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1. INTRODUCTION

In this paper, we are concerned with an eigenvalue problem relative to a
nonlinear Schrodinger equation:

o

i i —AY + V(x) + " N), @)

where N(y) is a nonlinear differential operator. The standing waves

Yx, 1) = u(x)e ™

of Eq. (1) are determined by the solutions of the following nonlinear
eigenvalue problem:

—Au+ V(x)u+ & Nu) = uu (2)
provided that
N(u(x)e ™) = e M N(u(x)). 3)

If  is a scalar function and N() = f(Jy|)y is a nonlinear function of i,
Eq. (2) has been widely considered.
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We are particularly concerned with Eq. (2) when the nonlinear term N(u)
has a more complex structure, namely

N(u) = —Apu+ W'(u), “)

where W : R"™™ - R is a nonlinear function having a singularity in the
point ¢y and u:Q < R" - [R{"“\{f*}. Note that operator (4) can be
extended to the complex functions in such a way to satisfy (3). The
motivation for considering an operator such as (4) needs some explanation.

n [3] (see also [4, 5]), the authors, motivated by a conjecture of Derrick
[12], proved that the equation

—Ap +&N(p)=0, (5)

where ¢ : R* - R* and the nonlinear operator N is like (4), has a family
{q)q} 4e2\{0} of nontrivial solutions with the energy concentrated around the
origin in a region of radius infinitesimal with &. These solutions are
characterized by a topological invariant ch(-), called topological charge,
which takes integer values (see (11)). In fact, for every ¢ € Z\ {0}, we have a
solution ¢, with ch(e,) = ¢.

The solutions of Eq. (5) allow one to construct particular solutions of
Eq. (1) when V(x) is constant: V' (x) = V € R. In this case Eq. (1) admits
standing waves of the form

¥, (1, x) = @ (x)e ™",
where w = ¥V}, and travelling solitary waves of the form
W (1, x) = @ (x — 2ki)e ™=,

where w = V + k>. Moreover in [1], the authors proved the orbital stability
of these solutions (for suitable values of k) together with some of their
dynamical properties.

The orbital stability of suitable solutions of (1) implies that this equation
has solutions of the form

Y1, x) = o(x — Q)" 4y, (1, x), (6)

where V, is small compared with ¢(x).
Solutions of this type can be considered as a combination of a wave and a
“particle”. The region B.(Q(f)) occupied by the particle is characterized by
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the fact that ch(e, B.(Q(?)))#0. In this region, the energy is highly
concentrated.

If we consider standing waves in a bounded domain Q, we are interested
in solutions of (1) of the form

Y(t, x) = u(x)e ™

and the “presence” of particles is guaranteed by the fact that ch(u, Q)#0.
Thus, we are led to the following eigenvalue problem for any assigned
topological charge ¢ € Z\ {0} (see (11)):

To find solutions e R and u with topological charge ¢ of the field
equation

{ —Au+ V(x)u+ & (—Ayu+ W (w) = uu  in Q, ®)

u=20 on 0Q,

where ¢ is a positive parameter, Q is a bounded smooth domain of R"
with n>=3 and p,reN with p>n and r>p—n. Here Au= (Auy,Au,,
coy Auyyy), with u= (uy,us,...,u,p1) and A the classical Laplacian
operator. Moreover, A,u denotes the (n 4 1)-vector, whose ith component
is given by

(Apu); = V- (Vi V).

Finally, V is a real function V: Q — R and W’ is the gradient of the
function W :R™'\{&,} —» R, where &y is a point of R""" which for
simplicity we choose on the (n + 1)th component, namely

£ = (0,0, (7)
with 0 e R” and e R, &> 0.

Throughout the paper, we always assume the following hypotheses:
Ve L""'(Q,R) and V is essentially bounded from below,

We CHR"™ M (&), R),

W(&)=0 for all & e R\ {&,1,

there exist two constants ¢y, ¢; > 0 such that

&

EeR™ 0<|¢l<er = W(£*+€)>|§|q,
ﬂ

where g = et
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We state the following existence result (see Theorem 4.1):

Given q € Z\{0} and k € N, we consider ¢x = (0, f_) with 0 € R" and & large
enough. Then for ¢ sufficiently small and for any j <k with Zj,l < }:j, there exist
1,(€) and u;(e), respectively, eigenvalue and eigenfunction of the problem (P.),
such that the topological charge of u;(e) is q.

Here ij (see Section 4.1) are the eigenvalues of the linear problem —Au +
V(x)u = Ju with u e H)(Q,R"").

We look for critical values of the energy functional associated to (P,),
that is

1 1 .
J(u) = / [§|Vu|2 +5 VWP + S Vul + & W) dx, (8)
Q V4

in the intersection of every connected component, characterized by the
topological charge, with the unitary sphere in L2(Q, R"""). It is clear that the
functional J; is not even. Technically, we are considering a perturbation of a
symmetric problem and we want to preserve critical values. Namely, we
prove that some critical values ZJ- of the functional

1
Jo(u) = / [5 IVul> +1 V(x)lul*| dx  with ue Hy(Q,R""")
Q

on the unitary sphere of L2(Q,R"™') are preserved for the perturbed
functional J,.

Perturbations of symmetric problems have been studied by several
authors. The first work of this kind seems to be [2]. It would be beyond
our purpose to give a complete bibliography on the subject. We only cite
[7,8,18]. The problem (P.) has been successively studied in [6] in the
case Q = R".

The paper is organized as follows:

— Section 2 is devoted to the description of the functional setting and of
some topological devices.
— In Section 3, we prove the existence of minima (see Theorem 3.1) for

the functional J,, defined in (8), in every component of the unitary sphere,
characterized by the topological charge (see (9), (10), (12)). Thus, we state:

Given q e Z and &y = (0, &) (with 0 € R" and &> 0), for any ¢>0 there
exist p,(e) and u;(¢), respectively, eigenvalue and eigenfunction of the problem
(Py), such that the topological charge of u,(¢) is q.
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— Finally, in Section 4 there are some arguments of eigenvalues theory
and the proof of the main result of the paper by a variational approach. We
build some suitable functions G¢ of topological charge ¢ (see (28)) and some
suitable manifolds ﬂgl (see (29)). Thus, we are able to find critical values
cg, ; (see (30)) of the functional J; in every component of the unitary sphere in
LX(Q, R"), characterized by the topological charge (see (12)). These values
Zﬁj are critical values of ““‘min—max type” and tend to the eigenvalues Zj

when ¢ tends to zero.

C

NOTATION

We fix the following notations:

|x| is the Euclidean norm of x € R",

o if (e R+ some times we will use the notation &= (E, &), where
teR"and £ eR,

e if x e R" and p > 0, then B(x, p) is the open ball with centre in x and
radius p,

® B, is the closed ball with centre 0 and radius 1 in R”,

® given a Banach space B, we denote by B* the dual of B,

® if : Bx B — R is a continuous bilinear map, we put for all u e B
alu] = a(u, u),

® if J is a C'-functional on B, we put J = {ue B/J(u)<c}.

2. FUNCTIONAL SETTING

2.1. The Space H and the Open Set A
Let H denote the closure of Cj(, R"™) with respect to the following
norm:

(el gy = ||vu||L2(Q’R”“) + ||vu||UI(Q,[R"‘I)a

where p > n.
The following remark summarizes the main properties of the Banach
space H:

Remark 1. In the Banach space H the norm || - || and the usual norm of
the Banach space W(} ?(Q,R"") are equivalent. By Sobolev embedding
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theorem, we get that H is continuously embedded in C®*(Q,R""") with
0<a<lI — 5 The embedding is compact if a<1 — 5

By S we denote the following submanifold of class C? of H:

S:{ueH//Qlu(x)lzdx:l}. )

In the space H, we consider the open subset
A={ueH/iyduQ). (10)

The energy functional
1 , 1 , & ;
Jow) = [ |5IVul” + SVl + —|Vul’ + & W) | dx
al2 2 p

is real valued on A and of class C'.
It is obvious that if u is a critical point for the functional J, restricted on
A n S, there exists u € R such that for all ve H

/(Vu-Vv+ V(x)u-v+8’|Vu|”72Vu~Vv+s’W’(u)-v)dx:u/ u-vdx,
Q Q

hence u is a weak solution of (P,).

2.2. Topological Charge and Connected Components of A

We recall now the definition of topological charge introduced by Benci
et al. [5] (we report here the definition given in [3]).
We write the n + 1 components of a function u € H in the following way:

u(x) = (d(x), u(x)),
where 7: Q - R"and : Q — R.

DEerINITION 1. Let u be a function in A < H, then the support of u is
the following set:

K, = {xeQfu(x)> &},

where ¢ is defined in (7). Then the topological charge of u is the following
function:

chw) — {deg(ﬁ,Ku,O) if K,# 0, an

0 if K, =0.
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We recall that, as a consequence of the fact that u is continuous (see
Remark 1) and ulpg = 0, K, is an open subset of Q and more precisely
K, = Q. Since u € A, if x € 0K,,, we have u(x) = & and #(x) #0. Therefore,
the previous definition is well posed.

Moreover, the topological charge is continuous with respect to the
uniform convergence (see [5]):

LEMMA 2.1.  For every u € A there exists r = r(u) > 0 such that, for every
veA

[lo — ””L%(Q,R"*') <r = ch(u) = ch(v).
The space A < H is divided into connected components by the
topological charge:
A= U Ay
qe?

where
Ay = {ue A/ch(u) = g}. (12)

We define the following subset of A:
N= ] A, (13)
qe2\{0}

PROPOSITION 2.1.  For all qeZ, the connected component A, is not
empty.

Proof. 1f ¢ =0,u=0isin Ag. Then let g be different from zero. If p is a
positive parameter, we consider two functions ¢, ¥, : R* - [0, 1] of class

C™ and such that
1 for 0<r<p?,
@,(r) = )
0 for r=4p-,

b) = 1 for 0<r<9p? (14
" TN0 for =162,

moreover, ¢, and y, take values between 0 and 1 for p?<r<4p* and
9p% <r<16p?, respectively. Let U, be the following function:

U,: B0,4p) c R" - (R x R)\ {Eg ),

- (15)
x = PP, €+ Op(x)),
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where C is a positive constant. Now we choose |¢| points X; € Q and |q|
radiuses p; such that B(X;,p,) = Q (i=1,...,|q]) and B(X;, p;) N B(X}, p;) =
0 for all i#j. Then, we can define

U, (y,(x — X)) for all x e B(xX;,4p,), i=1,...,/ql,
Uiy =4 : T (16)
for all x e Q\ U, B(X;,4p;),
where y, is the following function:
(X1, X2, ..y Xp) for ¢ >0,
Dy (¥t X2s s X) = (17)
(—X1, X2, ..y Xn) for ¢<0.

The function U? is in Cj°(Q, R™") and belongs to Ay

Remark 2. 1t is immediate from the construction of the functions U4
that their norm in L2(Q,R""!) can be as small as we need. Then, for ¢ e
Z\{0}, we can consider 0<|lU%;2qpw1y<1. Because of the form of the
image of U4, it is possible to expand it of a factor 1> 1 to obtain a function

with unitary L?-norm, without reaching the point Cx:le tU%e Ay and, in
. . vt . . .
particular, the function ——————— isin A; N S. This means that A, N S'is
||Uq||L2(Q,R”'1)

not empty for all ¢ € Z (it is obvious that Ag N S #0).

3. EXISTENCE OF MINIMA IN THE COMPONENTS OF An S

The following lemma describes the behaviour of the functional J; near the
boundary of A (for the proof see [5]):

LemmA 3.1.  Let {uy},en be a sequence in A weakly converging in H to
u € 0A. Then,
lim W(u,,) dx = +00.
Q

m—0o0

We can now state the theorem of existence of minima in the components
AgnSof AnS:

THEOREM 3.1. For any q € Z and for any ¢ > 0 there exists a minimum for
the functional J, in Ay 0 S.

Proof. Since V is bounded from below and W is positive, the functional
J, is bounded from below on A N S. Moreover, by positiveness of W, J, is
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coercive on A N S, that is for every sequence {v;},,en = A NS, if [|lUplly —
400, we get J,(v,) — +00. Therefore, fixed ¢ € Z and ¢ > 0, we recall that
the set A; NS is not empty (Remark 2) and we consider a minimizing
sequence {u, ey for the functional J, on A, N S. The sequence {u,} ey 15
bounded in H and hence weakly converging in H to u up to a subsequence.
Since the sequence {J.(¢4)} ey 18 bounded, by Lemma 3.1 u does not belong
to the boundary 0A.

We verify that u is the required minimizer. As {u,,},, 18 weakly
converging to u, by Remark 1 we know that {u,}, 1S uniformly
converging to u; then fQ W (u,,) converges to fQ W (u). Since the functional
Jo(u) — ¢ [, W(u) is convex and strongly continuous, we get that the
functional J, is weakly lower semicontinuous. Therefore, u is the mini-
mizer because, even if A, is not weakly closed, u belongs to A, nS by
Lemma 3.1. 1

4. A MULTIPLICITY RESULT IN THE COMPONENTS OF A*n S

4.1. Eigenvalues of the Schridinger Operator

In the following, we will assume, without loss of generality, that
essinfeq V(x) > 0.
We denote by
MN<Ip<LIg< oo K< v,
the sequence of the eigenvalues of the problem
~Az+V(x)z=7z  with ze H)(Q,R) (18)
and by {e;};cy the sequence of the associated eigenvectors with (e;, €)) 2
- f’\l;e consider now the sequence
W<h<h< - <hu< -
of the eigenvalues of the problem
—Au+ V(x)u=u with u € H)(Q,R™™). (19)

If u= (u,us,...,uy ), then (19) is equivalent to

—Aui+ V(X)u; = Aw;  with i=1,2,...,n+ 1.
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It is trivial that 4 = 11 = 12 =...= /T,,H <1,1+2, in fact if / is an eigenvalue
of multiplicity v of problem (18), then 1 is an eigenvalue of (19) of
multiplicity (z 4+ 1)v. Moreover if 1 < iy, then Z(,,+1)k<i(n+1)k+1.

If we set &; = (e;,0,...,0),841 = (0,e;,...,0),...,84:, =(0,0,...,¢), it is
clear what we mean by the sequence of the eigenvectors {¢,},.n correspond-

ing to the sequence {4}, which is an orthonormal set in L2(Q, R"*!).
We introduce the following symmetric continuous bilinear maps:

aw,z)= | Vw-Vzdx+ [ V(x)wzdx Yw,ze HI(Q,R), (20)
Q Q 0

A(u,v):/QVu-Vvdx—l—/QV(x)wudx Yu,v € Hy(Q,R™™).  (21)

The main properties of the eigenvalues {4;},.y and {4;},. are summarized
in the following lemma (see [11, 14]):

LEmMMA 4.1.  The following properties hold.

a[w]
= mn M
wel} @R) | |W| |L2(Q,R)
w.e)2qp) =
Vj=1,.i—1
~ Alu
ueH(])(Q,R”JrI) ||u||L2(Q’R”+])

(020 pnt)
Vj=1,....i—1

and
a(e,-, ej) = )viéij VZ, ] € N,
Ay, 0) = Ay Vi, jeN.
If we set E,, = span|ey,...,ey,] and

E-={we HS(Q, R)/(w,e)2qry =0 fori=1,...,m},

we get
alw
wekE, = < 2[] XX Ams
||W||L2(Q,[Rg)
alw
wekE, = ] 2 fomi1-

2
||W||L2(Q,R)
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If we set, respectively, F,, = span[e,,...,¢,] and F:- = {ue H)(Q,R"")/
(u, (Pi)Lz(Q,R;H]) =0 fori=1,...,m}, we get

~ A ~
ueFm = /11<2¢ gim: (22)
”u”LZ(Q’R”H)
Alu] 7
ueF- = e > Jms (23)
u LZ(Q,RI}+I)

The proof is a direct consequence of classical argumentations of spectral
theory.

From the theorems of regularity, we get the following lemma:

Lemma 4.2, If u e HY(Q,R™") is a solution of

—Au+ V(x)u= Au

with 2 € R, then ue H.

Proof. Using the regularity result of Agmon—Douglis—Nirenberg (see for
example [9]) and the assumption that V e L"(Q R), by a bootstrap

argument it follows that ue WhS(Q,R"™") for any seN and hence we
obtain the claim. 1

4.2. The Functions G4

Fixed an integer k € N, we define

M. = sup ||u||LK(Q,R”+')a (24)
ueS(k)

where for any m € N S(m) is the following subset of H:
S(m) = Fu nS. (25)

Then we choose the (n + 1)th coordinate & of the point ¢ defined in (7) in
such a way that

&> 2 M. (26)

We can now introduce for any ¢ € Z\ {0} the functions G? similar to the
functions U? introduced in (16), but with some more properties. Like in the
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previous case, we construct a function G, in the following way:
G,: B(0,4p) =« R" - (R x R)\ {&x
& - 27
x = () (; X, 2é<pp(|x|2)>,

where ¢, and , are the functions defined in (14). It is important to observe
that the distance of the image of G, from the point £y is &.

DEFINITION 2. If g€ Z\{0} and 0<e< 1, we set

(Vq(x - )el)

&

G,

Pi

) for x € B(X;,5¢p;) and i =1,...,|q|,

Gi(x) = (28)

0 for x e Q\U‘;’:‘ | B(%:, 5¢p,),
where G, is defined in (27), y, in (17) and the points X; and the radiuses p;
are chosen in such a way that
1. B(Xi,p) =« Q@=1,...,|q),
2. B(%,p) 0 B, p) = 0 for all i#j, iy j = 1,...,lql,
3. 11Gll 2ty <1 (see Remark 2).

Finally, we define G7 = GY.

Remark 3. We note that by construction the image of G¢ does not
intersect the point {4 and the distance of the image from the point is ¢.
Moreover, even if we expand the functions G¢ (0<e<1) of a factor 1>1,
their image is such that they do not meet the point {4 and the distance is
still £. Hence tGY € A, for all 1>1 and ¢ € (0, 1].

The following lemma presents some useful properties of the functions G¢
which will be crucial in the sequel:

LeEmMA 4.3.  There exist p > 0 and &, with 0<e<1, such that for all 0<e¢
<& we have

(i) 11GE + pull e, <1 for all u e S(),
(i1) infee0z, uescr) 11GE + pull 2 gty > 0,

e G(x) + pu(x)
iii) inf : - — >
( ) xeQ, &€(0,], ueS(k) ||G§ T pu”LZ(Q’R"H) *

e Ay 0 S for all u e S(k).

NSRRI

G + pu
IGE + pull e

(iv)
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Proof. (i) For any p>0 and 0<e<1 we have [|G!+ pull 2 ey <
&2||GY| 2 qre+y + p and, by 3 in Definition 2, there exists p >0 such that
NGl 2ty + AT
(i) As ||GY + pull 2o reity Z P — G 2o o) if ¢ is small enough, we get
G? + pull 2 g1y > 0.

(ii1) By Remark 3 we deduce that for all u € S(k)
: GI(x)
xeQ, &€(0,1] ||G§1 + ﬁH”Lz(g’RnH)

I
EA

To get (iii) it is sufficient to prove that there exists & € (0, 1] such that for all
e<e

Allul |L°o(Q,R"+‘)

3
T < 2.
ueS(k) IG: + P”HLZ(Q,R"“) 2
We observe that
pllull~@me < p My
ueS(k) ||Gg + pAuHLZ(Q,R"“) = infueS(k) ||Gg + lsuHLz(g,R"“)

M,
<

1 SgIIGII
—_— q

A L2(QR™!
F; @R

Since Mk<§-, for ¢ sufficiently small we have (iii).
(iv) It follows immediately from (iii). 0

4.3. The Values ¢! ;

Now we can introduce some definitions which we will use to study
multiplicity of solutions.

DEFINITION 3. Fixed k e N, ¢ € Z\ {0} and 0 <& <&, where £ is defined in
Lemma 4.3, we set

G? + pu .
M= L uesS 29
/ {HG,? + P“HLZ(Q,R”“)/ (J)} @

with j<k and p defined in Lemma 4.3.

Remark 4. Tt is trivial that for j<k we have .Z! , | < .41, where ./},
= 0. By Lemma 4.3, we can claim that .Z{ ; = A, ' S. Moreover, .Z{ ; is a

submanifold of A; N S for ¢ sufficiently small.
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DErFINITION 4. Fixed k e N, for all ¢ge Z\{0}, j<k and 0<e<z (¢ is
defined in Lemma 4.3), we introduce the following values:

¢l ;= inf sup J.(h(v)), (30)
? /1e//" ; ve //q

where 7] ; are the following sets of continuous transformations:
H = {h: Ay 'S > Ay S/h continuous, hl 40 =id 4 ]}.
) & J— & J—

We observe that #7 ., < #] ..

LemMA 4.4, Fixed k e N, for all g € Z\{0}, j<k and 0<e<E, we have
(@) CZ, '<C:{, i+1°
(ii) o, e R,

Proof. (i) It is immediate from the fact that ¢ gl J{"’

(i1) Since V is bounded from below and W is posmve we know that the
functional J; restricted to A4 0 S is bounded from below: then ¢f ;> —o0.
Let us suppose that ¢! . j = T00, then sup,, . Jo(v) = 4o00. This is a
contradiction, as by Definition 3 ﬂ” is a compact set. U

4.4. Main Theorem

To get some critical points of the functional J, on the C> manifold A N S,
we use the following version of Palais—Smale condigion. For J, € C/(A,R),
the norm of the derivative at u € S of the restriction J, = J¢|5 g is defined by

@)l = min [17;0) — 19/ @)l

where g : H — R is the function defined by g(u) = fQ |uf* dx.

DEerINITION 5. The functional J, is said to satisfy the Palais—Smale
condition in ceR on An S (on A;n S, for g € Z) if for any sequence
{Umbmen © AOS Qimfmen © Ay O S) such that J.(u,,) — ¢ and ||J’(um)||*
— 0, there exists a subsequence Wthh convergestoue An S ueA; nS).

LEMMA 4.5.  The functional J, satisfies the Palais—Smale condition on A N
S (on Ay S for qe Z) for any ce R and 0<e<1.

Proof. It is immediate that every Palais—Smale sequence {u,,},,.ny ON
A n S is bounded in H. Hence, we can choose a subsequence, which for
simplicity we denote again {u,,},,n, converging to a function u weakly in H
and strongly in C%(Q, R""!). As we have

min ||J;l(um) - tg/(”m)HH* -0,
teR
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there is a sequence 1,, > 0, with n,, — 0 for m — oo and a sequence 7,, € R
such that for allve H

/[vum Vo + V(X)uy - v+ 8rlvum|p_zvum Vo4& W/(um) - 0] dx
Q

(31

<Hll0llar-

— 2tm/ Uy, + U dx
Q

From the substitution v = u,, in (31), we obtain

‘/[|vum|2 + V(x)|um|2 + 81‘|vum|p + 4 W/(um) : um] dx — 2Zm <nm||um”H'
Q

Hence, ¢,, is bounded.
Substituting now v = u,, — u, we get

/ [Vit - V(thy — 1) + V(X - (1t — 10) 4 & Vit "> Vi, - V1t — 1)
Q

<’7m||um - u”H

+ ¢ W/(um) ( — w)] dx — 2tm/ Upy - (U — ) dx
Q
Since u,, converges to u in CO(Q, R"*!), we get

/ Vuy, - V(u, —u)dx + s"/ |Vum|”72Vum - V(upy, — u) dx
Q Q
= —/ V(X) tyy - (tyy — 1) dx — s"/ W' () - (4, — ) dx
Q o)
+ 2t111/ U - (um - L{) dX + ﬁm”um - u”H = 0(1)
Q

We have

lim Sup< A, thn, ty, — uy = lim sup / IVt 2V 1ty - V (tyy — 11) dx
Q

m—0o0 m-—00

1
=— lim sup [— / Yy, - V(ty, — u) dx + o(1)
Q

& m-oo
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&' m-oo

< - l lim inf / Vi, - V(u, — u)dx
Q

.. . 2 2
— - timinf (Junly o p) = 1l g

N
o

Now as
lim sup <A,y — Apu, 1, — u) <0,
m-0o0

by the (S,)-property of the p-Laplacian (see [10,15]) the Palais—Smale
sequence u,, converges strongly to u in H. Therefore, we get J.(u) = ¢ and
u e S. Concluding u € A, because by Lemma 3.1. if u € A then J.(u,;;) —
+oo and this is a contradiction. Moreover, if {uy},en © Ay, since uy,
converges to u € A in C%(Q, R"*!) and the topological charge is continuous
with respect to the uniform convergence, then ue A, N S. 1|

In the following, we will use the version of the deformation lemma on a
C? manifold which we now recall (see for example [13, 16, 17]).

LEMMA 4.6 (Deformation Lemma). Let J be a C'-functional defined on a
C2-Finsler manifold M. Let ¢ be a reqular value for J. We assume that

(1) J satisfies the Palais—Smale condition in ¢ on M,
(i) there exists k >0 such that the sublevel J** is complete.

Then there exist 6 >0 and a deformation n : [0,1] x M — M such that
n0,u) =u Yue M,
ntuy=u  Vrel0,1], YueJ?,
’7(1, Jc+6) - Jc'fé‘.

LemMA 4.7. Forany ge Z,e€ (0,1] and a € R, the subset Ay n'S N J¢ of
the Banach space H is complete.

Proof. 1t is sufficient to observe that if {uy},en € Ay SNJY
converges in H to u, then by Lemma 3.1 u¢ oA, (because J,(u,,)<a for
all meN). Now by the continuity of the functional J, we have that
J(w)<a. 1

We can now prove the main result:
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THEOREM 4.1.  Given q € Z\{0} and k € N, we consider ¢x = (0, é_) with
0 e R", &> 2My, where My, is defined in (24).
Then there exists & € (0, 1] such that for any ¢ € (0,&] and for any j<k with

lj 1< lj, we get that ¢! ; s a critical value for the functional J, restricted to the
manifold Ay 0 S. Moreover, cf,j_l < Ce,i'

Proof. We begin with some notations: if u € H we set

J
Pru= Z A(u, ¢,)o; and Qru=u— Pru. (32)

i=1

It is immediate that
AQru,¢,) = I Opu, ) oy =0 Vi=1,....]. (33)

In the following proof we will denote ||-||,, the norm in L9(Q,R"*!) and
I lyyta the norm in Wy (Q, R,

We divide the argument into five steps.

Step 1: For any h e Wsj, the intersection of the set h(ﬂ;”j) with the set
{ue H/A(u,0;) =0 Yi=1,..., j— 1} is not empty: in fact, there exists v €
MY such that Pr;  h(v) = 0.

To prove this we will use the Brouwer degree of a continuous function Kj,
in the point 0.

If d=(di,d,...,di_1)e Bj_;, we consider the continuous map w =

w! By » H defined by

g j—1

J
wd) =Gl +pY_ dig;,

i=1

where dj = /1 — Zi_} d? and p is defined in Lemma 4.3. By definition

”n‘(’fl‘)”‘)‘ €./} . Then for all he #},, we can define the continuous map
L')

Ky = a,j—l(h) : Bi_1 = Fj_; such that

) w(d)
Ki(d) = Iw(d)]| 2 PF/"h<||VWd)||L2>.

Now to calculate the degree of the map Kj in the point 0, we construct
a homotopy with the identity map /:Bj_; — F;_; defined by I(d) =
,62/;} d;p;. Obviously, the homotopy is tK, + (1 — )l with te[0,1]. If
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) w(d) q
d € 0B;_, then T, € M, ;_y and we have

J—1
tKi(d)+ (1 — DI(d) = t P, GI+ > dig,.
i=1

Since [|PF,_, Gf{llesllGﬁ.’lle:s%HG‘/HLz, for ¢ small enough ¢Kj;(d)+

(1 = 0I(d)#0 for t €0, 1] and d € 0B;_;. Concluding
deg(K/’la Oa Bj*l) = deg(ls 05 Bj*l) = l

Then, we have the claim.
Step 2: We prove that

sup J,(v) </ + o(2),
ve.//{g_j
cg’j Sij + a(e),

where lim,_o a(e) = 0.
First of all we verify that

N A[QF, G
sup Jo(v)<4; + sup R R
ved] ueS(j) ||PF/ G; + pullp> + ”QF, G;ll12

In fact by (21), Definition 3, (32) and (33) we have

sup Jo(v) = sup 4

[ G + pu }
vedl?! ; ueS(j)

G + pull
w A[PEG? + pu] + A[QF,GY)
wes(p) |1Pg G + pully> +110F, GLII7»

A[Pr, G + pu] A[QF, G]
< su
ueS() \|

\Pr, G+ pullz,  IPEGE + pulll: + 110r GEl7

~ A[OF G1
< A+ sup 7 A[QZF/ : T
ues(j) ||1PF,Ge + pullp: + [|OF Gellp2

)

(34)

(35)

(36)
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Now by definition of J, and by (36), we prove the following inequalities:

¢ = inf sup J(h(v))

o hety ; veu?
e 6

< sup JI}(U)

W
L‘E(lf&j

< sup Jo(v) + € sup /<;|Vv|” + W(v)> dx
Q

Le//j‘ ; LE//;I ;
- A[Or. G4
it sup A0
ueS(j) ||PF,Ge + pullp2 + ||QF G¢ 72
q A1l 1P
+ & sup LGE N pu||W01)p
p ueS( j) ”qu + ﬁu||pLz
GY+p
+ & sup / W({;-i-pu> dx. (37)
wes(j) Ja |G + pullr»

At this point, we note that lim, 4A[QF G{] = 0, in fact by (32) and (33), we
have

A[Qr, G!]< A[G!]
q|12 q12
< NGy + V111G s

n—2 2 z q112
=& NG gy + 2V N2 G4

Moreover, by (ii) of Lemma 4.3 we obtain

1
sup sup <+ 00

0<e<s ues(j) [P G + pull> + IIQF].GgH%z

In fact, ||PrGY7. <G, and [|QFGYl2. <&"[|G|[.. Therefore, the
second term of the last inequality of (37) goes to zero when ¢ goes to zero.
Now, we observe that the following inequality holds:

r—(p—n)

r p
NG+ pull i, <\e 7 NGy + e pllully | -
W, 0 0
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Then by this inequality and (ii) of Lemma 4.3 (we recall that r > p — n), we
have that the third term of the last inequality of (37) tends to zero when ¢
tends to zero.

: Gl+pu :
As regards the last term, we verify that fQ W(iH 7 +ﬁu“Lz) dx is bounded

uniformly with respect to ¢ € (0,¢] and u € S(k). In fact, it is obvious that

there exists ¢ € R* such that WF% <c for ¢ € (0,2] and u € S(k). Finally
@ )2

from (iii) of Lemma 4.3, we get the claim.
Step 3: We prove that ¢! ;>J;.
By Step 1 and by the positivity of W, we get
¢l .= inf sup A[h(v)]

het] j ved! ;

> inf} sup A[h(v)] = 4;.
he s ved? , Pr,_ h(v)=0

In fact, by Step 1 for all € %Zj we have that the set h(%;{j) intersects the
set {ue H/A(u,p;) =0 Vi=1,..., j— 1} and so from (23) we get the claim.
Step 4: If Ai—1 <A, then for & small enough we have

G ja<ep (38)
sup  J(v)<cl (39)
ve ! ’

e, j—1
By Steps 2 and 3, we obtain for ¢ small enough

q 1 1<
¢ i1 S o) <Ai<c

sup  J(v) <A1+ o(e) <k < e

vell? .
& j—1

Step 5: If/{j,l </Tj, then CZ’/ is a critical value for the functional J., on the
manifold Ay N S.

By contradiction we suppose that cf’ ; 1s a regular value for J; on A, 0 S.
By Lemmas 4.5-4.7 there exist 6 > 0 and a deformation 7 : [0,1] x Ay, 0 S —
A4 N S such that

n0,u) =u VueA;n S,

=25
n(t,u) =u Vtel0,1], YuelJ,”'

+0 -5
ye s

q
A
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By (39), we can suppose

sup  Jo(v)<cl; —20. (40)

vedl? .
£ j-1

Moreover, by definition of ¢f ; there exists a transformation he H'! such
that SUPye. s Jg(hA(v)) < cZ’ ;0. Now by the properties of the deformation n
and by (40) we get n(1,/() e Ay and supy g0 Ju(n(1, h(v)<cf; — 6 and
this is a contradiction. 1

Remark 5. By Step 2 of the proof of Theorem 4.1 we have that for all
qeZ\{0}, ee(0,1] and j e N there holds cg,j<1j + a(g), with lim,_,¢ a(e) =
0. Moreover, in Step 3 we proved that ¢{ ; > J;. Hence, we can conclude that

the critical values ¢{ ; tend to the eigenvalues J; when & tends to zero.
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