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Abstract

Positive regularity is a common attribute of inaccurate square matrices which can be used
in linear equation systems that provide only nonnegative solutions. It is studied within the
framework of vague matrices which can be considered as a generalization of interval matri-
ces. Criteria of positive regularity are derived and a method of verifying them is outlined.
The exposition concludes with a characterization of the radius of positive regularity. © 2001
Elsevier Science Inc. All rights reserved.
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1. Introduction

The problem of solving systems of linear equations and inequalities with inac-
curate data has been drawing attention for more than 30 years. It has been treated
within the framework of both the interval analysis and the optimality theory. Dantzig
[2] introduced the concept of the generalized linear programming problem (GLPP),
the columns of which were convex polyhedral sets. In GLPP, the so-aaitadistic
approachis used: a solution is considered feasible if it is feasible for at least one
realization of the data. The opposigssimistic approacto inaccuracy of the en-
tries is used in the semi-infinite programming [3], the inexact programming [14,17]
and the inclusive programming [14,15]: a solution is required to satisfy all possible
realizations of the data. (Cf. [16,17].)
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The interval analysis uses mostly the optimistic approach. Its significant part deals
with square systems of inaccurate linear equations [1,8,9,11-13]. One of the current-
ly discussed topics is the problem of checking regularity of a square interval matrix.
Poljak and Rohn [10] proved that this problem is NP-hard.

In this paper, we deal with a more specific concept of regularity that can be con-
sidered as a common attribute of inaccurate square matrices which are suitable for

models the solutions of which are supposed to be honnegative. Such an assumption

is usually accepted in many applications. On the other hand, we study a more general
type of inaccurate matrices. As it is shown in Section 2, the procedures given below
can be effectively applied to several interesting types of these matrices. Besides the
simplest case of interval matrices, we discuss the octaedric matrices defined by using
simple polyhedra of the well-known type and the elliptic matrices, the columns of
which can move im-dimensional ellipsoids. A matrix of the latter type can be used
as a deterministic equivalent of a random matrix with thdimensional normal
distribution of columns [6].

The following definition was introduced in [5].

Definition 1. Let A, ..., A" c R be compact convex sets. The set of matrices
AY={A|A=(a"...,a"), al e A, j=1,... n}
is called avague matrix

A vague matrixAY could be equivalently defined as an ordeneiple of vague
columns, ie. AV = (AL, ..., A").

In this paper, we deal with squarex n vague matrices only. A square vague
matrix AV is singularif there exists a singulat € AV. Otherwise AV is regular.
The solution set of a vague linear equation syst#efw = b is defined consistently
with the optimistic approach, i.e.,

X(AY,b) ={x|34 € AV: Ax = b}.
Further let
X+ (AY,b) = X(AY,b) NR. = |{x|x € X(AY,b), x > 0}.
If AV is regular, therX (AY, b), being a continuous map of a convex compact set
AV c R”z, is a connected compact set.

2. Basic propertiesof positively regular vague matrices

Definition 2. A square vague matrixV is calledpositively regulaiif there exists a
b € R" such that

Ax = b has a solution for each € AV, (1)

xeX(AV,b) = x>0. (2)
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We can formulate a few plausible assertions which follow immediately from this
definition.

Proposition 1. A positively regular vague matrix is regular.

Proof. Consider & satisfying (1). If the assertion did not hold, then there would
exist a nontrivial affine subspac€ € X (AV, b), which would contradict condition
(2. O

Proposition 2. A ‘one-point vague matrixAY = {A} is positively regular if and
only if A'is nonsingular.

Proposition 3. LetAY be positively regular. Then there exists an openet Ay
in R™" such that any vague matrix" contained inQ is positively regular.

Thus, the requirement of positive regularity is not too restricting for a set of small
perturbations of a given nonsingular matrix.

Proposition 4. Let AV be regular and let there exists a b such (2} holds. Then
AV is positively regular.

Condition (2) can be expressed %AV, b) C int R”, where int denotes the
interior of the respective set. The problem of verifying this condition is solved in
the following section. Condition (1) itself, however, can be hardly verified in an
operative way. Therefore, we are going to give a more transparent equivalent of

1), ().

Consider vector functions
al(t):[0,00) > R", je J={1,...,n}
and a variable convex cone
K@) ={u=ra'(t)+ - +ra" (1), »; >0 Vj e J}. ©)

Lemmal. Assume that

(i) a’(¢) are continuousin a, > 0 and
(ii) al(ty) £0Vj e J.

Then

f]K@: ﬂ K(1). (4)

t€[0,1,) te[0,2]

Proof. Letuschoosea ¢ K (t,). According to the well-known separation theorem,
there exists a vectar such that"s > 0 andv'u < 0 Vu € K (t,). Due to condi-
tion (ii), the latter relation is equivalent ' a’(t,) < 0V € J. Thus,v'a/(r) <
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0Vj e J Vr €[ty — &, t,] must hold for a sufficiently small > 0, which implies
b¢ ﬂte[o,z*) K(@). O

Theorem 1. AV is positively regular if and only if the following conditions are
satisfied

0¢ Al Vjel, ()
3b: ¥ # X(AY,b) CintR". (6)

Proof. ‘If part. Choose ab satisfying (6). There exist a nonsingular matrix
Ao= (%L, ...,%") € AV and anx € R" such thatdgx = b. Choose another matrix
A= (al, ..., a" e AV arbitrarily and denotei (1) = (al(r),...,a" ) = (1 —1)
Ao + tA. Further, let

t, = suft | A(z) is nonsingular for € [0, 1)}. 7
Let us suppose that < 1. Thenb € K (¢) for 0 < r < ¢, due to (6). According to
Lemma 1, we havé € K (t,), which means tha#(z,)x = b has a solution. Con-
sequentlyA(z,) is nonsingular due to (6) again. Relation (7), however, implies that
A(ty) is singular because the set of all nonsingular matrices is open. This contradic-
tion yieldsr, > 1, which means thak is nonsingular and, consequently is reg-
ular. Then the positive regularity ofV follows from Proposition 4.

‘Only if’ part follows immediately from Definition 1. [J

The natural assumption (5) that none of the matrices bcontains a zero col-
umn can be easily verified. If there exists a right-hand side vector that produce only
positive solutions, we have an interesting equivalence:

Theorem 2. If condition(6) holds then the following properties are equivalent
(Y0gA/VjelJ;

(i) AV is positively regulay

(iii) AV is regular.

Proof. (i) = (ii) follows from Theorem 1, (ii)= (iii) holds due to Proposition 1.
The rest is plausible. [0

Corollary 1. Assume thaf6) holds and letx (AY, b) be bounded. TheaV is pos-
itively regular.

Let us define
y(AY) = {y|x(aY,y) c RL}. (8)
ProvidedX (AY, b) C int R’ holds for ab € R", the same relation is kept for
sufficiently small perturbations &f Hence, condition (6) is equivalent to
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int ¥ (AY) # ¢. 9)
Thus, we can reformulate Theorem 1 as follows:

Corollary 2. AV is positively regular if and only if5) and(9) hold.

3. Basic problems

Let a vague matridV and vectors, c € R" be given. We are going to discuss
two related problems:

Problem |. Maximize f (x) = ¢'x subjecttaxr € X (AY, b).

Problem I1. Find a pair(A,, z*), A, € AV, z* € R" such that
ATz =, (10)

ATz >c vAeAY. (11)

Proposition 5. If (A, z*) is a solution of Problentl, then
cTx <b'z* Vxe Xy (AY,b)

holds for eaclb € R".

Proof. Condition (11) implies
cTx < (@TAx =b"z* Vx > OsatisfyingdAx =b. O

Theorem 3. Let AV be positively regular andA,, z*) be a solution of Problert.
ThenbTz* is the exact upper bound ¢fix) = c"x on X (AV, b) foranyb € Y (AY).

Proof. We haveX(AY,b) = X (AV,b) for b € Y(AY). Using Proposition 5, it
is sufficient to realize that the upper bouht:* of ¢x is actually achieved for
xf=A7%. O

Provided ab € Y(AY) is given, we can construct a supporting half-space of
X(AY, b) = X, (AY, b) for an arbitrary given normal vector.

It was proved in [5] that there exists a solution of Problem Il for any regular
vague matrixAV. Assuming thatdV is positively regular, we can present a much
more transparent proof. Before doing that let us formulate a lemma.

Lemma?2. LetAg, A1 € AV, c € R* andb < int Y(AY) be given such that
(i) Ag, A1 are nonsingular and
(i) ¢ #+ Ajz > c holds forz = (A))te.
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Then

cTxl < cx0 forxi = Ai_lb, i=0,1

Proof. Sincex! > 0, we have

cTxl < zTAlxl = sz = zTonO =c'x0 O

Theorem 4. LetAV be positively regular. Then

(i) there exists a solutiopd,, z*) of Problemll for eachc € R" and
(i) z*is determined uniquely.

Proof. (i) Choose & < int Y(AY) and letx* be an optimal solution of Problem I.
Such a vector does exist becauseAV, b) is compact. Letd, = (a*, ..., a*") €
AV be such thatd,.x* = b holds anc:* be defined as* = A_1b. We are going to
prove (11) by contradiction. Let us assume that

JkeJ={1...,n}: Jae Ak a'z* <. (12)

Considerd = A, + d(eF)T, whered = a — a** ande* is thekth unit vector. Using
the formula for one column change inversion, we have

% 9

A = A - gAtd(eN) A
whereg > 0 holds due to the regularity ofY. Hence, we obtain
cTx=c"A b =cTx* = BT dxf forx = A" e X(AY, b). (13)

Sincex; > 0 andd"z* < 0 due to (10), formula (13) yields'x < cTx*. This in-
equality, however, contradicts the assumption #fasolves Problem I. Hence, (12)
is not true.

(i) Let (Ao, z9), (A1, z1) be solutions of Problem Il and letox® = Aix1 = b
forab e int Y(AY). Suppose for a moment thaf z° + c. Sincea]z° > c,

cTxl < cTx0 < (zl)TonO = (zl)Tb = (zl)TAlxl =c'x!
must hold according to Lemma 2. This contradiction proves the equﬁﬁty =

ATz = ¢, which yieldsz® = z! due to regularity ofd1. O

Problem Il can be solved effectively by an iterative method which consists in
solving n elementary optimization problems in each step. This method has been
described in [5] as the method of simultaneous optimization (SO).

Algorithm SO.

1° Choosedg € AY. Setz®:=0,s := 1.
2° Computer = (AT )~ Le.
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3° Find Ay = (@, ..., %a") € AV such that
)"/ =min{(*) e |£ € A7}, jel (14)

4° If 7% # 7L thensek :=s +1and goto 2.
5° If z* = z°~1, then END.

A simplified convergence proof of this algorithm in comparison with that given
in [5] is demonstrated below. (Cf. also [7].)

Theorem 5. Let AV be positively regular. Then the following assertions hold

(i) The sequencg’} produced by Algorithm SO converges for atye AV.

(i) If z* =limy- z* andA, is an accumulation point dfA;}, then(A,, z*) is a
solution of Problenil.

Proof. (i) The sequencgz’} is bounded due to the regularity @f¥. We want
to show that it has a unique accumulation point: choogesaint ¥ (AY) and de-
notex® = A71» > 0. Dueto 2 and 3 we have(z**HTh = (*THTA xS = cTx® >
(ZS)TAsxS — (Zs)Tb or
@ —2)'b>0, s=01,... (15)
For an arbitrary pait*, z** of accumulation points ofz*}, relation (15) implies
(z* —z*)=0 Vbeinty(aY).
This condition, however, can be fulfilled onlyif* = z*. Consequently® — z*.
(i) The assertion follows from (14). O

Apparently, the vectob € Y (AY) mentioned in the proof is not used in the algo-
rithm. If Algorithm SO fails, it means that such a vector does not exist and, conse-
quently,AY is not positively regular. Positive regularity, however, is not a necessary
condition of convergence. In the case of positively regular polyhedral vague matrix
AV, the solution of (14) can be found among the verticea ©fThen, Algorithm SO
is finite since there is a finite number of vertices.

The form of elementary optimization problems

min{z"¢ |& € A7}, (16)

which are to be solved in step,3lepends on the way in which the vague maitik
is defined. Let us consider a few alternatives:

Interval matrix
AV ={A|D< A<D}, D=(d;;). D=(di,) 17)
Then (16) takes on the form

minimize z'¢  subjecttod,; <& <dij. i € J. (18)
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The solutiorg* is evident:
e = d; ifz >0,
E,’j if < 0.
In this specific case, Algorithm SO is a close analogy of the so-called sign-accord
algorithm proposed by Rohn [13].

(19)

Octaedric matrix

, d;j

1

sz{Az(a,,-) ngl,jeJ}, dij > 0. (20)

whereA = (a;;) is a given ‘central’ matrix. Translating the situation into the centre,
we have another trivial optimization problem:

minimize z'n  subjectto » |nl-|/dij <1, (21)
i
wheren; = & — ajj,i €J.

Let k € J be chosen so thatidy;| > |zid;;| Vi € J. Then the optimal solution
of (21) is determined as follows:

1= o merie @22
Elliptic matrix:
AV={A‘ZM<L,‘€J}, dij > 0. (23)
r 4
The optimal solution of the problem
minimize z'n  subjectto » nlz/dlzj <1 (24)
i

can be easily obtained by utilizing the fact that the only constraint must be restricting
in the optimum. Using the Lagrange multiplier, the relations

q+2m/di =0 Y fdd=1 .0
i

must be satisfied in the saddle point, 1).

Hence,
1 1
x_ & g2 2_ + 252
n; = _ZAZ'dij’ A= 2 Ei zidij,
and finally

-1/2
nf =—Bzud;. iel.  where = (Z z?dl?j> . (25)
i
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We can summarize that for all these special types of vague matrix the solution of
the auxiliary problem (16) is obtained by using very simple explicit formulae.

4. Checking positiveregularity

Let (A;, z') be a solution of Problem Il for = —e! and denote

wi :—Zi :(A;r)ilei, l=1,,n

The matrixW = (w?, ..., w")T satisfies the following conditions:
WA<E VAeAY (Eistheunitmatriy, (26)
vieJ, 3Ae AV ATw =¢. (27)

Definition 3. A matrix W satisfying (26) and (27) is called thawver inverse matrix
of AV (inv AY).

ProvidedAV is positively regular, imA" is determined uniquely due to Theorem
4,

Proposition 6. Let A be positively regular. Them = (inv AY)b is the vector of
the exact component-wise lower bounds of the solutioAs ef= b for an arbitrary
beY(AY).

Proof. bTw! = —b'7 is the exact lower bound of; on X(AY, b) for any b
Y(AY) according to Theorem 3.0

Let us denotéW)™ the polar cone of the nonnegative hull{ef?®, ..., w"}, i.e.,
(W)T = {y| Wy > 0}. For a positively regulan", we havey (AY) c (W)* due to
Proposition 6.

Theorem 6. Suppose that’ = inv AV exists and letAg € AV be a nonsingular
matrix. Then the following assertions are equivalent

(@) B0 eintw)*: 410 > 0;

(i) Y(AY) = (W)*.

Proof. (i) = (ii): Choose ay € int (W)*, considery(r) = (1 —1)y® + ry and de-
notet, = sup | Aaly(t) >0, ¢ € [0,1]}. Evidently, X, (AY, y(t,)) #+ & because
x* = Aaly(t*) > 0. Sincey(t,) € int (W)™, we haveWy(t,) > 0. According to
Proposition 6,x > 0 holds for allx € X4 (AY, y(t.)), namely, Agty(s) > 0. It
means that, = 1 and hencey € int Y(AY). We have proved that intW)* c
int Y(AY) which implies(W)* c Y(AY) becauser(AY) is a closed convex set.
On the other hand, Proposition 6 impli#g > 0Vy € Y(AY) or Y (AY) c (W)*.



94 J. Nedoma / Linear Algebra and its Applications 326 (2001) 85-100

(i) = (i): This implication follows from the defining relation (8).C]

The convex con¢W)™ has a nonempty interior if and only W is nonsingular.
Thus, Theorem 6 implies:

Corollary 3. If AV is positively regulaythen W = inv AV is nonsingular and
Y(AY) = (W)t.

Theorem 7. Assume that

(@) 0g A/ VjeJ;

(b) there exists a nonsingulat € AY;

(c) W =inv AV exists.

Then the following assertions are equivatent
(i) A= > 0Vb cint(W)*;

(i) AV is positively regular.

Proof. (i) = (ii): According to Theorem 6, assumptions (a)-(c) (i) imply
int(W)* =int Y(AY) # ¢. Thus, we can apply Corollary 2. The converse impli-
cation is plausible. O

Sinceb € int(W)* can be chosen arbitrarily, we can take= W~—1e, wheree =
{1

Corollary 4. Let conditionga)~(c) of Theoren¥ be satisfied. TheA" is positively
regular if and only ifW A is nonsingular and

(WA)"te > 0. (28)
We now can recommend an operative procedure for checking positive regularity:

Procedure CPR1.

1° Verify that0¢ A/ Vj € J.

2° Find W = inv AV by using Algorithm SO.

3° Choose an arbitrarng € AV.

4° \ferify (28).

If Algorithm SO fails orW A is singular, then the process ends’ is not positively
regular.

Let us recall a few concepts of the theory of special matrices [4]. The matrix
classes? andZ are defined as follows:
G=(gj)eZ Iifg;<OVi#]},
GePo if all the principal minors ofG are nonnegative.
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A matrix G € Z NPy is called an M-matrixG is a nonsingular M-matrix if and
only if
1° G e Z,
2° there exists @ > 0, p € R" such thap" G > 0.

This property is invariant with respect to transpositionGlis a nonsingular M-
matrix, thenG~1 > 0.

Definition 4. GV is called avagueM-matrixif eachG € GV is an M-matrix.

Proposition 7. If GV is a regular vague M-matrixthen there exists @ > 0 such
that pTG > Ofor eachG € GV.

Proof. Itis necessary to prove thptcan be chosen independently of the choice of
G € GV ={G1,...,G"}. Letus denote

G={glg=ng'+ - +ug" g G/, 1;>0 jel}

Being a nonnegative hull of a system of convex s@tés convex and, in addition,
0 ¢ % due to regularity ofGV. It means that? lies in a homogeneous half-space
H = {x|p'x > 0}. Theny = G"p > 0 holds for an arbitrary; € GV. SinceG is

a nonsingular M-matrixp” = y'G~1 > O holdsduetaG~1 > 0. O

Proposition 8. Let U be a matrix such that
GV =UAY={G|G=UA, AcAY}
is a regular vague M-matrix. Thea" is positively regular and
)+ cr(aY).
Proof. Choose & > 0 andA € AV arbitrarily. Since(UA)~! > 0, the equation
system
Ax = b, whereb=U"1z,

has the only solutionc = (UA)~1z > 0. It means thab < int(U)* implies b €
int Y(AY). In addition,b is the vector required in Definition 2.0]

Theorem 8. AV is positively regular if and only ifinv AV)AV is a regular vague
M-matrix.

Proof. ‘Only if’ part. Let AV be positively regular. According to TheoremW, =
inv AV exists. For an arbitrargt € AV, G = WA € Z holds due to (26). For a €
intY(AY) andx = A~1y we have

Gx =WAx =Wy =x >0, (29)
which impliesx > 0. HenceG is an M-matrix.



96 J. Nedoma / Linear Algebra and its Applications 326 (2001) 85-100

The converse implication follows from Proposition 81
Thus, we have another operative criterion of positive regularity:

Theorem 9. AV is positively regular if and only if there exist vectars, . .., u”
satisfying the following system of inequalities

a'u¥ <0 VYaeAl, j+k, kel, (30)

a'y ub>1 Vaeal, jel. (31)
k

Proof. ‘If part. Assume that/ = (a?, ..., a") is a solution of (30) and (31). Then

G =UA e ¥ foreachA € AV and, in additionG'e > ¢ > 0. HenceGY = UAY

is a regular vague M-matrix andlV is positively regular according to Proposition 8.
‘Only if’ part. Let AV be positively regular. According to Proposition 7, there

exists ap > 0 such that

pTWA>e VAe AV, whereW =inv AY. (32)

If we denoteu’ = p;w/, j € J, then (32) is equivalent to (31). Furthermore, (30)
follows from the fact thaWA € 2 VA € AV. O

Positive regularity of a polyhedral vague matrix can be verified in such a way
that all the vertices of the polyhedr¥ are substituted for the vectarinto (30),
(31). Such a procedure, however, is not of a high practical value. Evidently, it is very
laborious when applied to interval matrices.

Theorem 10. If AV is positively regularthenW = inv AV is nonsingular and the
following implication holds for anyt € R”":

FAeA:n"A>0 = KW lso. (33)

Proof. (a) If Wwere singular, theiWw)* would be a linear subspace and conse-

quently intY (AY) = int(W)* = ¥ would hold. Therefore)y must be nonsingular.
(b)hTA > Ovyieldsp'G =y > 0for pT =h"W~1 andG = WA. SinceG is

a regular M-matrix G~ > 0 holds and hencg” = yTG~1 > 0. The matrixG 1,

however, cannot have any zero row. Therefgre, 0 yieldsp > 0. O

Let (A, 1*) be the solution of Problem Il for = e. According to Proposition
5, the scalar produat:*)Ty gives an upper bound of the supi x; for any x e
X, (AV, y). Let us callr* theupper-bounding vectand denote it upaV). If AV is
positively regular, upAY) is determined uniquely due to Theorem 4.

Now, we can formulate an analogy of Theorem 8:
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Theorem 11. AV is positively regular if and only if the following conditions hold
(i) h* =ubaY)andW =inv A exist
(ii) W is nonsingular
(iii)
(w)Th* > 0. (34)

Proof. ‘If’ part. We haveW A € Z VA € AV. Inaddition, ATh* > eimpliesp’ G >
eforp = (WHTh*andG € WAV. Hence WAV is a regular vague M-matrix and,
therefore AV is positively regular due to Theorem 8.

‘Only if’ part follows from Theorem 10. [

Thus, Procedure CPR1 can be modified as follows:

Procedure CPR2.
1° Find#* = ub(AY) andW = inv AV by using Algorithm SO.
2° Verify (34).

Proposition 9. LetAY, AY be positively regular and letY C AY. Then
(Wo)" c (W)™ holds forw; =inv AY, i =0, 1.

1 K
Proof. Choose € Y(Ay). ThenA~1b > 0VA € AY C A, whichyields(Wo)™ =
Y(AY) c Y(A)) = wpt. O

Proposition 10. Assume that
(i) AY c AY;
(i) (Wo)t ¢ (Wo)* for W; =inv AY, i =0, 1;
(iii) 3n: hTA > eVA € AY;
(iv) AY is positively regular.
ThenAg is positively regular as well.

Proof. (a) First of all we show thaWy is nonsingular. It follows from condition (i)
becaus&W;)™ is ann-dimensional pointed convex cone and, thereféfe; (W1)™
cannot hold for any nontrivial linear subspagec R”.

(b) SinceWy e € (W1)™, there exists @ > 0 such thaty = W, *p = W, te.
For an arbitraryd € AY c AY we haveA~*W; e = A=w; 1y > 0. In addition,
0¢ A/ Vj e J due to condition (iii). ThusAg is positively regular according to
Corollary 4. O

Consider a nonsingular matri&y and a vague matri®V such that e DV . Fur-
ther let
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AV(@t) = Ag+1tDY ={A|A=Ao+tD, DC DY}, 1>0, (35)
and denote
7 (Ao, DY) = {t| AV (v) is positively regular ¢ > 0}. (36)

Lemma3. 7 (Ao, D) is an open interval.
Proof. Follows from Proposition 3. [

Definition 5. Let Ag be nonsingular and @ DV. Then
r(Ao, DY) = sup{r | AV (1) is positively regulay

is called theradius of positive regularitypf the matrixAg with respect to the vague-
ness—typeDV.

The radius of positive regularity is an analogy of the radius of nonsingularity
introduced in [10].

Theorem 12. Let
(i) W, =inv AV (z,) exist for ar, > 0;
(i)0gA/Vjel.
Then the following implication holds
t. =r(Ao, DY) = W, issingular (37)

Proof. Taking into accountthato = A", we haved,t > 0Vb € (W)*. Accord-

ing to Proposition 9, the inclusiait;)* ¢ (Wp)* holds forw; = inv AV (1), < t,.

If W, were nonsingular, the(W,)™ C (Wp)™ would hold as well and consequently
AV would be positively regular according to Theorem 8. In such a case, however,
Lemma 3 would imply,. < r(Ag, DY), which would contradict the premise of (37).
Hence, W, must be singular. O

Theorem 13. Assume that
(i) h* = ub(AY (1)) exists
(i) Wi =inv AV(z,) is singular,
(i) all the nondiagonal elements &f, Ag are negative.
Thent, = r(Ag, DV).

Proof. There exists a vectaf = 0 such that/" W, = 0. Let us assume without loss
of generality that/; > 0 and form a matri)U, as follows:

Us = Wy +eet(h™)T. (38)
Then, for anyt < ¢* there exists an > 0 such that



J. Nedoma / Linear Algebra and its Applications 326 (2001) 85-100 99

UAeZ VYAeAV®). (39)
In addition,
d"U.A=d" WA +edi(h*)'A >0 VAeAV@). (40)

Thus,U. AV (1) is a regular vague M-matrix and hengé# (r) is positively regular for
0 < r < t, according to Proposition 8. Since” (1, is not positively regular due to
Theorem 10¢, = r(Ag, DY). O

Assumption (iii) of this theorem is satisfied, for example, i@t DV.
The setY; = Y(AV(r)) of all the right-hand sideg providing only nonnegative
solutions ofAY (r)x = y can be characterized as follows:
1° Y, is ann-dimensional convex cone forQ r < r(Ag, DY), Y; = (W,)™.
2° Y, is a degenerated convex cone fee r(Ag, DY), Y; C (W)t.
3° Yy, =¢fort > r(Ag, DV).

Example. Let us consider

0 2 2 0 [-1,1 [-11]
Ao=12 0 4], DY =1[[-11] 0 0
11 1 0 0 0

AV(r) = Ag+tDV is an interval matrix for > 0. Owing to a small number of
alternatives, we can easily prove thgf(r) is regular for < 2. Fort* = 1 we obtain

~1 o 1
w,=|1/4 -1/4 1/4],
1/4  1/4 —3/4

0
n=10],
1
1 -1 -1
WeAg= | -1/4 3/4 -1/4].

~1/4 -1/4 34

Since detW,, = 0, r(Ag, DY) = 1 due to Theorem 13.
The set of all the right-hand sidegroviding nonnegative solutions ﬂf}k/x =b
is a half line defined by the following conditions:

Wb =0, Ag'b=0. (41)

Thus, Y(A}k’) ={b=id |1 >0}, whered = (1,2,1)". Let us choose, for exam-
ple, b° = (5,10,5)T € Y(AY). The exact upper bound of the sufitx) = e'x =
x14 x2 +xz0nX (AY, b0 isequaltof = (h*)b° = 5. The exact component-wise
lower bounds; of the same set, of course, are equal to O, becHy$é = 0.
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In order to find the lower bounl = min{ f(x) | x € X+(A}k’, b9}, let us compute
g* = —ub(—AY) = (0,0, 1)T. Hence,f = (g*)"h° = 5. We can conclude that for
anyr € [0, 1), AV (¢) is positively regul_ar and

X(AY(1),b%) c X(AY.b°) C {x|e'x =5, x > 0}. (42)
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