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1. INTRODUCTION

In this paper, we are concerned with an eigenvalue problem relative to a
nonlinear Schrödinger equation:

i
@c
@t

¼ �Dcþ V ðxÞcþ erNðcÞ; ð1Þ

where NðcÞ is a nonlinear differential operator. The standing waves

cðx; tÞ ¼ uðxÞe�imt

of Eq. (1) are determined by the solutions of the following nonlinear
eigenvalue problem:

�Du þ V ðxÞu þ erNðuÞ ¼ mu ð2Þ

provided that

NðuðxÞe�imtÞ ¼ e�imtNðuðxÞÞ: ð3Þ

If c is a scalar function and NðcÞ ¼ f ðjcjÞc is a nonlinear function of c;
Eq. (2) has been widely considered.
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We are particularly concerned with Eq. (2) when the nonlinear term NðuÞ
has a more complex structure, namely

NðuÞ ¼ �Dpu þ W 0ðuÞ; ð4Þ

where W : Rnþ1 ! R is a nonlinear function having a singularity in the
point x$ and u : O 	 Rn ! Rnþ1=fx$g: Note that operator (4) can be
extended to the complex functions in such a way to satisfy (3). The
motivation for considering an operator such as (4) needs some explanation.

In [3] (see also [4, 5]), the authors, motivated by a conjecture of Derrick
[12], proved that the equation

�Djþ erNðjÞ ¼ 0; ð5Þ

where j : R3 ! R4 and the nonlinear operator N is like (4), has a family
fjqgq2Z=f0g of nontrivial solutions with the energy concentrated around the
origin in a region of radius infinitesimal with e: These solutions are
characterized by a topological invariant chðÞ; called topological charge,
which takes integer values (see (11)). In fact, for every q 2 Z=f0g; we have a
solution jq with chðjqÞ ¼ q:

The solutions of Eq. (5) allow one to construct particular solutions of
Eq. (1) when V ðxÞ is constant: V ðxÞ ¼ V0 2 R: In this case Eq. (1) admits
standing waves of the form

cqðt; xÞ ¼ jqðxÞe
�iot;

where o ¼ V0; and travelling solitary waves of the form

cqðt; xÞ ¼ jqðx � 2ktÞeiðkx�otÞ;

where o ¼ V0 þ k2: Moreover in [1], the authors proved the orbital stability
of these solutions (for suitable values of k) together with some of their
dynamical properties.

The orbital stability of suitable solutions of (1) implies that this equation
has solutions of the form

cðt; xÞ ¼ jðx � QðtÞÞeiðkx�otÞ þ c1ðt; xÞ; ð6Þ

where c1 is small compared with jðxÞ:
Solutions of this type can be considered as a combination of a wave and a

‘‘particle’’. The region BeðQðtÞÞ occupied by the particle is characterized by
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the fact that chðj;BeðQðtÞÞÞ=0: In this region, the energy is highly
concentrated.

If we consider standing waves in a bounded domain O; we are interested
in solutions of (1) of the form

cðt; xÞ ¼ uðxÞe�imt

and the ‘‘presence’’ of particles is guaranteed by the fact that chðu;OÞ=0:
Thus, we are led to the following eigenvalue problem for any assigned
topological charge q 2 Z=f0g (see (11)):

To find solutions m 2 R and u with topological charge q of the field
equation

�Du þ V ðxÞu þ erð�Dpu þ W 0ðuÞÞ ¼ mu in O;

u ¼ 0 on @O;

(
ðPeÞ

where e is a positive parameter, O is a bounded smooth domain of Rn

with n53 and p; r 2 N with p > n and r > p � n: Here Du ¼ ðDu1;Du2;
. . . ;Dunþ1Þ; with u ¼ ðu1; u2; . . . ; unþ1Þ and D the classical Laplacian
operator. Moreover, Dpu denotes the ðn þ 1Þ-vector, whose ith component
is given by

ðDpuÞi ¼ r  ðjrui j
p�2ruiÞ:

Finally, V is a real function V : O ! R and W 0 is the gradient of the
function W :Rnþ1=fx$g ! R; where x$ is a point of Rnþ1 which for
simplicity we choose on the ðn þ 1Þth component, namely

x$ ¼ ð0; %xxÞ; ð7Þ

with 0 2 Rn and %xx 2 R; %xx > 0:
Throughout the paper, we always assume the following hypotheses:

* V 2 Lnþ1ðO;RÞ and V is essentially bounded from below,

* W 2 C1ðRnþ1=fx$g;RÞ;
* W ðxÞ50 for all x 2 Rnþ1=fx$g;
* there exist two constants c1; c2 > 0 such that

x 2 Rnþ1; 05jxj5c1 ) W ðx$ þ xÞ5
c2

jxjq
;

where q ¼ np
p�n

:
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We state the following existence result (see Theorem 4.1):

Given q 2 Z=f0g and k 2 N; we consider x$ ¼ ð0; %xxÞ with 0 2 Rn and %xx large

enough. Then for e sufficiently small and for any j4k with *llj�15*llj ; there exist

mjðeÞ and ujðeÞ; respectively, eigenvalue and eigenfunction of the problem ðPeÞ;
such that the topological charge of ujðeÞ is q:

Here *llj (see Section 4.1) are the eigenvalues of the linear problem �Du þ
V ðxÞu ¼ *llu with u 2 H1

0 ðO;R
nþ1Þ:

We look for critical values of the energy functional associated to (Pe),
that is

JeðuÞ ¼
Z
O

1

2
jruj2 þ

1

2
V ðxÞjuj2 þ

er

p
jrujp þ erW ðuÞ

� �
dx; ð8Þ

in the intersection of every connected component, characterized by the
topological charge, with the unitary sphere in L2ðO;Rnþ1Þ: It is clear that the
functional Je is not even. Technically, we are considering a perturbation of a
symmetric problem and we want to preserve critical values. Namely, we
prove that some critical values *llj of the functional

J0ðuÞ ¼
Z
O

1

2
jruj2 þ 1

2
V ðxÞjuj2

� �
dx with u 2 H1

0 ðO;R
nþ1Þ

on the unitary sphere of L2ðO;Rnþ1Þ are preserved for the perturbed
functional Je:

Perturbations of symmetric problems have been studied by several
authors. The first work of this kind seems to be [2]. It would be beyond
our purpose to give a complete bibliography on the subject. We only cite
[7, 8, 18]. The problem ðPEÞ has been successively studied in [6] in the
case O ¼ Rn.

The paper is organized as follows:

– Section 2 is devoted to the description of the functional setting and of
some topological devices.

– In Section 3, we prove the existence of minima (see Theorem 3.1) for
the functional Je; defined in (8), in every component of the unitary sphere,
characterized by the topological charge (see (9), (10), (12)). Thus, we state:

Given q 2 Z and x$ ¼ ð0; %xxÞ (with 0 2 Rn and %xx > 0), for any e > 0 there

exist m1ðeÞ and u1ðeÞ; respectively, eigenvalue and eigenfunction of the problem

ðPeÞ; such that the topological charge of u1ðeÞ is q:
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} Finally, in Section 4 there are some arguments of eigenvalues theory
and the proof of the main result of the paper by a variational approach. We
build some suitable functions Gq

e of topological charge q (see (28)) and some

suitable manifolds M
q
e; j (see (29)). Thus, we are able to find critical values

c
q
e; j (see (30)) of the functional Je in every component of the unitary sphere in

L2ðO;Rnþ1Þ; characterized by the topological charge (see (12)). These values

c
q
e; j are critical values of ‘‘min–max type’’ and tend to the eigenvalues *llj

when e tends to zero.

NOTATION

We fix the following notations:

* jxj is the Euclidean norm of x 2 Rn;
* if x 2 Rnþ1 some times we will use the notation x ¼ ð*xx; %xxÞ; where

*xx 2 Rn and %xx 2 R;

* if x 2 Rn and r > 0; then Bðx; rÞ is the open ball with centre in x and
radius r;

* Bn is the closed ball with centre 0 and radius 1 in Rn;
* given a Banach space B; we denote by Bn the dual of B;

* if a : B � B ! R is a continuous bilinear map, we put for all u 2 B

a½u� ¼ aðu; uÞ;

* if J is a C1-functional on B; we put Jc ¼ fu 2 B=JðuÞ4cg:

2. FUNCTIONAL SETTING

2.1. The Space H and the Open Set L

Let H denote the closure of C1
0 ðO;Rnþ1Þ with respect to the following

norm:

jjujjH ¼ jjrujjL2ðO;Rnþ1Þ þ jjrujjLpðO;Rnþ1Þ;

where p > n:
The following remark summarizes the main properties of the Banach

space H:

Remark 1. In the Banach space H the norm jj  jjH and the usual norm of
the Banach space W

1;p
0 ðO;Rnþ1Þ are equivalent. By Sobolev embedding
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theorem, we get that H is continuously embedded in C0;að %OO;Rnþ1Þ with
04a41� n

p
: The embedding is compact if a51� n

p
:

By S we denote the following submanifold of class C2 of H:

S ¼ u 2 H

Z
O
juðxÞj2 dx ¼ 1

� ��
: ð9Þ

In the space H; we consider the open subset

L ¼ fu 2 H=x$ =2 uðOÞg: ð10Þ

The energy functional

JeðuÞ ¼
Z
O

1

2
jruj2 þ

1

2
V ðxÞjuj2 þ

er

p
jrujp þ erW ðuÞ

� �
dx

is real valued on L and of class C1:
It is obvious that if u is a critical point for the functional Je restricted on

L\ S; there exists m 2 R such that for all v 2 HZ
O
ðru  rv þ V ðxÞu  v þ erjrujp�2ru  rv þ erW 0ðuÞ  vÞ dx ¼ m

Z
O

u  v dx;

hence u is a weak solution of ðPeÞ:

2.2. Topological Charge and Connected Components of L

We recall now the definition of topological charge introduced by Benci
et al. [5] (we report here the definition given in [3]).

We write the n þ 1 components of a function u 2 H in the following way:

uðxÞ ¼ ðũðxÞ; %uuðxÞÞ;

where ũ : O ! Rn and %uu : O ! R:

Definition 1. Let u be a function in L 	 H; then the support of u is
the following set:

Ku ¼ fx 2 O= %uuðxÞ > %xxg;

where %xx is defined in (7). Then the topological charge of u is the following
function:

chðuÞ ¼
degðũ;Ku; 0Þ if Ku= |;

0 if Ku ¼ |:

(
ð11Þ
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We recall that, as a consequence of the fact that u is continuous (see
Remark 1) and uj@O ¼ 0; Ku is an open subset of O and more precisely
Ku 	 O: Since u 2 L; if x 2 @Ku; we have %uuðxÞ ¼ %xx and ũðxÞ=0: Therefore,
the previous definition is well posed.

Moreover, the topological charge is continuous with respect to the
uniform convergence (see [5]):

Lemma 2.1. For every u 2 L there exists r ¼ rðuÞ > 0 such that, for every

v 2 L

jjv � ujjL1ðO;Rnþ1Þ4r ) chðuÞ ¼ chðvÞ:

The space L 	 H is divided into connected components by the
topological charge:

L ¼
[
q2Z

Lq;

where

Lq ¼ fu 2 L=chðuÞ ¼ qg: ð12Þ

We define the following subset of L:

Ln ¼
[

q2Z=f0g

Lq: ð13Þ

Proposition 2.1. For all q 2 Z; the connected component Lq is not

empty.

Proof. If q ¼ 0; u � 0 is in L0: Then let q be different from zero. If r is a

positive parameter, we consider two functions jr; cr : R
þ ! ½0; 1� of class

C1 and such that

jrðrÞ ¼
1 for 04r4r2;

0 for r54r2;

(

crðrÞ ¼
1 for 04r49r2;

0 for r516r2;

(
ð14Þ

moreover, jr and cr take values between 0 and 1 for r24r44r2 and

9r24r416r2; respectively. Let Ur be the following function:

Ur : Bð0; 4rÞ 	 Rn ! ðRn � RÞ=fx$g;

x / cðjxj2Þðx; ð%xxþ CÞjðjxj2ÞÞ;
ð15Þ
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where C is a positive constant. Now we choose jqj points x̂i 2 O and jqj
radiuses ri such that Bðx̂i;riÞ 	 O ði ¼ 1; . . . ; jqjÞ and Bðx̂i;riÞ \ Bðx̂j ;rjÞ ¼
| for all i=j: Then, we can define

UqðxÞ ¼
Uri

ðgqðx � x̂iÞÞ for all x 2 Bðx̂i; 4riÞ; i ¼ 1; . . . ; jqj;

0 for all x 2 O=
Sjqj

i¼1 Bðx̂i; 4riÞ;

(
ð16Þ

where gq is the following function:

gqðx1; x2; . . . ; xnÞ ¼
ðx1; x2; . . . ; xnÞ for q > 0;

ð�x1; x2; . . . ; xnÞ for q50:

(
ð17Þ

The function Uq is in C1
0 ðO;Rnþ1Þ and belongs to Lq: ]

Remark 2. It is immediate from the construction of the functions Uq

that their norm in L2ðO;Rnþ1Þ can be as small as we need. Then, for q 2
Z=f0g; we can consider 05jjUqjjL2ðO;Rnþ1Þ41: Because of the form of the

image of Uq; it is possible to expand it of a factor t51 to obtain a function

with unitary L2-norm, without reaching the point x$: i.e. tUq 2 Lq and, in

particular, the function
Uq

jjUqjjL2ðO;Rnþ1Þ
is in Lq \ S: This means that Lq \ S is

not empty for all q 2 Z (it is obvious that L0 \ S=|).

3. EXISTENCE OF MINIMA IN THE COMPONENTS OF L\ S

The following lemma describes the behaviour of the functional Je near the
boundary of L (for the proof see [5]):

Lemma 3.1. Let fumgm2N be a sequence in L weakly converging in H to

u 2 @L: Then,

lim
m!1

Z
O

W ðumÞ dx ¼ þ1:

We can now state the theorem of existence of minima in the components
Lq \ S of L\ S:

Theorem 3.1. For any q 2 Z and for any e > 0 there exists a minimum for

the functional Je in Lq \ S:

Proof. Since V is bounded from below and W is positive, the functional
Je is bounded from below on L\ S: Moreover, by positiveness of W ; Je is
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coercive on L\ S; that is for every sequence fvmgm2N 	 L\ S; if jjvmjjH !
þ1; we get JeðvmÞ ! þ1: Therefore, fixed q 2 Z and e > 0; we recall that
the set Lq \ S is not empty (Remark 2) and we consider a minimizing
sequence fumgm2N for the functional Je on Lq \ S: The sequence fumgm2N is
bounded in H and hence weakly converging in H to u up to a subsequence.
Since the sequence fJeðumÞgm2N is bounded, by Lemma 3.1 u does not belong
to the boundary @L:

We verify that u is the required minimizer. As fumgm2N is weakly
converging to u; by Remark 1 we know that fumgm2N is uniformly
converging to u; then

R
O W ðumÞ converges to

R
O W ðuÞ: Since the functional

JeðuÞ � er
R
O W ðuÞ is convex and strongly continuous, we get that the

functional Je is weakly lower semicontinuous. Therefore, u is the mini-
mizer because, even if Lq is not weakly closed, u belongs to Lq \ S by
Lemma 3.1. ]

4. A MULTIPLICITY RESULT IN THE COMPONENTS OF Ln \ S

4.1. Eigenvalues of the Schrödinger Operator

In the following, we will assume, without loss of generality, that
essinfx2O V ðxÞ > 0:

We denote by

l15l24l34   4lm4    ;

the sequence of the eigenvalues of the problem

�Dz þ V ðxÞz ¼ lz with z 2 H1
0 ðO;RÞ ð18Þ

and by feigi2N the sequence of the associated eigenvectors with ðei; ejÞL2ðO;RÞ
¼ dij :

We consider now the sequence

*ll14*ll24*ll34   4*llm4   

of the eigenvalues of the problem

�Du þ V ðxÞu ¼ *llu with u 2 H1
0 ðO;R

nþ1Þ: ð19Þ

If u ¼ ðu1; u2; . . . ; unþ1Þ; then (19) is equivalent to

�Dui þ V ðxÞui ¼ *llui with i ¼ 1; 2; . . . ; n þ 1:
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It is trivial that l1 ¼ *ll1 ¼ *ll2 ¼    ¼ *llnþ15*llnþ2; in fact if l is an eigenvalue
of multiplicity n of problem (18), then l is an eigenvalue of (19) of

multiplicity ðn þ 1Þn: Moreover if lk5lkþ1; then *llðnþ1Þk5*llðnþ1Þkþ1:
If we set ẽj ¼ ðej ; 0; . . . ; 0Þ; ẽjþ1 ¼ ð0; ej ; . . . ; 0Þ; . . . ; ẽjþn ¼ ð0; 0; . . . ; ejÞ; it is

clear what we mean by the sequence of the eigenvectors fjigi2N correspond-

ing to the sequence f*lligi2N; which is an orthonormal set in L2ðO;Rnþ1Þ:
We introduce the following symmetric continuous bilinear maps:

aðw; zÞ ¼
Z
O
rw  rz dx þ

Z
O

V ðxÞwz dx 8w; z 2 H1
0 ðO;RÞ; ð20Þ

Aðu; vÞ ¼
Z
O
ru  rv dx þ

Z
O

V ðxÞu  v dx 8u; v 2 H1
0 ðO;R

nþ1Þ: ð21Þ

The main properties of the eigenvalues fligi2N and f*lligi2N are summarized
in the following lemma (see [11, 14]):

Lemma 4.1. The following properties hold:

li ¼ min
w2H1

0
ðO;RÞ

ðw;ejÞL2ðO;RÞ¼0

8j¼1;...;i�1

a½w�

jjwjj2L2ðO;RÞ

;

*lli ¼ min
u2H1

0
ðO;Rnþ1 Þ

ðu;jj ÞL2 ðO;Rnþ1 Þ¼0

8j¼1;...;i�1

A½u�

jjujj2
L2ðO;Rnþ1Þ

and

aðei; ejÞ ¼ lidij 8i; j 2 N;

Aðji;jjÞ ¼ *llidij 8i; j 2 N:

If we set Em ¼ span ½e1; . . . ; em� and

E?
m ¼ fw 2 H1

0 ðO;RÞ=ðw; eiÞL2ðO;RÞ ¼ 0 for i ¼ 1; . . . ;mg;

we get

w 2 Em ) l14
a½w�

jjwjj2L2ðO;RÞ

4lm;

w 2 E?
m )

a½w�

jjwjj2L2ðO;RÞ

5lmþ1:
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If we set, respectively, Fm ¼ span ½j1; . . . ;jm� and F?
m ¼ fu 2 H1

0 ðO;R
nþ1Þ=

ðu;jiÞL2ðO;Rnþ1Þ ¼ 0 for i ¼ 1; . . . ;mg; we get

u 2 Fm ) *ll14
A½u�

jjujj2
L2ðO;Rnþ1Þ

4*llm; ð22Þ

u 2 F?
m )

A½u�

jjujj2
L2ðO;Rnþ1Þ

5*llmþ1: ð23Þ

The proof is a direct consequence of classical argumentations of spectral
theory.

From the theorems of regularity, we get the following lemma:

Lemma 4.2. If u 2 H1
0 ðO;R

nþ1Þ is a solution of

�Du þ V ðxÞu ¼ lu

with l 2 R; then u 2 H :

Proof. Using the regularity result of Agmon–Douglis–Nirenberg (see for
example [9]) and the assumption that V 2 Lnþ1ðO;RÞ; by a bootstrap
argument it follows that u 2 W 1; sðO;Rnþ1Þ for any s 2 N and hence we
obtain the claim. ]

4.2. The Functions Gq
e

Fixed an integer k 2 N; we define

Mk ¼ sup
u2SðkÞ

jjujjL1ðO;Rnþ1Þ; ð24Þ

where for any m 2 N SðmÞ is the following subset of H:

SðmÞ ¼ Fm \ S: ð25Þ

Then we choose the ðn þ 1Þth coordinate %xx of the point x$ defined in (7) in
such a way that

%xx > 2Mk: ð26Þ

We can now introduce for any q 2 Z=f0g the functions Gq
e similar to the

functions Uq introduced in (16), but with some more properties. Like in the
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previous case, we construct a function Gr in the following way:

Gr : Bð0; 4rÞ 	 Rn ! ðRn � RÞ=fx$g;

x / crðjxj
2Þ

%xx
r

x; 2%xxjrðjxj
2Þ

 !
;

ð27Þ

where jr and cr are the functions defined in (14). It is important to observe
that the distance of the image of Gr from the point x$ is %xx:

Definition 2. If q 2 Z=f0g and 05e41; we set

Gq
e ðxÞ ¼

Gri

gqðx � x̂iÞ

e

 �
for x 2 Bðx̂i; 5eriÞ and i ¼ 1; . . . ; jqj;

0 for x 2 O
Sjqj

i¼1 Bðx̂i; 5eriÞ
/

;

8>><
>>: ð28Þ

where Gr is defined in (27), gq in (17) and the points x̂i and the radiuses ri

are chosen in such a way that

1. Bðx̂i;riÞ 	 O (i ¼ 1; . . . ; jqj),

2. Bðx̂i;riÞ \ Bðx̂j ; rjÞ ¼ | for all i=j; i; j ¼ 1; . . . ; jqj;

3. jjGq
1 jjL2ðO;Rnþ1Þ51 (see Remark 2).

Finally, we define Gq ¼ G
q
1 :

Remark 3. We note that by construction the image of Gq
e does not

intersect the point x$ and the distance of the image from the point is %xx:
Moreover, even if we expand the functions Gq

e ð05e41Þ of a factor t51;
their image is such that they do not meet the point x$ and the distance is
still %xx: Hence tGq

e 2 Lq for all t51 and e 2 ð0; 1�:

The following lemma presents some useful properties of the functions Gq
e

which will be crucial in the sequel:

Lemma 4.3. There exist #rr > 0 and %ee; with 05%ee41; such that for all 05e
4%ee we have

(i) jjGq
e þ #rrujjL2ðO;Rnþ1Þ41 for all u 2 SðkÞ;

(ii) inf e2ð0;%ee�; u2SðkÞ jjGq
e þ #rrujjL2ðO;Rnþ1Þ > 0;

(iii) infx2O; e2ð0;%ee�; u2SðkÞ
Gq

e ðxÞ þ #rruðxÞ
jjGq

e þ #rrujjL2ðO;Rnþ1Þ
� x$

�����
����� >

%xx
2
;

(iv)
Gq

e þ #rru

jjGq
e þ #rrujjL2ðO;Rnþ1Þ

2 Lq \ S for all u 2 SðkÞ:
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Proof. (i) For any r > 0 and 05e41 we have jjGq
e þ rujjL2ðO;Rnþ1Þ4

e
n
2 jjGqjjL2ðO;Rnþ1Þ þ r and, by 3 in Definition 2, there exists #rr > 0 such that
jjGqjjL2ðO;Rnþ1Þ þ #rr41:

(ii) As jjGq
e þ #rrujjL2ðO;Rnþ1Þ5 #rr� jjGq

e jjL2ðO;Rnþ1Þ; if e is small enough, we get

jjGq
e þ #rrujjL2ðO;Rnþ1Þ > 0:

(iii) By Remark 3 we deduce that for all u 2 SðkÞ

inf
x2O; e2ð0;1�

Gq
e ðxÞ

jjGq
e þ #rrujjL2ðO;Rnþ1Þ

� x$

�����
����� ¼ %xx:

To get (iii) it is sufficient to prove that there exists %ee 2 ð0; 1� such that for all
e4%ee

sup
u2SðkÞ

#rrjjujjL1ðO;Rnþ1Þ

jjGq
e þ #rrujjL2ðO;Rnþ1Þ

5
%xx
2
:

We observe that

sup
u2SðkÞ

#rrjjujjL1ðO;Rnþ1Þ

jjGq
e þ #rrujjL2ðO;Rnþ1Þ

4
#rrMk

infu2SðkÞ jjG
q
e þ #rrujjL2ðO;Rnþ1Þ

4
Mk

1�
e

n
2

#rr
jjGqjjL2ðO;Rnþ1Þ

:

Since Mk5
%xx
2
; for e sufficiently small we have (iii).

(iv) It follows immediately from (iii). ]

4.3. The Values c
q
e; j

Now we can introduce some definitions which we will use to study
multiplicity of solutions.

Definition 3. Fixed k 2 N; q 2 Z=f0g and 05e4%ee; where %ee is defined in
Lemma 4.3, we set

M
q
e; j ¼

Gq
e þ #rru

jjGq
e þ #rrujjL2ðO;Rnþ1Þ

,
u 2 Sð jÞ

( )
ð29Þ

with j4k and #rr defined in Lemma 4.3.

Remark 4. It is trivial that for j4k we have M
q
e; j�1 	 M

q
e; j ; where M

q
e;0

¼ |: By Lemma 4.3, we can claim that M
q
e; j 	 Lq \ S: Moreover, M

q
e; j is a

submanifold of Lq \ S for e sufficiently small.
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Definition 4. Fixed k 2 N; for all q 2 Z=f0g; j4k and 05e4%ee (%ee is
defined in Lemma 4.3), we introduce the following values:

c
q
e; j ¼ inf

h2Hq
e; j

sup
v2Mq

e; j

JeðhðvÞÞ; ð30Þ

where H
q
e; j are the following sets of continuous transformations:

H
q
e; j ¼ h: Lq \ S ! Lq \ S=h continuous; hjMq

e; j�1
¼ idMq

e; j�1

n o
:

We observe that H
q
e; jþ1 	 H

q
e; j :

Lemma 4.4. Fixed k 2 N; for all q 2 Z=f0g; j5k and 05e4%ee; we have

(i) c
q
e; j4c

q
e; jþ1;

(ii) c
q
e; j 2 R:

Proof. (i) It is immediate from the fact that H
q
e; jþ1 	 H

q
e; j :

(ii) Since V is bounded from below and W is positive, we know that the
functional Je restricted to Lq \ S is bounded from below: then c

q
e; j > �1:

Let us suppose that c
q
e; j ¼ þ1; then supv2Mq

e; j
JeðvÞ ¼ þ1: This is a

contradiction, as by Definition 3 M
q
e; j is a compact set. ]

4.4. Main Theorem

To get some critical points of the functional Je on the C2 manifold L\ S;
we use the following version of Palais–Smale condition. For Je 2 C1ðL;RÞ;
the norm of the derivative at u 2 S of the restriction Ĵe ¼ JejL\S is defined by

jjĴ0
eðuÞjj$ ¼ min

t2R
jjJ 0

eðuÞ � tg0ðuÞjjHn ;

where g : H ! R is the function defined by gðuÞ ¼
R
O juj2 dx:

Definition 5. The functional Je is said to satisfy the Palais–Smale
condition in c 2 R on L\ S (on Lq \ S; for q 2 Z) if for any sequence
fumgm2N 	 L\ S (fumgm2N 	 Lq \ S) such that JeðumÞ ! c and jjĴ0

eðumÞjj$
! 0; there exists a subsequence which converges to u 2 L\ S (u 2 Lq \ S).

Lemma 4.5. The functional Je satisfies the Palais–Smale condition on L\
S (on Lq \ S for q 2 Z) for any c 2 R and 05e41:

Proof. It is immediate that every Palais–Smale sequence fumgm2N on
L\ S is bounded in H: Hence, we can choose a subsequence, which for
simplicity we denote again fumgm2N; converging to a function u weakly in H

and strongly in C0ð %OO;Rnþ1Þ: As we have

min
t2R

jjJ 0
eðumÞ � tg0ðumÞjjHn ! 0;
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there is a sequence Zm > 0; with Zm ! 0 for m ! 1 and a sequence tm 2 R

such that for all v 2 H

Z
O

���� ½rum  rv þ V ðxÞum  v þ erjrumjp�2rum  rv þ erW 0ðumÞ  v� dx

� 2tm

Z
O

um  v dx

����4ZmjjvjjH : ð31Þ

From the substitution v ¼ um in (31), we obtain

Z
O
½jrumj2 þ V ðxÞjumj2 þ erjrumjp þ erW 0ðumÞ  um� dx � 2tm

����
����4ZmjjumjjH :

Hence, tm is bounded.
Substituting now v ¼ um � u; we get

Z
O

���� ½rum  rðum � uÞ þ V ðxÞum  ðum � uÞ þ erjrumj
p�2rum  rðum � uÞ

þ erW 0ðumÞ  ðum � uÞ� dx � 2tm

Z
O

um  ðum � uÞ dx

����4Zmjjum � ujjH :

Since um converges to u in C0ð %OO;Rnþ1Þ; we get

Z
O
rum  rðum � uÞ dx þ er

Z
O
jrumjp�2rum  rðum � uÞ dx

¼ �
Z
O

V ðxÞ um  ðum � uÞ dx � er

Z
O

W 0ðumÞ  ðum � uÞ dx

þ 2tm

Z
O

um  ðum � uÞ dx þ *ZZmjjum � ujjH ¼ oð1Þ:

We have

lim sup
m!1

hDpum; um � ui ¼ lim sup
m!1

Z
O
jrumj

p�2rum  rðum � uÞ dx

¼
1

er
lim sup

m!1
�
Z
O
rum  rðum � uÞ dx þ oð1Þ

� �



BENCI, MICHELETTI, AND VISETTI314
4 �
1

er
lim inf

m!1

Z
O
rum  rðum � uÞ dx

¼ �
1

er
lim inf

m!1
jjumjj

2
H1

0
ðO;Rnþ1Þ � jjujj2

H1
0
ðO;Rnþ1Þ

� �

4 0:

Now as

lim sup
m!1

hDpum � Dpu; um � ui40;

by the (Sþ)-property of the p-Laplacian (see [10, 15]) the Palais–Smale
sequence um converges strongly to u in H : Therefore, we get JeðuÞ ¼ c and
u 2 S: Concluding u 2 L; because by Lemma 3.1. if u 2 @L then JeðumÞ !
þ1 and this is a contradiction. Moreover, if fumgm2N 	 Lq; since um

converges to u 2 L in C0ð %OO;Rnþ1Þ and the topological charge is continuous
with respect to the uniform convergence, then u 2 Lq \ S: ]

In the following, we will use the version of the deformation lemma on a
C2 manifold which we now recall (see for example [13, 16, 17]).

Lemma 4.6 (Deformation Lemma). Let J be a C1-functional defined on a

C2-Finsler manifold M. Let c be a regular value for J. We assume that

(i) J satisfies the Palais–Smale condition in c on M,
(ii) there exists k > 0 such that the sublevel Jcþk is complete.

Then there exist d > 0 and a deformation Z : ½0; 1� � M ! M such that

Zð0; uÞ ¼ u 8u 2 M ;

Zðt; uÞ ¼ u 8t 2 ½0; 1�; 8u 2 Jc�2d;

Zð1; JcþdÞ 	 Jc�d:

Lemma 4.7. For any q 2 Z; e 2 ð0; 1� and a 2 R; the subset Lq \ S \ Ja
e of

the Banach space H is complete.

Proof. It is sufficient to observe that if fumgm2N 	 Lq \ S \ Ja
e

converges in H to u; then by Lemma 3.1 u =2 @Lq (because JeðumÞ4a for
all m 2 N). Now by the continuity of the functional Je we have that
JeðuÞ4a: ]

We can now prove the main result:
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Theorem 4.1. Given q 2 Z=f0g and k 2 N; we consider x$ ¼ ð0; %xxÞ with

0 2 Rn; %xx > 2Mk; where Mk is defined in (24).
Then there exists #ee 2 ð0; 1� such that for any e 2 ð0; #ee� and for any j4k with

*llj�15*llj ; we get that c
q
e; j is a critical value for the functional Je restricted to the

manifold Lq \ S: Moreover, c
q
e; j�15c

q
e; j :

Proof. We begin with some notations: if u 2 H we set

PFj
u ¼

Xj

i¼1

Aðu;jiÞji and QFj
u ¼ u � PFj

u: ð32Þ

It is immediate that

AðQFj
u;jiÞ ¼ *lliðQFj

u;jiÞL2ðO;Rnþ1Þ ¼ 0 8i ¼ 1; . . . ; j: ð33Þ

In the following proof we will denote jj  jjLq the norm in LqðO;Rnþ1Þ and
jj  jj

W
1;q
0

the norm in W
1;q
0 ðO;Rnþ1Þ:

We divide the argument into five steps.

Step 1: For any h 2 H
q
e; j ; the intersection of the set hðMq

e; jÞ with the set

fu 2 H=Aðu;jiÞ ¼ 0 8i ¼ 1; . . . ; j � 1g is not empty: in fact, there exists v 2
M

q
e; j such that PFj�1

hðvÞ ¼ 0:

To prove this we will use the Brouwer degree of a continuous function Kh

in the point 0.
If d ¼ ðd1; d2; . . . ; dj�1Þ 2 Bj�1; we consider the continuous map w ¼

w
q
e; j�1 : Bj�1 ! H defined by

wðdÞ ¼ Gq
e þ #rr

Xj

i¼1

diji;

where dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Pj�1
i¼1 d2

i

q
and #rr is defined in Lemma 4.3. By definition

wðdÞ
jjwðdÞjj

L2
2 M

q
e; j : Then for all h 2 H

q
e; j ; we can define the continuous map

Kh ¼ K
q
e; j�1ðhÞ : Bj�1 ! Fj�1 such that

KhðdÞ ¼ jjwðdÞjjL2 PFj�1
h

wðdÞ
jjwðdÞjjL2

 �
:

Now to calculate the degree of the map Kh in the point 0; we construct
a homotopy with the identity map I : Bj�1 ! Fj�1 defined by IðdÞ ¼

#rr
Pj�1

i¼1 diji: Obviously, the homotopy is tKh þ ð1� tÞI with t 2 ½0; 1�: If
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d 2 @Bj�1; then
wðdÞ

jjwðdÞjj
L2

2 M
q
e; j�1 and we have

tKhðdÞ þ ð1� tÞIðdÞ ¼ t PFj�1
Gq

e þ #rr
Xj�1

i¼1

diji:

Since jjPFj�1
Gq

e jjL24jjGq
e jjL2 ¼ e

n
2 jjGqjjL2 ; for e small enough tKhðdÞþ

ð1� tÞIðdÞ=0 for t 2 ½0; 1� and d 2 @Bj�1: Concluding

degðKh; 0;Bj�1Þ ¼ degðI ; 0;Bj�1Þ ¼ 1:

Then, we have the claim.
Step 2: We prove that

sup
v2Mq

e; j

JeðvÞ4*llj þ sðeÞ; ð34Þ

c
q
e; j4*llj þ sðeÞ; ð35Þ

where lime!0 sðeÞ ¼ 0:
First of all we verify that

sup
v2Mq

e; j

J0ðvÞ4*llj þ sup
u2Sð jÞ

A½QFj
Gq

e �

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

: ð36Þ

In fact by (21), Definition 3, (32) and (33) we have

sup
v2Mq

e; j

J0ðvÞ ¼ sup
u2Sð jÞ

A
Gq

e þ #rru

jjGq
e þ #rrujjL2

� �

¼ sup
u2Sð jÞ

A½PFj
Gq

e þ #rru� þ A½QFj
Gq

e �

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

4 sup
u2Sð jÞ

A½PFj
Gq

e þ #rru�

jjPFj
G

q
e þ #rrujj2L2

þ
A½QFj

Gq
e �

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

 !

4 *llj þ sup
u2Sð jÞ

A½QFj
Gq

e �

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

:
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Now by definition of Je and by (36), we prove the following inequalities:

c
q
e; j ¼ inf

h2Hq
e; j

sup
v2Mq

e; j

JeðhðvÞÞ

4 sup
v2Mq

e; j

JeðvÞ

4 sup
v2Mq

e; j

J0ðvÞ þ er sup
v2Mq

e; j

Z
O

1

p
jrvjp þ W ðvÞ

 �
dx

4 *llj þ sup
u2Sð jÞ

A½QFj
Gq

e �

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

þ
er

p
sup

u2Sð jÞ

jjGq
e þ #rrujjp

W
1;p
0

jjGq
e þ #rrujjp

L2

þ er sup
u2Sð jÞ

Z
O

W
Gq

e þ #rru

jjGq
e þ #rrujjL2

 �
dx: ð37Þ

At this point, we note that lime!0 A½QFj
Gq

e � ¼ 0; in fact by (32) and (33), we
have

A½QFj
Gq

e �4A½Gq
e �

4 jjGq
e jj

2
H1

0
þ jjV jjL2 jjGq

e jj
2
L4

¼ en�2jjGqjj2H1
0
þ e

n
2 jjV jjL2 jjGqjj2L4 :

Moreover, by (ii) of Lemma 4.3 we obtain

sup
05e4%ee

sup
u2Sð jÞ

1

jjPFj
G

q
e þ #rrujj2L2 þ jjQFj

G
q
e jj2L2

5þ1:

In fact, jjPFj
Gq

e jj
2
L24enjjGqjj2L2 and jjQFj

Gq
e jj

2
L24enjjGqjj2L2 : Therefore, the

second term of the last inequality of (37) goes to zero when e goes to zero.
Now, we observe that the following inequality holds:

erjjGq
e þ #rrujjp

W
1;p
0

4 e
r�ðp�nÞ

p jjGqjj
W

1;p
0

þ e
r
p #rrjjujj

W
1;p
0

 �p

:
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Then by this inequality and (ii) of Lemma 4.3 (we recall that r > p � n), we
have that the third term of the last inequality of (37) tends to zero when e
tends to zero.

As regards the last term, we verify that
R
O W G

q
eþ #rru

jjGq
eþ #rrujj

L2

� �
dx is bounded

uniformly with respect to e 2 ð0; %ee� and u 2 SðkÞ: In fact, it is obvious that

there exists c 2 Rþ such that jjGq
eþ #rrujjL1

jjGq
eþ #rrujj

L2
4c for e 2 ð0; %ee� and u 2 SðkÞ: Finally

from (iii) of Lemma 4.3, we get the claim.
Step 3: We prove that c

q
e; j5*llj :

By Step 1 and by the positivity of W ; we get

c
q
e; j5 inf

h2Hq
e; j

sup
v2Mq

e; j

A½hðvÞ�

5 inf
h2Hq

e; j

sup
v2Mq

e; j
; PFj�1

hðvÞ¼0

A½hðvÞ�5*llj :

In fact, by Step 1 for all h 2 H
q
e; j we have that the set hðMq

e; jÞ intersects the
set fu 2 H=Aðu;jiÞ ¼ 0 8i ¼ 1; . . . ; j � 1g and so from (23) we get the claim.

Step 4: If *llj�15*llj ; then for e small enough we have

c
q
e; j�15c

q
e; j ; ð38Þ

sup
v2Mq

e; j�1

JeðvÞ5c
q
e; j : ð39Þ

By Steps 2 and 3, we obtain for e small enough

c
q
e; j�1 4*llj�1 þ sðeÞ5*llj4c

q
e; j ;

sup
v2Mq

e; j�1

JeðvÞ4*llj�1 þ sðeÞ5*llj4c
q
e; j :

Step 5: If *llj�15*llj ; then c
q
e; j is a critical value for the functional Je on the

manifold Lq \ S:
By contradiction we suppose that c

q
e; j is a regular value for Je on Lq \ S:

By Lemmas 4.5–4.7 there exist d > 0 and a deformation Z : ½0; 1� � Lq \ S !
Lq \ S such that

Zð0; uÞ ¼ u 8u 2 Lq \ S;

Zðt; uÞ ¼ u 8t 2 ½0; 1�; 8u 2 J
c

q
e; j

�2d
e ;

Zð1; j
c

q
e; j

þd
e Þ 	 J

c
q
e; j

�d
e :
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By (39), we can suppose

sup
v2Mq

e; j�1

JeðvÞ5c
q
e; j � 2d: ð40Þ

Moreover, by definition of c
q
e; j there exists a transformation ĥ 2 H

q
e; j such

that supv2Mq
e; j

JeðĥðvÞÞ5c
q
e; j þ d: Now by the properties of the deformation Z

and by (40) we get Zð1; ĥðÞÞ 2 H
q
e; j and supv2Mq

e; j
JeðZð1; ĥðvÞÞÞ5c

q
e; j � d and

this is a contradiction. ]

Remark 5. By Step 2 of the proof of Theorem 4.1 we have that for all

q 2 Z=f0g; e 2 ð0; 1� and j 2 N there holds c
q
e; j4*llj þ sðeÞ; with lime!0 sðeÞ ¼

0: Moreover, in Step 3 we proved that c
q
e; j5*llj : Hence, we can conclude that

the critical values c
q
e; j tend to the eigenvalues *llj when e tends to zero.
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