v is its hub. See
Fig. 10.
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Fig. 11. A cube extension.

Let u be a vertex of H of degree three and let u, u> and u3 be its neighbors. Let Hy be
obtained from H by bisubdividing each of the edges uu, uuy and uus. Let the new vertices
be yi1,y2, y3 and 21, 22, z3 in such a way that uy;z3u, uryziu and u3yszou are paths. Let
Hy := Hy + (y1,22) + (02, 23) + (3, 21), let H> be obtained from H; by replacing z; by a
triangle, let H3 be obtained from H, by replacing z; by a triangle, and let Hy be obtained from H3
by replacing z3 by a triangle. Then each of the graphs Hy, Hy, H3, Hy is called a cube extension
of H. See Fig. 11.

Let H be a graph, let uv € E(H), and let H' be obtained from H by bisubdividing uv,
where the new vertices x, y are such that x is adjacent to u and y. Let x’ € V(H) — {u} and
y’' € V(H) — {v} be not necessarily distinct vertices such that not both belong to {u, v}. In those
circumstances we say that H' + (x,x") + (y,y") is a quadratic extension of H. Now let ab €
E(H) — {uv} be such that a # v and u # b, let H” be obtained from H’ by bisubdividing ab,
and let x’, y’ be the new vertices. Then the graph H” + (x, x") + (y,y’) is called a quartic
extension of H.

We are now ready to define the promised linear order on extensions. We define that linear
extensions are better than quartic extensions, quartic extensions are better than quadratic exten-
sions, which in turn are better than cross extensions, which are better than cube extensions, which
are better than edge-parallel extensions, and those are better than vertex-parallel extensions. The
linear order is depicted on Fig. 12.
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Fig. 12. The linear order on extensions.

For later convenience we reformulate (4.5) in a form more suitable for applications. To do
so we will need a definition, but before we can state it, we need to introduce a convention. Let
G be a graph, let w € V(G), and let uv be an edge of G not incident with w. Then the graph
G’ = G + (w, uv) has two new vertices, and it will be convenient to have a default notation for
them. We shall use 71 and 7, to denote the new vertices, so that tj is adjacent to u, w and 17
in G’. We shall extend this convention naturally to more complicated scenarios, as exemplified by
the following illustration. For instance, if ab € E(G) — {uv}, then G” = G + (w, uv) + (12, ab)
means the graph G’ + (12, ab), and its new vertices are denoted by 73 and 74 so that 73 is adjacent
to a, 7» and 74 in G”. In general, the new vertices will be numbered 71, 75, 73, ... in the order
they arise as the input graph is read from left to right. Sometimes we will use p1, 02, ... rather
than 7y, 77, ... in order to avoid confusion.

Now we are ready for the definition. Let J, G be graphs, let vy be a vertex of J of degree
two, and let vy, vo be the neighbors of vy. We wish to reformulate the outcomes of (4.5). Let
veV(J)—{vg,vi, v}, leti € {1,2}, and for j = 1,2 let v} be a neighbor of v; other than vg.
We define the following graphs:

Aj(v) = J + (vo, v),

Az(v) = J + (vo, v1vg) + (12, V),

B1(vjvi, v) = J + (vo, vjv;) + (12, v),

B (vjvi, v) = J + (vo, vjv;) + (12, v; 12) + (14, V),
B3 (vjvi, v) = J + (vo, vivo) + (12, Vjv;) + (T4, V),
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B4 (vjvi, v) = J + (vo, vjvo) + (12, vjv;) + (4, v;74) + (16, V),

C1(vjvi, v5_;v3-) = J 4 (vo, vjv;) + (12, V5_;v3-),

C2(vjvi, vy_,v3;) = J + (vo, v]v;) + (72, v 12) + (T4, V5_,v3-4),

C3(vjvi, v3_;v3-) = J + (vo, vivo) + (72, v;v;) + (T4, V5_; V3-),

Ca(vjvi, vy_;v3-;) = J + (vo, v;vo) + (72, v]v;) + (T4, v; T4) + (T6, V3_;V3-).

Sometimes we will omit the arguments when they will be clear from the context and write,
e.g., B3 instead of B3(vjv;,v). The graphs Ay, ..., Cy4 correspond to augmentations of types
A, B and C, shown in Figs. 7-9. The following lemma gives the promised reformulation of the
outcomes of (4.5).

(6.1) Let J be a graph, let G be a brick, let vy be a vertex of J of degree two, let v, vy be the
neighbors of vo, fori = 1,2 let v/ # vo be a neighbor of v;, assume that vy is not adjacent to v,
assume that every vertex v € V(J) — {vo} has a neighbor in V (J) — {v1, v2}, and assume that
there exists an embedding J — G. Then one of the following holds:

(A) there exists a vertex v € V(J) — {vg, v1, v2} such that A1 (v) — G or A(v) — G,

(B) there exist a vertex v € V(J) — {vg, v1, v2} and indices i € {1,2} and j € {1,2,3,4} such
that v; has degree three and B.,'(vlfv,', v) = G,

(C) there exist indices i € {1,2} and j € {1,2,3,4} such that vy, vy have degree three and
Cj(jv;, vy _;v3_;) = G,

(D) some split extension of J is isomorphic to a matching minor of G.

Proof. Let n:J < G. We may assume that 7 is a homeomorphic embedding, for otherwise (D)
holds by (5.8). By changing n we may assume that (v1) and n(v,) each have exactly one vertex,
even if vy or vy has degree less than three. By (4.4) there exists an embedding n': J < G and a
vo-augmentation (P, Q) of n’. We may assume that (P, Q) is minimal, and hence by (4.5) it is
of type A, B, C or D. Similarly as above, we may assume that 5’ is a homeomorphic embedding.
Let P have origin a € V (1'(vg)) and terminus b € V (' (1)). We say that (P, Q) is good if either
u has degree not equal to two, or u has degree two and b is at even distance from either end of
1’ (u) (recall that n’(u) is an even path when u has degree two, and otherwise 1’ (1) has exactly
one vertex).

Suppose (P, Q) is not good. Then u has degree two and b is at odd distance from the ends
of n(u). Let u’ be a neighbor of u in V(J) — {vy, v2} and let b’ and b” be the ends of n(u),
such that b’ € V (n(uu’)). Let G’ be obtained from n(H) U P U Q by contracting the even path
n(w)[b,b'TU n(uu’). Define n’': J < G’ as follows. Let n'(u) = n()[b”,b] \ b, n'(uu') is a
length one subpath of n(u)[b, b”] with one end at b and 5’ is otherwise equal to 1. Note that
(P, Q) is a good augmentation of n’. Note also that G’ is a matching minor of G.

Therefore we may assume that (P, Q) is a good augmentation of n of type A, B, C or D.
Now if (P, Q) is of type A, then outcome (A) holds, and similarly for type D, and, by (5.2), for
type B. Thus we may assume that (P, Q) is of type C. From the symmetry we may assume that
P crosses an edge incident with vy, and by (5.2) we may assume that it crosses the edge viv].
In particular, v; has degree at most three. But it has degree exactly three by axiom (7) in the
definition of an embedding, because 1 (v; vi) has at least one internal vertex. The existence of
(P, Q) implies, by the same argument as above, that there is an integer j € {1, 2, 3, 4} such that
C(vjvi, vjv2) < G for some neighbor v} of v other than vg. Let L = C;(vjvy, viv2) \ vov2 \
1172 if j = 1, and let it be defined analogously for j > 2. If v, has degree at least four, then L
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is isomorphic to a bisubdivision of a split extension of H, and hence the lemma holds. Thus we
may assume that vy has degree at most three, but it has degree exactly three by the same reason
asvy. If vé = vg , then (C) holds, and so we may assume not. If j = 1, then by considering L and
the edges 1112 and vov, we deduce that C (vg Vi, vévz) < G. An analogous argument works for
J =4, while for j € {2, 3} the analogous argument proves that C5_; (v’lvl, vévg) <> G. Thus (C)
holds, as desired. O

7. Using 3-connectivity

A graph G is matching covered if it is connected and every edge of G belongs to a perfect
matching of G. Thus every brick is matching covered.

(7.1) Let H and G be graphs such that H has minimum degree at least three, G is matching
covered, and H is isomorphic to a matching minor of G. If H is not isomorphic to G, then
either a linear or split extension of H is isomorphic to a matching minor of G, or there exists
a homeomorphic embedding n': H < G such that n'(e) has at least three edges for some e €
E(H).

Proof. By (4.2) there exists an embedding n: H — G. We may assume that 1 is a homeomor-
phic embedding, for otherwise the lemma holds by (5.8). We may also assume that 7(e) has
exactly one edge for each e € E(H). Thus n(H) is isomorphic to H. But G is not isomorphic
to H, and hence there exists an edge e of G with exactly one end in n(H). Let M be a perfect
matching of G containing e, and let M, be a perfect matching of G \ V (n(H)). (This exists,
because n(H) is a central subgraph of G.) The component of M|AM>, containing e is a path
with both ends in n(H); let u, v € V(H) be such that P has one end in n(v) and the other end
in n(u). If u and v are not adjacent in H, then by letting n(uv) = P the embedding 1 can be
extended to an embedding H + uv < G, and hence a linear extension of H is isomorphic to a
matching minor of G. On the other hand, if # and v are adjacent in H, then P has at least three
edges, because in that case the unique edge of G between 1 (u) and n(v) belongs to n(uv). Thus
we obtain the desired homeomorphic embedding by replacing n(uv) by P. O

Let G be a graph, let A, B C V(G), let M be a perfect matching of G\ (AU B),and letk >0
be an integer. We say that the sequence of paths (P, Q1, Q2, ..., Q) is an (A, B)-hook with
respect to M if the following conditions hold:

(1) P hasends po € A — B and py11 € B — A, and is otherwise disjoint from A U B,

2) fori=1,2,...,k, Q; is an even path with ends p; € V(P) — {po, px+1} and ¢; € AN B,
and is otherwise disjoint from A U B U V (P),

(3) V(Qi)NV(Q;) S{qi,q;} for all distinct indices i, j € {1,2,...,k},

(4) the graph PU Q1 U QU ---U Qf \ (AU B) is M-covered, and

(5) the vertices po, p1, p2, ..., Pk, Pk+1 are distinct and occur on P in the order listed.

See Fig. 13.
(7.2) Let G be a matching covered graph, let A, B C V(G), and let M be a perfect matching

of G\ (AU B). If A— B and B — A are both nonempty and belong to the same component of
G \ (AN B), then there exists an (A, B)-hook with respect to M.
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Fig. 13. An (A, B)-hook.

Proof. Suppose for a contradiction that the graph G does not satisfy the lemma, and choose
(A, B) violating the lemma with A U B maximum. Let e be an edge of G with one endin A — B
and the other end in V(G) — A. Let M’ be a perfect matching of G containing e, and let Py be
the component of M AM’ containing e. Then Py is a path with one end in A — B, the other end in
A U B, and otherwise disjoint from A U B. If the other end of Py is in B — A, then the sequence
with sole term Py is a required (A, B)-hook, and so we may assume that the other end of Py is
in A. Let A := AUV (P). Then A’ N B = AN B. By the maximality of A U B there exists an
(A’, B)-hook h = (P, Q1, Q2, ..., Q).

Let po € A’ be an end of P. If pg € A, then & is an (A, B)-hook, and the lemma holds.
Thus we may assume that pg is an internal vertex of Py. Let P; and P, be the two subpaths
of Py with common end pg and union Py. Exactly one of them, say Pj, has the property that
PIUPUQIUQyU---U Qi \ (AU B) is M-covered. If the other end of P; isin A — B, then
(PU Py, Q1,02,..., 0p) is a desired (A, B)-hook. Thus we may assume that P; has one end
in A N B, in which case (P U P>, Pi, O1, Q2, ..., Q) is adesired (A, B)-hook. O

(7.3) Let H and G be graphs, where H has minimum degree at least three and is isomorphic
to a matching minor of G and G is a brick. If H is not isomorphic to G, then a vertex-parallel,
edge-parallel or a linear extension of H is isomorphic to a matching minor of G.

Proof. By (4.2) and (5.9) we may assume that there exists a homeomorphic embedding : H —
G. By (7.1) we may assume that there exists an edge uv € E(H) such that (uv) has at least three
edges. Let A = V(n(uv)) and let B consist of V(n(H)), except the internal vertices of n(uv).
Then A — B and B — A are nonempty and |A N B| = 2. Thus A — B and B — A belong to the
same component of G \ (A N B), because G is 3-connected. We have A U B = V(n(H)), and
hence G \ (A U B) has a perfect matching, say M, because n(H) is a central subgraph of G. By
(7.2) there exists an (A, B)-hook h = (P, Q1, Q», ..., Q) with respect to M. We may choose
n, uv and A& so that k£ is minimum. If k = 0, then by considering the path P we conclude that a
required extension is isomorphic to a matching minor of G.

Thus we may assume that k > 0. Let the notation be as in the definition of (A, B)-hook. Thus
po is an internal vertex of n(uv), and from the symmetry we may assume it is located at even
distance from n(v) on n(uv). We have g; € {n(u), n(v)} foralli =1, 2, ..., k. We properly two-
color the graph n(uv) U P using the colors black and white so that n(v) is black and n(u) is
white. For convenience let g := po. We will show that qg, g1, 92, . . ., gx all have the same color.
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Fig. 14. An extension J of H.

Indeed, suppose for some i € {0, 1, ...,k — 1} the vertices g; and g;+ have different color. We
replace n(uv)[gi, gi+11by Q; U P[p;, pi+1]U Q;+1 to obtain an embedding " : H < G. Then
the sequence b’ = (P[pi+1, pi+1], Qi+2, Qit3, ..., Q) is an (A’, B’)-hook, where A" and B’
are defined in the same way as A and B but relative to n”. But A’ contradicts the minimality of k.
This proves our claim that go, q1, q2, - - ., gx all have the same color; in particular, g; = g2 =
= qe= ().

The graph n(H) U Qx U P[pk, pk+1] has a matching minor isomorphic to a desired extension
of H, unless pr4+; belongs to n(vw) for some neighbor w of v other than u. By using the
argument of the previous paragraph we deduce that py, 1 is an internal vertex of n(vw) located
at even distance from 7 (v) on n(vw). Let J be obtained from H as follows. First we bisubdivide
the edges uv and vw; let the new vertices be p),ro and p; 41-Tk+1 correspondingly, where P is
adjacent to u and p), 41 is adjacent to w. Denote resulting graph by H ’. Then we add new vertices
Py Pas--s prand ry,ra, ..., r insuch a way that pp} ... pj p;_ is a path, and pjr;v is a path
foralli =1,2,...,k, and there are no other edges incident with the new vertices. This completes
the definition of J. See Fig. 14. Now 7 can be converted to an embedding " : J <> G in a natural
way; thus, for instance, n’( pl’. ) is the graph with vertex-set {p;}.

We apply (6.1) to the graphs J and G and the vertex ro; let J' be the resulting graph,
and let ” : J/ < G. Suppose outcome (D) of (6.1) holds. Then either a split extension
of H is isomorphic to a matching minor of G, in which case the desired result follows
from (5.9), or J’ is obtained from J by splitting v. Let v; and vy be the new outer ver-
tices and vy the new inner vertex. As we may assume that no split extension of H is iso-
morphic to a matching minor of G, we have that |Ny (v;) N Ng/(v)| > 2 for at most one
i € {1,2}, where Ny (v;) and Ng/(v) denote the neighborhoods of v; and v in J' and
H’ correspondingly. Without loss of generality let [N (vi) N Ngy/(v)] < 1. Assume first
N(vi) N Ng/(v) = @, then we can choose 1 < i < i’ < k such that r;,ry € N(v1) and
rj ¢ N(vy) for every j such that 1 < j <i or i’ < j < k. The image of the hook h’' =
(pyp} - plfrivlri/plf,plf,_H "'p1/<+1’ PiT1v2, ..., pi_ ri—1v2, V1VV2, p;,+1ri/+1v2, ...) under n”
contradicts the minimality of k. Assume now |Nj (v1) N Ny (v)| = 1. From the symmetry be-
tween ro and r1 we may assume ro € N (vz). Let i be minimal such that r; € N(v;) theni <k
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and the image of the hook h" = (p(p| ... pirivi, piriva, ..., pi_ri—1v2) under n” contradicts
the minimality of k. We assume now that one of the outcomes (A), (B) or (C) of (6.1) holds.

Throughout the rest of the prooflet z € V(J) — {v, p6, ro}. Outcome (C) cannot hold, because
v has degree at least four in J. Assume next that either J' = A;(z), in which case we put 1) =
7o =g, or that J' = Ay(z) = J + (rp, p(’)ro) + (12, 2), in which case 7| and 1, have their usual
meaning. If z € (V(H) — {u}) U {rr+1, pl/<+1}’ then J + (12, z) is isomorphic to a bisubdivision
of a suitable extension of H. If z = u we replace n(uv) by n” (utroti pép/lrl v) and the hook
h = (P[p1, pk+1l, Q2, O3, ..., Q) contradicts the minimality of k. If z = r; forsome 1 <i <k
then the hook 4’ = (n”(z2ri p}) U P[pi, px+1], Qis1, Qit2, .., Qk) contradicts the minimality
of k. Finally if z = p; for some 1 <i <k we replace n(uv) by n”(upytirot2pjriv) and the
hook 4’ = (P[p;i, pk+1), Qi+1, Qi+a, ..., Qr) contradicts the minimality of k. This completes
the case J' = A;.

Since v has degree at least four in J we assume that J' = B; (p] py,, z) forsome i € {1,2,3,4].
Note that J’ contains J” = A;(z) \ p}p( as a matching minor for some j € {1, 2}, and unless
z = u the argument from the previous paragraph provides us with a suitable extension or a contra-
diction. If z = u we replace n(uv) by n'(utrt't” piriv), where t =1t/ =" = 15; if i € {1,2} and
T=1 2,7 =13, 7" =14 if i €{3,4}. The hook i’ = (P[p1, pr+1], Q2. O3, ..., Qk)
now contradicts the minimality of k. O

8. Vertex-parallel and edge-parallel extensions

The purpose of this section is to replace vertex-parallel and edge-parallel extensions in the
statement of (7.3) by extensions that are closer to linear extensions. Our first goal is to prove that
if a brick G has a matching minor isomorphic to a vertex-parallel extension of a 2-connected
graph H, then it also has a matching minor isomorphic to a better extension of H. We will
proceed in two steps; in the intermediate step we will produce a better extension or one that is
“almost better,” the following. Let H be a graph, let u be a vertex of degree at least three, let u
and uy be distinct neighbors of u, and let H' = H + (u1, uu1) + (12, upu). We say that H' is a
semi-edge-parallel extension of H.

(8.1) Let H be a graph of minimum degree at least three, and let G be a brick. If a vertex-parallel
extension of H is isomorphic to a matching minor of G, then an edge-parallel, a semi-edge-
parallel, a linear, a cross, or a split extension of H is isomorphic to a matching minor of G.

Proof. Let u( be the vertex of H with neighbors u| and u» such that the graph H, defined
below is isomorphic to a matching minor of G. Let H; be obtained from H by bisubdividing the
edges uoui and ugu, exactly once, and let x1, y1, x2, y2 be the new vertices, numbered so that
uzyrxoupxiyiuq is a path. The graph H; is defined as Hy + (y1, y2). By (6.1) applied to J = H»
and the vertex x| there exists a graph J' < G satisfying (A), (B), (C) or (D) of that lemma. If J’
is a split extension of J, then the graph obtained from J'\ y;y, by bicontracting y; and y; is a
split extension of H. Thus if (D) holds, then the theorem holds, and so we may assume that (A),
(B) or (C) holds. Throughout this proof let v € V (J) — {ug, x1, y1}. The symbols 71, 72, ... will
refer to the new vertices of J’ according to the convention introduced prior to (6.1).

Assume first that J' = A; = J + (x1,v). If v = uy, then J’ is isomorphic to a semi-
edge-parallel extension of H. If v = xp, then H + (uy, uguz) — G; if v = y, then H +
(u1, urug) — G; and in all other cases H + (v, ugu1) — G. In the last case, if v is not ad-
jacent to uq, then H + (v, u1) is a linear extension of H, and otherwise H + (v, upu1) is an
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edge-parallel extension of H. The same argument will be used later. We will also use later the
fact that the inclusions above did not use the edge y;y,. This completes the case J' = Aj.

Now we assume that J' = Ay = J + (x1, x1ug) + (12, v). If v = x2, then H + (u2, ujug) — G;
if v = y», then by deleting the edge y; y» and bicontracting y; we see that a semi-edge-parallel ex-
tension of H is isomorphic to a minor of G; if v = u1, then the graph A \ x1 \ y; is isomorphic to
a bisubdivision of H, and by considering the path y,y;x; 71 we deduce that H 4 (u1, uug) — G;
and in all other cases H + (v, ujug) <> G. This completes the case J' = Aj.

Let j €{1,2,3,4} and let J' = B;(y2y1,v). We have A;(v) \ y1y2 = Bj(y2y1,v) for j =
1,2 and A2(v) \ y1y2 <> Bj(y2y1,v) for j =3,4 (if j =1 we delete the edges y71 and y1 12
and analogously for j > 2). Since the arguments of the previous two paragraphs did not use the
edge y1y2, except for the cases of Aj(u;) and Ay(u;), we may assume that J' = B;(y2y1,u1),
for some j €{1,2,3,4}. But H + (u1, usug) = Bj(y2y1,u1) (consider the path u; 7271 y> when
Jj =1). This completes the cases J' = B;(y2y1, v).

Our next step is to handle the cases J' = Bj(xauo,v) and J' = C;(xauq, yo2y1). If j <2,
then H + (u1, upug) — G, and if j > 3, then Hy + (x1, x1u9) + (02, x2ug) — G and H; +
(x1,x1u0) + (p2, x2up) after bicontraction of y; and y, becomes isomorphic to a semi-edge-
parallel extension of H. (We are using “p” instead of “r,” because the “t” notation is reserved
for vertices of J'.)

Thus the only remaining cases are J' = C;(y2y1, x2uo). If j = 1, then by considering the
path x1 717273 we deduce that H + (11, uoug) < G; for j =2 the argument is analogous. For
J = 3 notice that C3(y2y1, x2up) \ T1y1 \ Y273 \ X172 \ 7475 is isomorphic to a bisubdivision of H.
By considering the edge t475 we see that H + (u1, upug) < G. Finally, C4(y2y1, x2uo) has a
matching minor isomorphic to a semi-edge-parallel extension of H. To see that, consider the
edge x; 7 and path 1573147576 77. (The last argument applies to j = 3 as well, but for the sake of
the next proof we wish to avoid semi-parallel extensions as much as possible.) O

(8.2) Let H be a 2-connected graph of minimum degree at least three, and let G be a brick. If a
semi-edge-parallel extension of H is isomorphic to a matching minor of G, then an edge-parallel,
a linear, a cross, a cube or a split extension of H is isomorphic to a matching minor of G,
unless H is isomorphic to K4 and G has a matching minor isomorphic to the Petersen graph.

Proof. By hypothesis there exists a vertex ug of H with distinct neighbors u; and u such that
the graph Hj is isomorphic to a matching minor of G, where Hy, H», x1, y1, X2, y2 are defined
as in the proof of (8.1), and H3 = H> + (x2, u2). We may assume that uo has degree exactly
three, for otherwise H3 \ uzy> \ xauq is isomorphic to a bisubdivision of a split extension of H,
and hence a split extension of H is isomorphic to a matching minor of G. Let u3 be the third
neighbor of ug. Since H3z < G, either a split extension of H is isomorphic to a matching minor
of G, or one of the graphs H3, Hy = Hy + (x2, yau2), Hs = Hy + (x2, uhu2), where u), # ug is
a neighbor of u;, has a homeomorphic embedding into G. Graphs H3z, H4 and Hs are shown on
Fig. 15. Let J denote that graph, and let it be chosen so that J # Hj3, if possible. This choice
implies that if a split extension of J is isomorphic to a matching minor of G, then so is a split
extension of H. Let xé, yé be the new vertices of Hy and Hs. We apply (6.1) to J and the vertex
x1, and so we may assume that (A), (B), or (C) holds, for otherwise the theorem holds. Let J' be
the graph satisfying (A), (B) or (C). The symbols 71, 12, ... will again refer to the new vertices
of J'.

Let us assume first that either J = H3, or that y} has degree two in J'. Then by deleting the
edge xouy (and bicontracting y) if J # H3) we may use the proof of (8.1). By that argument
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Fig. 15. The graphs H3, Hy and Hs used in (8.2).

the theorem holds, unless J' = A1 (u1), J' = A2(y2), J' = Bj(y2y1, ¥2), J' = Bj(xaup,v), J' =
Cj(x2up, y2y1) or J' = Cy4(y2y1, x2up) for some j € {3,4} and v € V(J) — {x1, y1, uo}.

If J/ = A{(uy), then J' \ uyy; \ xqug \ xpuz is isomorphic to a bisubdivision of H, and by
considering the edge usx; we deduce that H + (uy, uouz) < G. If J' = Ay(y2) we delete the
edge y1y;, bicontract the vertex y; and apply the previous argument.

Next, let J' = B3(y2y1, y2). The graph obtained from J’ by deleting the edges y; 74 and 3y,
and bicontracting the vertices y; and 74 is isomorphic to A>(y2). Thus H + (uz, upuz) — G.
Similarly if J' = B4(y2y1, y2) we delete the edges y; t5, T47¢ and 73y, and bicontract the vertices
¥1, T4 and 74 to demonstrate that H + (u2, uousz) — G.

Our next step is to handle the cases J' = Bj(xauo, v) and J' = C;(x2uq, y2y1). Assume first
that j =3. If v ¢ {uy, x2, y2}, then by considering the edge t4v we deduce that H + (v, uguz) —
B3(x2up, v) < G, and similarly H + (uz, ujug) < C3(x2uq, y2¥1) < G. For the cases v €
{uz, x2, y2} let L3 = Bz(xaug,v) \ y1y2 \ x172 \ T1uo \ ©av \ xouz. By considering the edge
74v we deduce that H + (uz, uouz) — G if v € {un, x} and H + (43, urug) — G if v = ys.
Now assume j = 4. If v ¢ {u3, x2, y2}, then by considering the edge tqv we deduce that H +
(v, ugug) <= Ba(xaug,v) — G.If v =uj thenlet Ly = Ba(xoug, u2) \x2\ y2\x171 \ 7476 \ T5U0.
By considering the edge x;7; we deduce that H + (43, upu1) < G. If v = x we get the same
result by considering the graph obtained from L4 by adding the path x> y,u»>, and if v = y, we add
the path y»xpu; instead. The graph C4(x2up, y2y1) has a matching minor isomorphic to a cross
extension of H (delete the edges 77y, and xpu3; the cross extension has two vertices replaced by
triangles). This concludes the cases J' = B; (xaug, v) and J' = C;(xaug, y2y1).

The graph C4(y2y1, x2up) also has a matching minor isomorphic to a cross extension of H.
To see that, delete the edges uzy» and x,7t7; the cross extension has two vertices replaced by
triangles.

We may therefore assume that J = Hy or J = Hs, and that y), has degree three in J'. Thus
J'=A;j(y)) or J' = Bj(y2y1,¥5) or J' = Bj(xauo, y;) for some j. Assume first that J' =
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A j(yé). If J = Hy, then J’ is isomorphic to a cross extension of H (with one or two vertices
replaced by triangles depending on the value of j), and so we may assume that J = Hs. If
Jj =2, then by considering the edge 2y, we deduce that H + (uo, uou’) — G, and so we may
assume that j = 1. We may assume that u, = u, for otherwise by considering the edge x1y}
we deduce that H + (uq, uzu’z) < G. Now there is symmetry among ug, u1, 2, and since we
could assume u( had degree three, we may also assume u and u; have degree three in H. The
graph K := J' \ uox1 \ x2y2 \ u2yj is isomorphic to a bisubdivision of H. If u5 is not adjacent
to u3, then let u’z’ be the third neighbor of u;; by considering K and the edge xpy, we see
that H + (u3, upuy) — G, as desired. Thus we may assume that u is adjacent to u3, and by
symmetry we may also assume that u is adjacent to u3. But H is 2-connected, and hence u3
is not a cutvertex; thus H is isomorphic to K4. It follows that J’ is isomorphic to the Petersen
graph, as desired. This completes the case J' = A;(y5).

Now let J' = Bj(y2y1, ¥5) or J' = Bj(xauq, y5). If J = Hy, then J’ is isomorphic to a cube
extension of H, and so we may assume that J = Hs. If J' = B;(y2y1, yé) and j =1, then by
considering the path y,7i72y) we deduce that H + (u}, upug) < G. The argument for j > 1 is
analogous. Thus we may assume that J' = B; (xaug, y5). If j = 1, then by considering the path
12y, we deduce that H 4 (u}, uouz) < G. The argument is analogous for j > 1 with the proviso
that when j is even the conclusion is H + (u’z, urug) — G. O

We now turn our attention to edge-parallel extensions. Let us recall that G/v denotes the
graph obtained from the graph G by bicontracting the vertex v.

(8.3) Let H be a graph of minimum degree at least three, and let G be a brick. If an edge-
parallel extension of H is isomorphic to a matching minor of G, then a cross, cube, linear,
quadratic, quartic or split extension of H is isomorphic to a matching minor of G.

Proof. By hypothesis there exists a vertex ug € V(H) of degree at least three with neighbors
u1 and uy such that the graph H, := H + (u2, ujugp) is isomorphic to a matching minor of G.
Let y1, x1 be the new vertices of Hy; thus ugx;yju; is a path of Hy. Let Hy := H> \ uzy;. Since
H; — G, either a split extension of H is isomorphic to a matching minor of G, or one of the
graphs Ha, H3 = Hi + (y1, uouz), Hy = Hy + (y1, ubuz), where uy # ug is a neighbor of us,
has a homeomorphic embedding into G. Graphs H;, H3 and H, are shown on Fig. 16. Let J
denote that graph, and let it be chosen so that J # H», if possible. This choice implies that if a
split extension of J is isomorphic to a matching minor of G, then so is a split extension of H.
Let x2, y» be the new vertices of Hz and Hy. If J = H> let x2 := u» and let y, be undefined.
We apply (6.1) to J and the vertex x;, and so we may assume that (A), (B), or (C) holds, for
otherwise the theorem holds. Let J’ be the graph satisfying (A), (B) or (C). Throughout this
proof let v € V(J) — {x1, y1, 4o} and once again the symbols 71, 72, ... will refer to the new
vertices of J'.

We first notice that if ug has degree at least four, then H, \ uou> is isomorphic to a split
extension of H, and so we may and will assume that u( has degree three. Let u3 be the third
neighbor of uy. We now show that we may assume that if J = Ha, then u; has degree three.
Indeed, if J = Hy and u, has degree at least four then Hy \ uoua/x; is isomorphic to a split
extension of H. So in the case J = Hy let ”/2/ be the third neighbor of u;. Let L be obtained
from J' by deleting uguy and all the “new” edges. Thus, for instance, if J' = A,(v), then L =
J' \uouz \ x171 \ 720. Then L/ug/y; is isomorphic to H.
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Fig. 16. The graphs H,, H3 and Hy used in (8.3).

Assume first that J' = A1 (v) = J + (x1, v). If v = y;, then J € {H3, Hs}, and J' is a cross
extension of H if J = Hz, and a quartic or cross extension of H if J = Hy. Thus we may assume
that v # y;, and hence we may assume (by bicontracting y,) that J = Hj. It follows that J' is a
quadratic extension of H, as desired. This completes the case J' = Aj.

Next we assume that J' = Ay(v) = J + (x1, ugx1) + (72, v). Assume first that v = y,. If
J = Hj, then J’ is a cross extension of H, and so we may assume that J = Hy. But then
J'\ x17t1/x1 /7] is isomorphic to a quadratic extension of H. Thus we may assume that v # y,,
and hence, by bicontracting y,, we may assume that J = Hj. If v # uy, then J' \ yjuz/y; is a
quadratic extension of H, and so we may assume that v = u1. But then by considering the graph
L/ug and edges x171 and tou; we deduce that a quadratic extension of H is isomorphic to a
matching minor of G. This completes the case J' = Aj.

Next we handle the cases J' = Bj(x2y1,v). We start by assuming that v = y,. If J = H3,
then J’ is isomorphic to a cube extension of H, and so we may assume that J = Hy. Recall
the definition of L and that u; has degree three. If j = 1, then by considering L and the edges
x171 and 72y, we deduce that a quadratic extension of H, namely H + (u’z’, uouz) + (02, u3),
is isomorphic to a matching minor of G. If j = 2, then by considering the edges 1273 and 74y,
we deduce that the quadratic extension H + (u’z’ , upuo) + (o2, u2) is isomorphic to a matching
minor of G. An analogous argument applies when j = 4. If j = 3 then by deleting the edge x| 1]
and bicontracting x; and 7; we deduce that H + (u’z’, uouz) + (02, ug) — G, as desired. Thus
we may assume that v # y», and hence, by bicontracting y,, we may assume that J = H. If
Jj =1, then by considering L and the edges x 7 and tov we deduce that the quadratic extension
H + (u3, upuo) + (02, v) is isomorphic to a matching minor of G. Let j = 2. If v # uy, then by
considering L and the edges 7273 and t4v we deduce that the quadratic extension H + (v, uaug) +
(p2, up) is isomorphic to a matching minor of G. If v = u; then by considering the graph obtained
from L by replacing the edge x;y; by t1x] and considering the edges 1273 and 412 we deduce
that the quadratic extension H + (u2, ujuo) + (p2, u1) is isomorphic to a matching minor of G.
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Thus we may assume j € {3,4}. Let us assume that v = u#1. Then we may assume that u is
adjacent to u», for otherwise H + (u1, u3) < G (consider the path ut473u> when j =3 and
the analogous path for j = 4). If j = 3, then by replacing the edge uu, by the path ujt473u7 We
obtain a graph isomorphic to a bisubdivision of H, and by considering the edges y;t4 and 1273
we deduce that a quadratic extension of H, namely H + (ug, uou1) + (02, ug), is isomorphic to
a matching minor of G. If j = 4 then by replacing the edge u u» by the path u;tet574T3U2, DY
considering the edges t47¢ and y;ts and by bicontracting x; and 73 we deduce that a quadratic
extension of H, namely H + (uq, u2u1) + (02, u2), is isomorphic to a matching minor of G.
Thus we may assume that v # u;. If j = 3, then by considering the edge x;t; and path p13T4v
we see that the quadratic extension H + (v, u1ug) + (02, u1) is isomorphic to a matching minor
of G; an analogous argument gives the same conclusion when j = 4.

The cases J' = B (uzug, v) can be reduced to the cases just handled by noticing that J \ ugu2
is isomorphic to a bisubdivision of H, and hence J is isomorphic to the edge-parallel extension
H + (u2, usug). Similarly the cases J' = C(uay1, usuo) can be reduced to J' = C; (uauo, usy1),
and so it remains to handle the cases J' = C;(uaug, u2y1). Butin all four of those cases a cross
extension of H is isomorphic to a matching minor of G. O

The results of this section allow us to strengthen (7.3) as follows.

(8.4) Let H and G be graphs, where H is 2-connected, has minimum degree at least three and
is isomorphic to a matching minor of G, and G is a brick. Assume that if H is isomorphic to Ky,
then G has no matching minor isomorphic to the Petersen graph. If H is not isomorphic to G,
then a cross, cube, linear, quadratic or quartic extension of H is isomorphic to a matching minor

of G.

Proof. By (7.3) we may assume that a vertex-parallel or an edge-parallel extension of H is
isomorphic to a matching minor of G. Thus the result follows from (8.1)-(8.3). O

9. Cube and cross extensions

In this section we strengthen (8.4) by eliminating cube and cross extensions from the conclu-
sion.

(9.1) Let H be a graph, let u be a vertex of H of degree three, and let u; and uy be two
neighbors of u. Let Hy be obtained from H by bisubdividing the edges uu and uu; once, and let
X1, Y1, X2, Y2 be the new vertices so that w1y x1uxy2us is a path. Let Hy == Hy + (x2, y2Xx2) +
(12, x1), let H3 := H| + (x2, y2x2) + (72, x1y1) + (74, X1), and let Hy be obtained from H, or
Hj by replacing exactly one of the vertices x3, t1, T2 by a triangle. Then each of H>, H3, Hy has
a matching minor isomorphic to a quadratic extension of H.

Proof. Throughout this proof let 7, t denote the new vertices of H», and let 7y, 72, 73, T4 denote
the new vertices of H3 with the usual numbering convention. We can naturally embed H into H>.
By bicontracting y; and y, and considering edges x» 71 and x1 172, we see that Hj is isomorphic to
a bisubdivision of a quadratic extension of H. The graph H3 \ t1x3 \ xju \ t374 is isomorphic to
a bisubdivision of H and by bicontracting y{, r3 and 74 and considering edges 71x, and xju we
deduce that H3 has a matching minor isomorphic to a quadratic extension of H. This completes
the proof for H, and H3.
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Suppose Hj is obtained from H, by replacing tp with a triangle, then Hs \ x271/x2/71/y1 is
isomorphic to a quadratic extension H + (u1, uuz) + (o2, u) of H. Similarly if Hy is obtained
from H; by replacing x, or t; with a triangle then Hy \ xju/x1/u/y; is isomorphic to a quadratic
extension of H.

It remains to consider the case when Hj be obtained from H3 by replacing exactly one of the
vertices x2, 71, T2 by a triangle. We need to make the following easy observation. If a graph G
is obtained from a graph G by replacing a vertex ¢ € V(G) of degree three with a triangle 7" and
G, is obtained from G by replacing one of the vertices of T by a triangle, then G is isomor-
phic to a matching minor of G». Let H) = Hy + (x1, y1x1) + (02, x2). Clearly a graph obtained
from Hj by contracting a triangle with vertex set {x2, 71, 72} is isomorphic to H. Therefore, by
the observation above, Hy contains H as a matching minor and H,/y;/y is isomorphic to a
quadratic extension of H. O

(9.2) Let H be a graph of minimum degree at least three, and let G be a brick. If a cube extension
of H is isomorphic to a matching minor of G, then a linear, cross or quadratic extension of H is
isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u,u> and u3 be its neighbors. Let Hy
be obtained from H by bisubdividing each of the edges uu1, uu, and uus. Let the new vertices
be yi1, y2, y3 and z1, 22,23 in such a way that uyjz3u, uyyrziu and uzy3zpou are paths. Let
Hy := Hy + (b1, 22) + (2, 23) + (3, 21), and let J be obtained from Hp by replacing a subset
of {z1, 22, z3} by triangles. If z; is replaced by a triangle, then let the triangle be Z;; otherwise,
let Z; denote the graph with vertex-set {z;}. By hypothesis the vertex u and graph J may be
selected so that J is isomorphic to a matching minor of G. Let n : J < G. We may assume
that n is a homeomorphic embedding, for otherwise a split extension of H is isomorphic to a
matching minor of G and the result holds by (5.9).

When v € V(J) we will abuse notation and use 7 (v) to denote the unique vertex of the graph
n(v). With that in mind let J* = (J), let u} = n(u;), ' = n(u) and z; = n(z;). Fori =1,2,3 let
P; denote the path n(u; y;). We may assume that J and 5 are chosen so that |V (Py)| + |V (Py)| +
|V (P3)| is minimum.

Let £21 be the octopus with head 7(Z1) and tentacles the paths of 1(J) joining u’, y; and yj to
Z1, and let £2; and £23 be defined analogously. Let £24 be the octopus with head n(J \ V(Z1) \
V(Z2) \ V(Z3) \ {1, y2, y3,u}) and tentacles P, Py, P3, let F = {§21, §22, §23, §24}, and let
Y’ ={y|,¥5. 5. u'}. Then (F,Y’) is a frame in G. Let M be a perfect matching of G \ V (n(J));
then M has a unique extension to a matching M’ that is £2;-compatible for all i = 1,2, 3, 4. By
(2.3) there exist distinct integers i, j € {1, 2, 3,4} and an M’-alternating path S joining vertices
v; and v;, where v; belongs to the head of £2; and v; belongs to the head of £2;, such that for
some edge ¢ € E(S) \ M’ the two components of S\ e may be denoted by S; and S; so that
V(SHNV(F)CV($2;) and V(S;) NV (F) CV(82)).

Assume first that j = 4. Then from the symmetry we may assume that i = 2. In this case it
will be convenient to allow v4 to be an internal vertex of a tentacle of £24. By doing so we may
assume (by replacing S by its subpath) that v4 is the only vertex of SN £24. If for some [ € {1, 2, 3}
we have vy € V(P;) and Pj[u;, v4] is even, then let v = u;; if v4 € V(P;) and P[u}, v4] is odd,
then v is undefined. If v4 belongs to V(n(z)) for some z € V(J), then let v = z. Finally, if
v4 € V(n(zZ')) for some edge zz' € E(H \ u), then vy is at even distance on 1(zz’) from exactly
one of 1(z), n(z’), say from n(z). In that case we put v = z. Notice that if v is defined, then
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v € V(H) — {u}. From the symmetry we may assume v # u; and v4 ¢ V (Py). By (3.6) the graph
£22 U Sy + e includes a triad or tripod T with ends y|, u’, vs.

We claim that if v4 belongs to Pz, then the path P3[v4, u’3] is even. Indeed, otherwise by
making use of T, £21 and §23 we obtain contradiction to the minimality of |V (P1)| + |V (P2)| +
|V (P3)|. This proves that if v is undefined then v4 € V (P,). In that case by deleting the path of
n(J) joining y) and Z; and by considering the path of 7(J) joining y| and Z3 and using T we
deduce that a cross extension of H is isomorphic to a matching minor of G. If v is defined, then
one of the following graphs is isomorphic to a matching minor of G:

o H+ (v,uuy) + (12, uuy), if T is a triad and Z3 = {z3},
o H+ (v,uuy) + (12, upu), if T is a triad and Z3 is a triangle,
e H+ (v,uiu) + (12, Tyu1), if T is a tripod.

But each of the above graphs has a matching minor isomorphic to a quadratic extension of H.
This completes the case j = 4.

Thus we may assume that i = 1 and j = 2. By (3.6), £21 U S + e includes a triad or tripod
T; with ends yé, u’, 53 and §2, U S> + e includes a triad or tripod 7> with ends yi, u’, s1, where
s1 € V(81), 52 € V(S7) are the ends of e. If either 71 or T3 is a tripod then the required result
follows from (9.1) by deleting the path of 7(J) joining y| and Z3 and making use of 77 and 7>.
If both T and 7> are triads then one of the following graphs is isomorphic to a matching minor
of G:

o H + (uuz,uuy) + (14, uur), if Z3 is not a triangle,
o H + (uusz, uuy) + (4, upu), if Z3 is a triangle.

Both of these graphs have matching minors isomorphic to quadratic extensions of H. O

(9.3) Let H be a graph, let J be a cross extension of H and let v be the hub of J. If the degree
of v in H is at least four then a split extension of H is isomorphic to a matching minor of J.

Proof. Let xj, y, x2, yo and K’ be as in the definition of cross extension. If J = K’ then J \
vxy \ xpy1/x is isomorphic to a split extension of H. If J # K’ the argument is analogous. O

(9.4) Let H be a graph of minimum degree at least three, and let G be a brick. If a cross
extension of H is isomorphic to a matching minor of G, then a linear or quadratic extension of
H is isomorphic to a matching minor of G.

Proof. Let u be a vertex of H of degree three and let u{, u and u3 be its neighbors. Let H; be a
cross extension of H obtained by deleting the vertex u and adding the vertices x1, x2, y1, y2, ¥3
and edges yju; and y;x; foralli =1,2and j =1, 2, 3. Let H; be obtained from H; by replacing
x1 by the triangle X1, and let H3 be obtained from H» by replacing x; by the triangle X5. Let the
vertices of X| be ai, a, az such that g; is adjacent to y;, and let the vertices of X; be by, by, b3
such that b; is adjacent to y;. By hypothesis, (9.3) and (5.10) we may assume that there exist
a vertex u of H of degree three, a graph J € {H;, Hy, H3}, and an embedding n: J — G. If
J # H3z we define X to be the subgraph of J with vertex-set {x} and let b; = b, = b3 = x5, and
if J = H; we define X to be the subgraph of J with vertex-set {x1} and let aj = ay = a3 = x;.
By (5.9) we may assume that 7 is a homeomorphic embedding. Let J' = n(J), let u; = n(u;),
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and y{ =n(y;). Let P; denote the path n(u;y;). We may assume that J and n are chosen so that
[V(P)I+ |V (P2)|+ |V (P3)] is minimum.

Let £21 be the octopus with head n(X1) and tentacles n(a;y;), where j =1,2,3, and let £2;
be defined analogously. Let £23 be the octopus with head n(J \ V(X1) \ V(X2) \ {¥1, y2, y3})
and tentacles Pi, Py, P3,let F = {21, £22, 23}, and let Y’ = {y|, ¥}, y3}. Then (F,Y’) is a frame
in G. Let M be a perfect matching of G \ V (1(J)); then M has a unique extension to a matching
M’ that is §2;-compatible for all i = 1,2, 3. By (2.3) there exist distinct integers i, j € {1, 2, 3}
and an M’-alternating path S joining vertices v; and v, where v; belongs to the head of £2; and
v; belongs to the head of £2;, and an edge e € E(S) \ M’ such that the components of S\ e may
be denoted by S; and S so that V(S;) N V(F) C V(§2;) and V(S;) N V(F) S V(£2;).

Assume first that j = 3. In this case it will be convenient to allow v3 to be an internal vertex of
a tentacle of £23. By doing so we may assume (by replacing S by its subpath) that v3 is the only
vertex of S N §23. If v3 € V(P;), then let v = u;. If v3 belongs to V(n(z)) for some z € V(J),
then let v := z. Finally, if v € V((zZ’)) for some edge zz’ € E(J), then vs is at even distance
on 7n(zz") from exactly one of 1(z), n(z’), say from 5(z). In that case we put v := z. We may
assume that v € V(H) — {u, u1, uz}, and that if v3 € V(P; U P, U P3) then v3 € V(P3). By (3.6)
we may assume that S U £2; includes a triad or tripod 7' with ends y/, 5, v3. We claim that if v3
belongs to P, then the path P3[vs3, u/3] is even. Indeed, otherwise by making use of 7 and §23_;
we obtain contradiction to the minimality of |V (P1)| + |V (P2)| + |V (P3)|. We deduce that one
of the following graphs is isomorphic to a matching minor of G:

o Hi\x1y3+(x1,v),
o Hr\x2y3+ (x2,v),
o Hy\azys + (a3, v),
e H3\azys+ (a3, v).

But each of the above graphs has a matching minor isomorphic to a quadratic extension of H (in
the first case we bicontract y3 and consider the edges xjv and yjx2). In the second case delete
azas, bicontract its ends and consider the edges yja; and x»v; in the third case delete yix»,
bicontract its ends, and consider the edges ajay and azv; and in the fourth case consider the
same two edges, delete y1b1 and byb3 and bicontract their ends. This completes the case j = 3.

Thus we may assume thati =1 and j = 2. Let s; € V(S51) and s € V (S>) be the ends of e.
We apply (3.7) to S2 U §2; to conclude that £2o U S> + e has a central subgraph 7> such that 75 is
either a quadropod with ends y}, 5, 5, 51, or a quasi-tripod, in which case we may assume by
symmetry that its ends are y|, y}, s1. By (3.6) the graph £2; U S| + e has a central subgraph T}
that is a triad or tripod with ends y{, y3, s2. If T3 is a quasi-tripod then the theorem holds by (9.1).
If T» is a quadropod with ends y{, 5, ¥3, s1, then one of the following graphs is isomorphic to a
matching minor of G:

o Hi\x1yz2 + (x1,x2),
o Hh\axyr + (az, x2).

Both of these graphs have a matching minor isomorphic to a suitable extension of H. In the first
case we get a quadratic extension by bicontracting y, and considering the edges x;y; and x2x7.
In the second case we get a quadratic extension by deleting x,y;, bicontracting y; and y, and
considering the edges xpas and ajaz. O
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Using (9.2) and (9.4) we can upgrade (8.4) to the following statement.

(9.5) Let H and G be graphs, where H is 2-connected and has minimum degree at least three,
G is a brick and H is isomorphic to a matching minor of G. Assume that if H is isomorphic
to K4, then G has no matching minor isomorphic to the Petersen graph. If H is not isomorphic
to G, then a linear, quadratic or quartic extension of H is isomorphic to a matching minor of G.

Proof. This follows immediately from (8.4), (9.2) and (9.4). O

10. Exceptional families

We now handle quadratic extensions. The next lemma will show that a quadratic exten-
sion gives rise to a linear extension, unless it is of one of the following two types. Let
H,u,v,x,y,x',y’, H be as in the definition of quadratic extension; that is, H is a graph,
uv € E(H), H' is obtained from H by bisubdividing uv, where the new vertices x, y are such
that x is adjacent to u and y. Further, x’ € V(H) — {u} and y’ € V(H) — {v} do not both belong to
{u,v}.Let Hy = H'+(x, x")+(y, y') be a quadratic extension of H.If y' = u, x’ is adjacent to v,
and v has degree three, then we say that H| is an alpha extension of H. If x’, y' € V(H) — {u, v},
x' is adjacent to v, y’ is adjacent to u and both u and v have degree three, then we say that Hj is
a prism extension of H. An alpha and a prism extension are shown in Fig. 17.

(10.1) Let H be a graph of minimum degree at least three, and let K be a quadratic extension
of H. Then K has a matching minor isomorphic to a linear, alpha or prism extension of H.
Furthermore, if H,u,v,x, y,x',y’, H are as in the definition of quadratic extension and x', y' €
V(H) — {u, v}, then K has a matching minor isomorphic to a linear or prism extension of H.

Proof. Let H,u,v,x,y,x’,y, H be as in the definition of quadratic extension, and let K =
H' + (x,x") + (y, ') be a quadratic extension of H. By symmetry we may assume that y" # u.
If y’ is not adjacent to u, then H + (u, y’) < K, as desired. Thus we may assume that y’ is
adjacent to u. If u has degree at least four, then K \ uy’ is isomorphic to a linear extension of H,
as desired. Thus we may assume that u has degree three. If x” # v, then by symmetry K is a
prism extension of H, and if x" = v, then K is an alpha extension of H, as desired. O

, y
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Fig. 17. (a) An alpha extension; (b) a prism extension.
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(10.2) Let K be an alpha extension of a graph H of minimum degree at least three. Then K has
a matching minor isomorphic to a linear or prism extension of H.

Proof. Let H,u,v,x,y,x’,y, H be as in the definition of quadratic extension, and let K =
H' + (x,x") + (v, y) be an alpha extension of H, where y’ = u. Thus v has degree three and is
adjacent to x’. There exists a homeomorphic embedding n: H < K with n(v) =x and (z) =z
for z € V(H) — {v}, and by considering n(H) and the edges vx’ and uy we deduce that K is
isomorphic to a quadratic extension of H that satisfies the second statement of (10.1). Thus the
lemma holds by that statement. O

Let H be a graph. By a fan in H we mean a sequence of vertices (x,y,ui,us, ..., Ug)
such that these vertices are pairwise distinct, except that possibly x = y, and further k > 2,
ui,uz,...,ur all have degree three and form a path in H in the order listed, and for i =
1,2, ...,k the vertex u; is adjacent to x if i is even, and otherwise it is adjacent to y.

(10.3) Let K be a prism extension of a 3-connected graph H. If K is not a prismoid, a wheel or
a biwheel, then K has a matching minor isomorphic to a linear extension of H.

Proof. By hypothesis there exists a fan (x, y,u,uz) in H such that K = H + (x,ujuz) +
(y, 7). Let 11, 1, denote the new vertices 11, T2 of K, respectively. Let us choose a maximum
integer k such that H has a fan (x, y,u1,ua, ..., ux) such that H + (x, ujuz) + (y, ) — K.
Let ug be the neighbor of u; other than u#> and y. Now uq # uy, for otherwise H is a wheel or
a biwheel (depending on whether x and y are distinct or not). Assume first that ug # x. There
exists an embedding 1 : H < K such that n(u#1) = t,. By considering the edges uy and xt; we
deduce that H + (y, upu1) + (x, 72) < K, and by using the proof of (10.1) we deduce that either
a linear extension of H is isomorphic to a matching minor of K, or that x is adjacent to u¢ and
that ug has degree three. But then the fan (y, x, ug, 41, ..., ux) contradicts the maximality of k.
Thus we may assume that ug = x, and by symmetry we may assume that uy is adjacent to both
x and y. It follows from the 3-connectivity of H that K is a prismoid, as desired. O

We now turn to quartic extensions. Again, we will show that a quartic extension gives rise to
a linear extension, unless it is of two special types, the following ones. Let H be a graph, and
let u,v, H', x,y,a, b be as in the definition of a quartic extension. That is, uv € E(H), H' is
obtained from H by bisubdividing uv, where the new vertices are x, y numbered so that x is
adjacent to u and y, and let K = H + (x, ab) + (12, y) be a quartic extension of H. If b = v and
the vertices u and a are adjacent and both have degree three, then we say that K is a staircase
extension of H.If a, b, u, v are pairwise distinct, all have degree three, a is adjacent to u# and b is
adjacent to v, then we say that K is a ladder extension of H. We also say that the extension is
based at u, v, b, a (in that order). A staircase and a ladder extension are shown on Fig. 18.

(10.4) Let H be a graph of minimum degree at least three, and let K be a quartic extension
of H. Then K has a matching minor isomorphic to a linear, staircase or ladder extension of H.

Proof. If a and u are not equal or adjacent, then H + au — K (delete xt; and bicontract its
ends), and hence the theorem holds. Assume now that a and u are adjacent. If both u and a have
degree at least four, then K \ au is a linear extension of H. If exactly one of a, u has degree
three, say a does, then the graph obtained from K \ au by bicontracting a is isomorphic to a
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Fig. 18. (a) A staircase extension; (b) a ladder extension.

linear extension of H. Thus if a # u, and either they are not adjacent or one of them has degree
at least four, then a linear extension of H is isomorphic to a matching minor of K. By symmetry
the same conclusion holds about the vertices v and b, and the lemma follows. O

(10.5) Let K be a staircase extension of a 3-connected graph H. If H has at least five vertices,
then a linear or ladder extension of H is isomorphic to a matching minor of K.

Proof. Let K = H' + x1x2 + y1y2, where H' is obtained from H by bisubdividing the edges
vvy and vy so that v y;xjvxayv2 is a path of H’', and assume that vy, vy have degree three
and are adjacent to each other. Let v/l, v§ be the third neighbors of vy and v,, respectively. If
vi and 1/2 are not equal or adjacent, then H + v/1 vé — K (bicontract vy and vy in K \ vivy),
and so the lemma holds. If v{ and v} are adjacent, then K can be regarded as a ladder extension
of H, and if v| = v}, then the 3-connectivity of H implies that it is isomorphic to K4, contrary
to hypothesis. O

A fence in a graph H is a sequence (u1, v, U2, v2, ..., Ui, V) of distinct vertices of H such
that k > 2, each of theses vertices has degree three, uius ...ux and vivy ... v are paths and u;
is adjacent to v; foralli =1,2, ... k.

(10.6) Let K be a ladder extension of a 3-connected graph H on an even number of vertices. If
K is not a ladder or a staircase, then K has a matching minor isomorphic to a linear extension
of H.

Proof. By hypothesis there exists a fence (uy, vi, u3, va, ..., ug, vx) in H such that K = H' +
X1y1 + x2y2, where H' is obtained from H by bisubdividing u uy and vjvy and xi, x2, y1, y2
are the new vertices numbered so that ujxixoupvay2y1v] is a cycle in H'. We may assume
that the fence is chosen with £ maximum. Let u, vy be the third neighbors of u1, v, respec-
tively. Assume first that ug # vg. Since the quartic extension of H based at ug, u1, vy, vg is
isomorphic to K, the argument in the proof of (10.4) shows that either a linear extension of H
is isomorphic to a matching minor of K, or that uo and vo are adjacent and both have degree
three. We may assume the latter, for otherwise the lemma holds. By the maximality of k the
sequence (ug, vo, U1, V1, - .., Uk, V) is not a fence in H, and hence we may assume that 1y = uy
or ug = vx. But H is 3-connected, and so in the former case K is a planar ladder, and in the latter
case it is a Mobius ladder. Thus we may assume that uo = vg. The ladder extension of H based
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at ug_1ukvgvk— is clearly isomorphic to K, and hence the above argument shows that we may
assume that the third neighbors of u; and v are equal. Since H is 3-connected and has an even
number of vertices, it is a staircase. O

The following result summarizes the previous lemmas.

(10.7) Let K be a quadratic or quartic extension of a 3-connected graph H on an even number
of vertices, and assume that K is not a prismoid, wheel, biwheel, ladder or staircase. Then a
linear extension of H is isomorphic to a matching minor of K.

Proof. If H is isomorphic to K4, then K is not a staircase extension of H, because K is not a
staircase. Thus the lemma follows from the results of this section. O

We are now ready to prove Theorem (1.11).

Proof of (1.11). Let H and G be as stated therein, and assume that they are not isomorphic.
Assume first that either H is not isomorphic to K4, or G has no matching minor isomorphic
to the Petersen graph. By (9.5) we may assume that a quadratic or quartic extension K of H
is isomorphic to a matching minor of G. It follows from the hypothesis of (1.11) that K is
not a prismoid, wheel, biwheel, ladder or staircase. Thus K has a matching minor isomorphic
to a linear extension of H by (10.7), and hence so does G, as desired. Thus we may assume
that H is isomorphic to K4 and G has a matching minor isomorphic to the Petersen graph.
But G is not isomorphic to the Petersen graph by hypothesis. Since we have already shown
that (1.11) holds when H is the Petersen graph, we may now apply it to deduce that G has
a matching minor isomorphic to a linear extension of the Petersen graph. The Petersen graph
has, up to isomorphism, a unique linear extension, and this linear extension has a matching
minor isomorphic to the staircase on eight vertices. But the latter graph has a matching minor
isomorphic to K4, the staircase on four vertices, contrary to hypothesis. O

11. A generalization

In this section we state a generalization of (1.11), and point out how it follows from the theory
that we developed. Let G be a graph with a perfect matching. Let us recall that a barrier in G is a
set X € V(G) such that G \ X has at least | X| odd components, and that bricks are 3-connected
graphs with perfect matchings and no barriers of size at least two. Braces almost have no barriers,
either, for if X is a barrier in a brace and X has at least two elements, then X is one of the two
color classes of G. We use this fact to weaken the condition on bricks. Let s >> 0 be an integer.
We say that a set X € V(G) is an s-barrier in G if G \ X has | X| — 1 odd components such that
the union of the remaining components of G \ X has at least s vertices. We say that a graph is
an s-brick if it is 3-connected and has no s-barrier of size at least two. Thus bricks are 1-bricks
and braces are 2-bricks. Our proof of (1.11) actually proves the following more general theorem.
A pinched staircase is a graph obtained from a staircase by contracting the edge v v, where the
vertices v and vy are as in the definition of a staircase.

(11.1) Let s > 0 be an integer, G be an s-brick other than the Petersen graph, and let H be a
3-connected matching minor of G on at least s + 1 vertices. Assume that if H is a planar ladder,
then there is no strictly larger planar ladder L with H — L — G, and similarly for Mobius
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ladders, wheels, lower biwheels, upper biwheels, staircases, pinched staircases, lower prismoids
and upper prismoids. If H is not isomorphic to G, then some matching minor of G is isomorphic
to a linear extension of H.

Proof. The proof follows the proof of (1.11), with the following minor modifications. In (2.2)
the set Ry is not required to be odd, but instead must have at least s vertices. The proof goes
through with the obvious changes. Then the definition of octopus needs to be changed to permit
heads with even number of vertices, and in the definition of frame we need to add a condition
guaranteeing that the heads of £21, £22, ..., £2x—1 are odd and that the head of §2; has at least
s vertices. The assumption that H has at least s 4 1 vertices will guarantee that this additional
condition is satisfied whenever (2.3) is applied. Finally, in (10.6) the assumption that H has an
even number of vertices can be replaced by assuming that K is not a pinched staircase. 0O

Clearly (11.1) implies (1.11) on taking s = 1. Let us now turn to braces. Let L be a linear
extension of a brace H. Then L need not be a brace, but if L is bipartite, then it is a brace.
Furthermore, if L is isomorphic to a matching minor of a bipartite graph, then L itself is bipartite.
Thus (11.1) implies (1.9) by taking s = 2. The third application of (11.1) is to factor-critical
graphs. A graph G is factor-critical if G \ v has a perfect matching for every vertex v € V(G). It
is easy to see that every 1-brick on an odd number of vertices is factor-critical. Thus the following
immediate corollary of (11.1) gives a generation theorem for a subclass of factor-critical graphs.

(11.2) Let G be a 1-brick on an odd number of vertices, and let H be a 3-connected matching
minor of G. Assume that if H is a wheel, then there is no strictly larger wheel W with H —
W — G, and similarly for pinched staircases, lower prismoids and upper prismoids. If H is not
isomorphic to G, then some matching minor of G is isomorphic to a linear extension of H.

Unfortunately, a linear extension of a 1-brick need not be a 1-brick.
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