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Abstract

Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parameterized
by the positive integers), namely the cyclic branched coverings of the knot. In this paper, we give a formula
for the Casson–Walker invariants of these 3-manifolds in terms of residues of a rational function (which
measures the 2-loop part of the Kontsevich integral of a knot) and the signature function of the knot. Our
main result actually computes the LMO invariant of cyclic branched covers in terms of a rational invariant
of the knot and its signature function.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. History

One of the best known integer-valued concordance invariants of a knot K in an integer homology
sphere M is its (suitably normalized) �ignature function �(M;K) : S1 → Z de:ned for all complex
numbers of absolute value 1, see for example [18]. The �ignature function and its values at complex
roots of unity are closely related to a sequence (indexed by a natural number p, not necessarily
prime) of closed 3-manifolds, the p-fold cyclic branched coverings �p

(M;K), associated to the pair
(M;K) and play a key role in the approach to knot theory via surgery theory.

It is an old problem to :nd a formula for the Casson–Walker invariant of cyclic branched covers
of a knot. For two-fold branched covers, Mullins used skein theory of the Jones polynomial to
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show that for all knots K in S3 such that �2
(S3 ;K) is a rational homology 3-sphere, there is a linear

relation between the Casson–Walker invariant (see [30]) �(�2
(S3 ;K)), �−1(S3; K) and the logarithmic

derivative of the Jones polynomial of K at −1, [24]. A diEerent approach was taken by the :rst
author in [9], where the above-mentioned linear relation was deduced and explained from the wider
context of :nite-type invariants of knots and 3-manifolds.

For p¿ 2, Hoste, Davidow and Ishibe studied a partial case of the above problem for Whitehead
doubles of knots, [6,16,17].

However, a general formula was missing for p¿ 2. Since the map (M;K) → �(�p
(M;K)) is not a

concordance invariant of (M;K), it follows that a formula for the Casson invariant of cyclic branched
coverings should involve more than just the total p-�ignature �p (that is,

∑
!p=1 �!).

In [13], a conjecture for the Casson invariant of cyclic branched coverings was formulated. The
conjecture involved the total signature and the sums over complex roots of unity, of a rational
function associated to a knot. The rational function in question was the 2-loop part of a rational lift
Z rat of the Kontsevich integral of a knot.
In [12] the authors constructed this rational lift, combining the so-called surgery view of knots

(see [11]) with the full apparatus of perturbative :eld theory, formulated by the Aarhus integral and
its function-theory properties.

The goal of the present paper is to prove the missing formula of the Casson invariant of cyclic
branched coverings, under the mild assumption that these are rational homology spheres. In fact, our
methods will give a formula for the LMO invariant of cyclic branched coverings in terms of the
�ignature function and residues of the Z rat invariant.

Our main Theorem 1 will follow from a formal calculation, presented in Section 2.3. This illustrates
the relation between the formal properties of the Z rat invariant and the geometry of the cyclic
branched coverings of a knot.

1.2. Statement of the results

Let us call a knot (M;K) p-regular iE �p
(M;K) is a rational homology 3-sphere. We will call a

knot regular iE it is p-regular for all p. It is well-known that (M;K) is p-regular iE its Alexander
polynomial �(M;K) has no complex pth roots of unity.
Let Z denote the LMO invariant of a knot (reviewed in Section 2.1), and let rat denote the

twisting map of De:nition 4.5 and Liftp denote the lifting map of Section 5.1.

Theorem 1. For all p and p-regular pairs (M;K) we have

Z(�p
(M;K)) = e�p(M;K)�=16Liftp ◦ rat�p ◦ Z rat(M;K)∈A(�);

where �p = �−(p−1)=p ∈A(˜), �= Z(S3; unknot).

The proof of Theorem 1 is a formal computation, given in Section 2, that involves the rational
invariant Z rat and its function-theory properties, phrased in terms of operations (such as twisting
and lifting) on diagrams. In a sense, the Z rat invariant is de:ned by using properties of the univer-
sal abelian cover of knot complements. Since the universal abelian cover maps onto every cyclic
branched cover, it is not too surprising that the Z rat invariant appears in a formula for the LMO
invariant of cyclic branched covers. The presence of the signature function is a framing defect of
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the branched covers. It arises because we need to normalize the 3-manifold invariants by their val-
ues at a ±1-framed unknot. These values are some universal constants, whose ratio (for positively
versus negatively unit framed unknot) is given by the signature term. We do not know of a physics
explanation of the above formula in terms of anomalies.

Remark 1.1. Twisting and lifting are important operations on diagrams with beads that commute with
the operation of integration, see Propositions 4.11 and 5.8. For properties of the twisting operation,
see Lemma 4.8 in Section 4. For a relation between our notion of twisting and the notion of wheeling
(introduced in [1] and studied in [3,4]), see Section 7. For properties of the lifting operation, see
Section 5. Twisting and lifting are closely related to the magic formula for the Kontsevich integral
of a long Hopf link [4], and to rational framings, [3].

The next corollary gives a precise answer for the value of the Casson–Walker invariant of cyclic
branched covers as well as its growth rate (as p→ ∞), in terms of the 2-loop part of the Kontsevich
integral and the �ignature function. In a sense, the �ignature function and the 2-loop part of the
Kontsevich integral are generating function for the values of the Casson–Walker invariant of cyclic
branched covers.

Corollary 1.2. (a) For all p and (M;K) and p-regular, we have

�(�p
(M;K)) =

1
3 Res

t1 ; t2 ; t3
p Q(M;K)(t1; t2; t3) + 1

8 �p(M;K):

Note the di7erence between the normalization of Resp of [13, Section 1.5] and that of Section
5.2.

(b) For all regular pairs (M;K), we have

lim
p→∞

�(�p
(M;K))

p
=

1
3

∫
S1×S1

Q(M;K)(s) d�(s) +
1
8

∫
�s(M;K) d�(s);

where d� is the Haar measure.

In other words, the Casson invariant of cyclic branched coverings grows linearly with respect to
the degree of the covering, and the growth rate is given by the average of the Q function on a
torus and the total �ignature of the knot (i.e., the term

∫
�s(M;K) d�(s) above). The reader may

compare this with the following theorem of Fox–Milnor, [8] which computes the torsion of the :rst
homology of cyclic branched covers in terms of the Alexander polynomial, and the growth rate of
it in terms of the Mahler measure of the Alexander polynomial:

Theorem 2 (Fox and Milnor [8]): (a) Let �p(M;K) denote the order of the torsion subgroup of
H1(�

p
(M;K);Z). Assuming that (M;K) is p-regular, we have that

�p(M;K) =
∏
!p=1

|�(M;K)(!)|:

(b) If (M;K) is regular, it follows that

lim
p→∞

log �p(M;K)
p

=
∫
S1
log(|�(M;K)(s)|) d�(s):

In case (M;K) is not regular, (b) still holds, as was shown by Silver and Williams [27].
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1.3. Plan of the proof

In Section 2, we review the de:nition of Z rat, and we reduce Theorem 1 to Theorem 3 (which
concerns signatures of surgery presentations of knots) and Theorem 4 (which concerns the behavior
of the Z rat invariant under coverings of knots in solid tori).

Section 3 consists entirely of topological facts about the surgery view of knots, and shows
Theorem 3.

Sections 4 and 5 introduce the notion of twisting and lifting of diagrams, and study how they
interact with the formal diagrammatic properties of the Z rat invariant. As a result, we give a proof
of Theorem 4.
In Section 5.3, we prove Corollary 1.2.
Finally, we give two alternative versions of Theorem 1: in Section 6 in terms of an invariant of

branched covers that remembers a lift of the knot, and in Section 7 in terms of the wheeled rational
invariant Z rat; .

1.4. Recommended reading

The present paper uses at several points a simpli:ed version of the notation and the results of
[12] presented for knots rather than boundary links. Therefore, it is a good idea to have a copy of
[12] available.

2. A reduction of Theorem 1

In this section, we will reduce Theorem 1 to two theorems; one involving properties of the invariant
Z rat under lifting and integrating, and another involving properties of the �ignature function. Each
will be dealt with in a subsequent section.

2.1. A brief review of the rational invariant Z rat

In this section, we brieIy explain where the rational invariant takes values and how it is de:ned.
The invariant Z rat(M;K) is closely related to the surgery view of pairs (M;K) and is de:ned in several
steps explained in [11] and below, with some simpli:cations since we will be dealing exclusively
with knots and not with boundary links, [12, Remark 1.6]. In that case, the rational invariant Z rat

takes values in the subset

Agp;0(�loc) =B × Agp(�loc) of A0(�loc) =B × A(�loc);

where

• �Z = Z[Z] = Z[t±1], � = Q[Z] = Q[t±1] and �loc = {p(t)=q(t); p, q∈Q[t±1]; q(1) = ±1}, the
localization of � with respect to the multiplicative set of all Laurent polynomials of t that evaluate
to 1 at t = 1. For future reference, � and �loc are rings with involution t ↔ t−1, selected group
of units {tn | n∈Z} and ring homomorphisms to Z given by evaluation at t = 1.
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• Herm(�Z → Z) is the set of Hermitian matrices A over �Z, invertible over Z, and B(�Z → Z)
(abbreviated by B) denote the quotient of Herm(�Z → Z) modulo the equivalence relation
generated by the move: A ∼ B iE A⊕E1 =P∗(B⊕E2)P, where Ei are diagonal matrices with ±1
on the diagonal and P is either an elementary matrix (i.e., one that diEers from the diagonal at a
single nondiagonal entry) or a diagonal matrix with monomials in t in the diagonal.

• A(�loc) is the (completed) graded algebra over Q spanned by trivalent graphs (with vertex and
edge orientations) whose edges are labeled by elements in �loc, modulo the AS,IHX relations and
the multilinear and vertex invariance relations of [12, Figs. 3,4, Section 3]. The multiplication
is induced by the disjoint union of graphs. The degree of a graph is the number of its trivalent
vertices and the multiplication of graphs is given by their disjoint union. Agp(�loc) is the set of
group-like elements of A(�loc), that is elements of the form exp(c) for a series c of connected
graphs.

So far, we have explained where Z rat takes values. In order to recall the de:nition of Z rat, we
need to consider unitrivalent graphs as well and a resulting set Agp(˜X ; �) explained in detail in
Section 4. Then, we proceed as follows:

• Choose a surgery presentation L for (M;K), that is a null homotopic framed link L (in the sense
that each component of L is a null homotopic curve in ST ) in a standard solid torus ST ⊂ S3

such that its linking matrix is invertible over Z and such that STL can be identi:ed with the
complement of a tubular neighborhood of K in M .

• De:ne an invariant KZ rat(L) with values in Agp(˜X ; �) where X is a set in 1–1 correspondence
with the components of L.

• De:ne an integration
rat∫

dX : Agp(˜X ; �) → Agp;0(�loc) as follows. Consider an integrable
element s, that is one of the form

s= exp�

(
1
2

∑
i; j

xj

xi

Mij

)
� R (1)

with M ∈Herm(�Z→Z) and R a series of X -substantial diagrams (i.e., diagrams that do not
contain a strut component). Notice that M , the covariance matrix of s, and R, the X -substantial
part of s, are uniquely determined by s. We de:ne

rat∫
dX (s) =

M;

〈
exp�

(
−1
2

∑
i; j

xj

xi

M−1
ij

)
; R

〉
X

 :

In words,
rat∫
-integration is gluing the legs of the X -substantial graphs in X using the negative

inverse covariance matrix.
• Finally, de:ne

Z rat(M;K) =

rat∫
dX KZ rat(L)

c�+(B)+ c� (B)
−

∈Agp;0(�loc); (2)

where c± =
∫

dU KZ(S3; U±) are some universal constants of the unit-framed unknot U±.
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The following questions may motivate a bit the construction of Z rat:
Question: Why is Z rat(M;K) an invariant of (M;K) rather than of L?
Answer: Because for :xed (M;K) any two choices for L are related by a sequence of Kirby moves,

as shown by the authors in [11, Theorem 1]. Even though KZ rat(L)∈Agp(˜X ; �) is not invariant

under Kirby moves, it becomes so after
rat∫
-integration.

Question: Why do we need to introduce the
rat∫
-integration?

Answer: To make L → KZ rat(L) invariant under Kirby moves on L.
Question: Why do we need to consider diagrams with beads in �loc?

Answer: Because
rat∫
-integration glues struts by inverting the covariance matrix W . If W is a

Hermitian matrix over � which is invertible over Z, after
rat∫
-integration appear diagrams with beads

entries of W−1, a matrix de:ned over �loc.

Remark 2.1. Z stands for the Kontsevich integral of framed links in S3, extended to an invariant
of links in 3-manifolds by Le et al. [22], and identi:ed with the Aarhus integral in the case of
links in rational homology 3-spheres, [2, Part III]. In this paper, we will use exclusively the Aarhus

integral
∫

and its rational generalization
rat∫
, whose properties are closely related to function-theoretic

properties of functions on Lie groups and Lie algebras.
By convention, Z rat contains no wheels and no + terms. That is, Z rat(S3; U )=1. On the other hand,

Z(S3; U ) = +. Note that KZ rat(L) equals to the connect sum of copies of + (one to each component
of L) to Z rat(L).

2.2. Surgery presentations of cyclic branched covers

Fix a surgery presentation L of a pair (M;K). We begin by giving a surgery presentation of
�p
(M;K). Let L(p) denote the preimage of L under the p-fold cover ST → ST . It is well-known

that L(p) can be given a suitable framing so that �p
(M;K) can be identi:ed with S3

L(p) ,
see [5].

It turns out that the total p-�ignature can be calculated from the linking matrix of the link L(p).
In order to state the result, we need some preliminary de:nitions. For a symmetric matrix A over R,
let �+(A); �−(A) denote the number of positive and negative eigenvalues of A, and let �(A); �(A)
denote the signature and size of A. Obviously, for nonsingular A, we have �(A) = �+(A) − �−(A)
and �(A) = �+(A) + �−(A).

Let B (resp. B(p)) denote the linking matrix of the framed link L (resp. L(p)) in S3. We will show
later that

Theorem 3 (Proof in Section 3.2). With the above notation, we have

�p(M;K) = �(B(p)) − p�(B) and �(B(p)) = p�(B):
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2.3. A formal calculation

Assuming the existence of a suitable maps Liftp and rat, take residues in Eq. (2). We obtain that

Liftp ◦ rat� ◦ Z rat(M;K) = Liftp ◦ rat�

 rat∫
dX KZ rat(L)

c�+(B)+ c�−(B)
−



=Liftp

 rat∫
dX rat�

KZ rat(L)

c�+(B)+ c�−(B)
−

 by Theorem 4:11

=
Liftp

( rat∫
dX rat�

KZ rat(L)
)

cp�+(B)
+ cp�−(B)

−
by Remark 5:2

=
Liftp

( rat∫
dX rat�

KZ rat(L)
)

(
√

c+=c−)p�(B)(
√
c+c−)p�(B)

:

Adding to the above the term corresponding to the total p-�ignature �p(M;K) of (M;K), and using
the identity c+=c− = e−�=8 (see [3, Eq. (19), Section 3.4]) it follows that

Liftp ◦ rat�p ◦ Z rat(M;K)e�p(M;K)�=16 = Liftp ◦ rat�p ◦ Z rat(M;K)
(√

c+
c−

)−�p(M;K)

=
Liftp

( rat∫
dX rat�p

KZ rat(L)
)

(
√

c+=c−)�(B
(p))(

√
c+c−)�(B

(p))
by Theorem 3

=
Liftp

( rat∫
dX rat�p

KZ rat(L)
)

c�+(B
(p))

+ c�−(B(p))
−

=

∫
dX (p) KZ(L(p))

c�+(B
(p))

+ c�−(B(p))
−

by Theorem 4

= Z(�p
(M;K)) by Z ′s de:nition:

Theorem 4 (Proof in Section 5.1). For �p = �−(p−1)=p we have

Liftp

 rat∫
dX rat�p

KZ rat(L)

=
∫

dX (p) KZ(L(p)):
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This reduces Theorem 1 to Theorems 3 and 4, for a suitable Liftp map, and moreover, it shows
that the presence of the �ignature function in Theorem 1 is due to the normalization factors c± of
Z rat.

The rest of the paper is devoted to the proof of Theorems 3 and 4 for a suitable residue map
Liftp.

3. Three views of knots

This section consists entirely of a classical topological view of knots and their abelian invariants
such as �ignatures, Alexander polynomials and Blanch:eld pairings. There is some overlap of this
section with [11]; however for the bene:t of the reader we will try to present this section as
self-contained as possible.

3.1. The surgery and the Seifert surface view of knots

In this section, we discuss two views of knots K in integral homology 3-spheres M : the surgery
view, and the Seifert surface view.

We begin with the surgery view of knots. Given a surgery presentation L for a pair (M;K), let W
denote the equivariant linking matrix of L, i.e., the linking matrix of a lift L̃ of L to the universal
cover S̃T of ST . It is not hard to see that W is a Hermitian matrix. Recall the quotient B of the set
of Hermitian matrices, from Section 2.1. In [12, Section 2] it was shown that W ∈B depends only
on the pair (M;K) and not on the choice of a surgery presentation of it. In addition, W determines
the Blanch@eld pairing of (M;K). Thus, the natural map Knots → BP (where BP stands for the set
of Blanch@eld pairings) factors through an (onto) map Knots → B.

We now discuss the Seifert surface view of knots. A more traditional way of looking at the
set BP of knots is via Seifert surfaces and their associated Seifert matrices. There is an onto map
Knots → Sei, where Sei is the set of matrices A with integer entries satisfying det(A − A′) = 1,
considered modulo an equivalence relation called S-equivalence, [23]. It is known that the sets Sei
and BP are in 1–1 correspondence, see for example [23,29]. Thus, we have a commutative diagram

It is well-known how to de:ne abelian invariants of knots, such as the �ignature and the Alexan-
der polynomial �, using Seifert surfaces. Lesser known is a de:nition of these invariants using
equivariant linking matrices, which we now give.

De nition 3.1. Let

. : Herm(�Z → Z) → �Z
denote the (normalized) determinant given by .(W )=det(W )det(W (1))−1 (for all W ∈Herm(�Z →
Z)) and let

& : Herm(OZ → Z) → Maps(S1;Z)
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denote the function given by &z(W ) = �(W (z)) − �(W (1)). For a natural number p, let

&p : Herm(�Z → Z) → Z
be given by

∑
!p=1 &!(W ).

It is easy to see that . and & descend to functions on B. Furthermore, we have that

&p(W ) = �(W (T (p))) − p�(W (1));

where T (p) is a p-cycle p by p matrix, given by example for p= 4

T (4) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 : (3)

3.2. The clover view of knots

It seems hard to give an explicit algebraic map Sei → B although both sets may well be in 1–1
correspondence. Instead, we will give a third view of knots, the clover view of knots, which enables
us to prove Theorem 3.

Consider a standard Seifert surface � of genus g in S3, which we think of as an embedded disk
with pairs of bands attached in an alternating way along the disk:

Consider an additional link L′ in S3 \ �, such that its linking matrix C satis:es det(C) = ±1 and
such that the linking number between the cores of the bands and L′ vanishes. With respect to a
suitable orientation of the 1-cycles corresponding to the cores of the bands, a Seifert matrix of � is
given by

A=

[
Lxx Lxy

Lyx − I Lyy

]
;

where[
Lxx Lxy

Lyx Lyy

]
is the linking matrix of the closure of the above string-link in the basis {x1; : : : ; xg; y1; : : : ; yg}. Let
(M;K) denote the pair obtained from (S3; @�) after surgery on L′. With the notation

A ⊕ B=

[
A 0

0 B

]
we claim that



1256 S. Garoufalidis, A. Kricker / Topology 43 (2004) 1247–1283

Theorem 5. Given (�; L′) as above, there exists a 2g component link L in the complement of L′
such that:

(a) L ∪ L′ ⊂ ST is a surgery presentation of (M;K) in the sense of Section 2.2.
(b) The equivariant linking matrix of L ∪ L′ is represented by W (t) ⊕ C where

W (t) =

[
Lxx (1 − t−1)Lxy − I

(1 − t)Lyx − I (1 − t − t−1 + 1)Lyy

]
:

(c) Every pair (M;K) comes from some (�; L′) as above.

We will call such surgery presentations the clover view of knots.

Proof. (a) We will construct L using the calculus of clovers with two leaves introduced independently
by Goussarov and Habiro [14,15]; see also [10, Section 3]. Clovers with two leaves is a shorthand
notation (on the left) for framed links shown on the right of the following :gure:

Since clovers can be thought of as framed links, surgery on clovers makes sense. Two clovers are
equivalent (denoted by ∼ in the :gures) if after surgery, they represent the same 3-manifold. By
calculus on clovers (a variant of Kirby’s calculus on framed links) we mean a set of moves that
result to equivalent clovers. For an example of calculus on clovers, we refer the reader to [14,15]
and also [10, Sections 2,3].

In :gures involving clovers, L is constructed as follows:

Notice that at the end of this construction, L ∪ L′ ⊂ ST is a surgery presentation for (M;K).
(b) Using the discussion of [21, Section 3.4], it is easy to see that the equivariant linking matrix

of (a based representative of) L ∪ L′ is given as stated.
(c) Finally, we show that every pair (M;K) arises this way. Indeed, choose a Seifert surface �

for K in M and a link L′ ⊂ M such that ML′ = S3. The link L′ may intersect �′, and it may have
nontrivial linking number with the cores of the bands of �′. However, by a small isotopy of L′ in
M (which preserves the condition ML′ = S3) we can arrange that L′ be disjoint from �′ and that its
linking number with the cores of the bands vanishes. Viewed from S3 (i.e., reversing the surgery),
this gives rise to (�; L′) as needed.

The next theorem identi:es the Alexander polynomial and the signature function of a knot with
the functions . and & of De:nition 3.1.

Theorem 6. The maps composition of the maps . and & with the natural map Knots → B is given
by the Alexander polynomial and the �ignature function, respectively.
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Proof. There are several ways to prove this result, including an algebraic one, which is a computation
of appropriate Witt groups, and an analytic one, which identi:es the invariants with U (1) 6-invariants.
None of these proofs appear in the literature. We will give instead a proof using the ideas already
developed.

Fix a surgery presentation L ∪ L′ for (M;K), with equivariant linking matrix W (t) ⊕ C as in
Theorem 5. Letting

P =

[
(1 − t)I 0

0 I

]
⊕ I

it follows that

P(W (t) ⊕ C)P? =

([
(1 − t)I 0

0 I

]
⊕ I

)
(W (t) ⊕ C)

([
(1 − t−1)I 0

0 I

]
⊕ I

)

=

[
((1 − t) + (1 − t−1))Lxx ((1 − t) + (1 − t−1))Lxy − (1 − t)I

((1 − t) + (1 − t−1))Lyx − (1 − t−1)I ((1 − t) + (1 − t−1))Lyy

]
⊕ C

=((1 − t−1)A+ (1 − t)A′) ⊕ C:

Taking signatures for any t ∈ S1, t �= 1, it follows that

�(W (t)) + �(C) = �(W (t) ⊕ C)

= �(((1 − t−1)A+ (1 − t)A′) ⊕ C)

= �(((1 − t−1)A+ (1 − t)A′)) + �(C)

= �t(M;K) + �(C);

where the last equality follows from the de:nition of the �ignature, see [18, p. 289] and [25]. Thus,
�(W (t)) = �t(M;K). Since W (1) is a metabolic matrix, it follows that �(W (1)) = 0, from which it
follows that &(M;K) = �(M;K). Taking determinants rather than signatures in the above discussion,
it follows that .(M;K) = �(M;K).

Proof of Theorem 3. Fix a surgery presentation L ∪ L′ for (M;K), with equivariant linking matrix
W (t)⊕ C as in Theorem 5. Then the linking matrix B and B(p) of L ∪ L′ and L(p) ∪ L

′(p) are given
by W (1) ⊕ C and W (T (p)) ⊕ C ⊗ I with an appropriate choice of basis. The result follows using
De:nition 3.1 and Theorem 6.

Remark 3.2. An alternative proof of Theorem 3 can be obtained using the G-signature theorem to
the 4-manifold N obtained by gluing two 4-manifolds N1; N2 with Zp actions along their common
boundary @N1=@N2=�p

(M;K). Here N1 is the branched cover of D4 branched along D2 (obtained from
adding the handles of L to D4) and N2 is a 4-manifold obtained from a Seifert surface construction
of �p

(M;K).

Remark 3.3. An alternative proof of Theorem 5 can be obtained as follows. Start from a surgery
presentation of (M;K) in terms of clovers with three leaves, as was explained in [10, Section 6.4]
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and summarized in the following :gure:

Surgery on a clover with three leaves can be described in terms of surgery on a six component link
L′′′. It was observed by the second author in [19, Figure 3.1] that L′′′ can be simpli:ed via Kirby
moves to a four component link L′′. It is a pleasant exercise (left to the reader) to further simplify
L′′ using Kirby moves to the two component link L that appears in Theorem 5.

Remark 3.4. Though we will not make use of this, we should mention that the clover presentation
L of (S3; K) appears in work of Freedman [7, Lemma 1]. Freedman starts with a knot of Arf
invariant zero together with a Seifert surface and constructs a spin 4-manifold WK with boundary S3

K;0
(zero-surgery on K) by adding suitable 1- and 2-handles in the 4-ball. The intersection form of
WK , as Freedman computes in [7, Lemma 1] coincides with the equivariant linking matrix of L
of our Theorem 5 This is not a coincidence, in fact the clover view of knots, interpreted in a
four-dimensional way as addition of 1 and 2 handles to the 4-ball, gives precisely Freedman’s
4-manifold.

4. Twisting

In this section, we de:ne a notion of twisting � : Agp(?X∪k) → Agp(?X∪k) and its rational cousin
rat� :Agp(?X ; �loc) → Agp(?X ; �loc). Twisting (by elements of A(?)) is an operation on diagrams
with beads which is analogous to the “diEerential operator” action of A(?) on A(?) de:ned in
terms of gluing all legs of the diEerential operator to some of the legs of a diagram.

A special case of twisting is the operation of wheeling on diagrams, studied by [1,3,4]. For a
further discussion on the relation of twisting and wheeling, see Section 7.

4.1. Various kinds of diagrams

Manipulating the invariant Z rat involves calculations that take values in vector spaces spanned
by diagrams, modulo subspaces of relations. The notation is as follows: given a ring R with a
distinguished group of units U , and (possibly empty sets) X; Y ∪ T , D(↑X ; ?Y∪T ; R; U ) is the set of

• Uni-trivalent diagrams with skeleton ↑X , with symmetric univalent vertices labeled by Y ∪ T .
• The diagrams have oriented edges and skeleton and each edge is labeled by an element of R, such

that the edges that are part of the skeleton are labeled only by U . Moreover, the product of the
labels along each component of the skeleton is 1. Labels on edges or part of the skeleton will be
called beads.

A(↑X ; ?Y ;˜T ; R; U ) is the quotient of the free vector space over Q on D(↑X ; ?Y∪T ; R; U ), modulo
the relations of

• AS, IHX, multilinearity on the beads shown in [12, Fig. 3].
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• The Vertex Invariance Relation shown in [12, Fig. 4].
• The T -Cavored basing relations of [12, Appendix D].

Empty sets will be omitted from the notation, and so will U , the selected group of units of R.
For example, A(?Y ; R), A(R) and A(�) stands for A(↑�; ?Y ;˜�; R; U ), A(↑�; ?�;˜�; R; U ) and
A(↑�; ?�;˜�;Z; 1) respectively. Univalent vertices of diagrams will often be called legs. Diagrams
will sometimes be referred to as graphs. Special diagrams, called struts, labeled by a; c with bead
b are drawn as follows:

a

c
b:

oriented from bottom to top.
To further simplify notation, we will write A(?);A(↑) and A(S1) instead of A(?E);A(↑E) and

A(S1
E) where E is a set of one element.

A technical variant of the vector space A(↑X ; ?Y ;˜T ; R; U ) of diagrams is the set Agp(↑X ;
?Y ;˜T ; R; U ) which is the quotient of the set of group-like elements in A(↑X ; ?Y ;˜T ; R; U ) (that
is, exponential of a power series of connected diagrams) modulo the group-like basing relation
described in [12, Section 3.3].

There is a natural map

Agp(↑X ; ?Y ;˜T ; R; U ) → A(↑X ; ?Y ;˜T ; R; U ):

Finally, Agp;0 and A0 stand for B × Agp and B × Agp, respectively.

4.2. A review of Wheels and Wheeling

Twisting is closely related to the Wheels and Wheeling Conjectures introduced in [1] and sub-
sequently proven by [4]. See also [28]. The Wheels and Wheeling Conjectures are a good tool to
study structural properties of the Aarhus integral, as was explained in [3]. In our paper, they play a
key role in understanding twisting. In this section, we brieIy review what Wheels and Wheeling is
all about.

To warm up, recall that given an element �∈A(?) (such that � does not contain a diagram one
of whose components is a strut ↑) we can turn it into an operator (i.e., linear map):

�̂ :A(?) → A(?)

such that � acts on an element x by gluing all legs of � to some of the legs of x. It is easy to see
that [� � � = �̂ ◦ �̂, which implies that if the constant term of � is nonzero, then the operator � is
invertible with inverse �̂−1 = �̂−1.

Of particular interest is the following element:

+ = exp

( ∞∑
n=1

b2n 2n

)
∈A(?);

where 2n is a wheel with 2n legs and
∞∑
n=1

b2nx2n =
1
2
log

sinh x=2
x=2

:
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The corresponding linear maps

+̂−1; +̂ :A(?) → A(?)

are called, respectively, the wheeling and the unwheeling maps and are denoted by x → x and x →
x

−1

, respectively. Due to historical reasons dating back to the days in Aarhus (where wheeling was
discovered) and also due to Lie algebra reasons, wheeling was de:ned to be +̂−1 and not +̂.
Recall the symmetrization map > : A(?) → A(↑) which sends an element x∈A(?) to the average

of the diagrams that arise by ordering the legs of x on a line. > is a vector space isomorphism (with
inverse �) and can be used to transport the natural multiplication on A(↑) (de:ned by joining
two skeleton components of diagrams → ◦ → one next to the other to obtain a diagram on a
skeleton component →) to a multiplication on A(?) which we denote by #. There is an additional
multiplication � on A(?), de:ned using the disjoint union of graphs.
The Wheeling Conjecture states that the unwheeling isomorphism +̂ : (A(˜k);�) → (A(˜k); #)

interpolates the two multiplications on A(˜k). Namely, that for all x; y∈A(˜k), we have

+̂(x � y) = +̂(x) # +̂(y):

The Wheels Conjecture states that

Z(S3; unknot) = >(+):

The long Hopf link formula states that

Z

S3; k

x = +(k)
x

ek ∈A(↑x ˜k):

Here and below, if x∈A(?), then x(h)∈A(?h) denotes the diagram obtained from x by replacing
the color of the legs of x by h.
It can be shown that the Wheels and Wheeling Conjectures are equivalent to the long Hopf link

formula. In [4] the Wheels and Wheeling Conjectures and the long Hopf link formula were all
proven. The identity 1 + 1 = 2 (that is, doubling the unknot component of the long Hopf link is a
tangle isotopic to connecting sum twice the long Hopf link along the vertical strand), together with
the long Hopf link formula imply the following Magic Formula:

+(k)+(h)

x

eh

ek
= +(k + h)

x

ek+h ∈A(↑x;˜k;h): (4)

Before we end this section, we should mention that for �∈A(?), the operator �̂ can be de:ned
for diagrams whose legs are colored by X ∪{k} (abbreviated by X ∪ k), where k �∈ X , by gluing all
legs of � to some of the k-colored legs of a diagram. Furthermore, �̂ preserves Y -Iavored basing
relations for Y ⊂ X ∪k. In addition, if � is group-like, then �̂ sends group-like elements to group-like
elements. Note :nally that A(?) =A(˜); thus the operator �̂ can be de:ned for �∈A(˜).

4.3. Twisting

Throughout this section, X denotes a (possibly empty) set disjoint from the two-element set {k; h}.
Recall that given x∈X and two diagrams �; �∈A(?X ) with k and l x-colored legs, respectively,
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the notation

〈�; �〉{x} ∈A(?X−{x})

means either zero (if k �= l) or the sum of diagrams obtained by gluing all x-colored legs of � with
the x-colored legs of �. This de:nition can be extended to linear combination of diagrams, as a
bilinear symmetric operation, and can be further extended to an operation of gluing Y -colored legs,
for any Y ⊂ X .

Remark 4.1. We will often write

〈�(y); �(y)〉Y
for the above operation, to emphasize the Y -colored legs of the diagrams. Warning: In [1,12], the
authors used the alternative notation 〈�(@y); �(y)〉Y for the above operation.

Given a diagram s∈A(?X∪k), the diagram �k→k+h(s)∈A(?X∪k;h) denotes the sum of relabelings
of legs of s marked by k by either k or h.

De nition 4.2. For a group-like element �∈A(?), we de:ne a map

� : A(?X∪k) → A(?X∪k)

by

�(s) = 〈�k→k+h(s)+(h)−1; �(h)〉h:
It is easy to see that � maps group-like elements to group-like elements and maps Y -Iavored

basing relations to Y -Iavored basing relations for Y ⊂ X ∪ k; the latter follows from a “sweeping
argument”.

The following lemma summarizes the elementary tricks about the operators �̂ that are very
useful.

Lemma 4.3. The operation 〈·; ·〉X of gluing X -colored legs of diagrams satis@es the following iden-
tities:

〈A(x); B(x) � C(x)〉X = 〈B̂ A(x); C(x)〉X = 〈A(x + x′); B(x) � C(x′)〉X;X ′

where X ′ is a set in 1–1 correspondence with the set X .

In fact, twisting can be expressed in terms of the above action.

Lemma 4.4. We have that

� =
[+̂−1(�);

� ◦ � = �#�:
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Proof. Recall that �̂(y) = 〈�(h); y(k + h)〉h = 〈y(k + h); �(h)〉h. For the :rst part, we have

�(x) = 〈x(k + h)+(h)−1; �(h)〉h
= 〈x(k + h); (+̂−1(�))(h)〉h by Lemma 4:3

= [+̂−1(�)(x) by above discussion:

For the second part, we have

� ◦ � =
[+̂−1(�) ◦ [+̂−1(�)

= [+̂−1(�) � +̂−1(�)

= [+̂−1(�#�) by wheeling

= �#�:

We now de:ne a rational version

�t→teh : A
gp(?X ; �loc) → Agp(?X∪h; �loc)

of the map �k→k+h. The idea is that we substitute teh for t (where t and h do not commute) and
then replace eh by an exponential of h-colored legs. This was explained in [12, Section 3.1] using
the notion of the Cohn localization of the free group in two generators. We will not repeat the
explanation of [12] here, but instead use the substitution map freely. The reader may either refer
to the above mentioned reference for a complete de:nition of the �t→teh map, or may compromise
with the following property of the �t→teh map:

�t→teh( p(t)=q(t)) =
∞∑
n=0

p(teh)=q(t)((q(t) − q(teh))=q(t))n;

where p; q∈Q[t±1] and q(1) = ±1.

De nition 4.5. For a group-like element �∈Agp(?), we de:ne a map

rat� : Agp;0(?X ; �loc) → Agp;0(?X ; �loc)

by

rat� (M; s) = (M; 〈 (M (teh)M (t)−1)�t→teh(s); �(h)〉h);
where

 (A) = exp
(− 1

2 tr log(A)
)
:

Remark 4.6. Here and below, we will be using the notation �t→ek (s) and s(t → ek) to denote the
substitution t → ek .

The motivation for this rather strange de:nition comes from the proof of Lemma 4.9 and Theorem
4.11 below.
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Lemma 4.7. rat� descends to a map:

Agp;0(˜X ; �loc) → Agp;0(˜X ; �loc)

Proof. We need to show that the group-like basing relations are preserved. With the notation and
conventions of [12, Section 3], there are two group-like basing relations �gp

1 and �gp
2 on diagrams. It

is easy to see that the �gp
1 basing relation is preserved. The �gp

2 relation (denoted by
�gp
2∼) is generated

in terms of a move of pushing t on all legs (of some :xed color x) of a diagram. Given a diagram
s(x) with some x-colored legs, let s(xt) denote the result of pushing t on every x-colored leg of s(x).

In order to show that the �gp
2 relation is preserved, we need to show that rat� (M; s(xt))

�gp

∼ rat� (M; s(x)).
Ignoring the matrix part (i.e., setting M the empty matrix), we can compute as follows:

rat� (s(xt)) = 〈�t→teh(s)(�t→teh(xt)); �(h)〉h
= 〈�t→teh(s)(xte

h′
); �(h+ h′)〉h;h′ by Lemma 4:3

�gp
2∼ 〈�t→teh(s)(xe

h′
); �(h+ h′)〉h;h′

�gp
1∼ 〈�t→teh(s)(x); �(h+ h′)〉h;h′

= 〈�t→teh(s)(x); �(h)〉h;h′

= rat� (s(x)):

The same calculation can be performed when we include the matrix part, to conclude that rat�

(M; s(xt))
�gp

∼ rat� (M; s(x)).

The next lemma about rat should be compared with Lemma 4.8 about .

Lemma 4.8. We have

rat� ◦ rat� = rat�#�:

Proof. Observe that

〈eheh′
; �(h) � �(h′)〉h;h′ = >(�)#>(�) = 〈eh; �(>(�)#>(�))〉h: (5)

In [12, Section 3], it was shown that the “determinant” function  is multiplicative, in the sense
that (for suitable matrices A; B) we have

 (AB) =  (A) (B): (6)

Let us de:ne pr :Agp;0 → Agp to be the projection (M; s) → s. It suWces to show that pr ◦ rat� ◦
rat� = pr ◦ rat�#�. We compute this as follows:

pr ◦ rat�#�(M; s) = 〈 (M (teh)M (t)−1)�t→teh(s); (�#�)(h)〉h
= 〈 (M (teheh

′
)M (t)−1)�t→teheh′ (s); �(h) � �(h′)〉h;h′ by (5)
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= 〈〈 (M (teheh
′
)M (teh

′
)−1) (M (teh

′
)M (t)−1)

×�t→teheh′ (s); �(h)〉h; �(h′)〉h′ by (6)

= 〈 (M (teh
′
)M (t)−1)�t→teh′ 〈 (M (teh)M (t)−1)�t→teh(s); �(h)〉h; b(h′)〉h′

= 〈 (M (teh
′
)M (t)−1)�t→teh′ ◦ pr ◦ rat� (M; s); �(h′)〉h′

=pr ◦ rat� (rat� (M; s)):

Since �#� = �#�, the result follows.

Our next task is to relate the two notions ; rat of twisting. In order to do so, recall the map

Hairk : Agp(˜X ; �loc) → Agp(˜X∪k)

of [12, Section 7.1] de:ned by the substitution

t →
∞∑
n=0

1
n!

n h-labeled legs

and extended to a map

Hair+k : Agp;0(˜X ; �loc) → Agp(˜X∪k)

by

Hair+k (M; s) =  (M (ek)M (1)−1) � Hairk(s) � +(k):

Then,

Lemma 4.9. The following diagram commutes:

Agp(?) × Agp;0(˜X ; �loc)
rat−−−→ Agp;0(˜X ; �loc)

Id×Hair+k

! ! Hair+k

Agp(?) × A(˜X∪k)
−−−→ A(˜X∪k)

Proof. For �∈Agp(?) and (M; s)∈Agp;0(˜X ; �loc), we have

(Hair+k (M; x)) = 〈Hair+k+h(M; x)+−1(h); �(h)〉h
= 〈+(k + h) (M (ek+h)M (1)−1)x(t → ek+h)+−1(h); �(h)〉h
= 〈+(k + h) (M (ek+h)M (1)−1)x(t → ek+h); +̂−1(�)(h)〉h by Lemma 4:3

= 〈+(k)+(h) (M (ekeh)M (1)−1) x(t → ekeh); +̂−1(�)(h)〉h by (4)

= 〈+(k) (M (ekeh)M (1)−1)x(t → ekeh); (+̂ +̂−1)(�)(h)〉h by Lemma 4:3

= 〈+(k) (M (ekeh)M (1)−1) x(t → ekeh); �(h)〉h
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=+(k) (M (ek)M (1)−1)�t→ek 〈 (M (teh)M (t)−1) x(t → teh); �(h)〉h by (6)

=+(k)  (M (ek)M (1)−1)�t→ekpr ◦ rat� (M; x) by de:nition of rat

=Hair+k (
rat
� (s)):

The above lemma among other things explains the rather strange de:nition of rat.

Corollary 4.10. For all �∈Agp(?) we have

Hair+ ◦ rat� ◦ Z rat(M;K) = � ◦ Z(M;K)∈Agp(?):

Proof. It follows from the above lemma, together with the fact that

Hair+ ◦ Z rat(M;K) = Z(M;K)∈Agp(?);

shown in [12, Theorem 1.3].

The next proposition states that rat intertwines (i.e., commutes with) the integration map
rat∫
.

Proposition 4.11. For all X ′ ⊂ X and �∈Agp(?), the following diagram commutes:

Agp;0(˜X ; �loc)
rat∫

dX ′
−−−→ Agp;0(˜X−X ′�loc)

rat�

! ! rat�

Agp;0(˜X (p))
rat∫
dX ′

−−−→ Agp;0(˜X−X ′�loc)

with the understanding that
rat∫

is partially de@ned for X ′-integrable elements.

Proof. This is proven in [12, Appendix E] and repeated in Appendix A.

5. Lifting

5.1. The de@nition of the Liftp map

The goal of this section is to de:ne the map Liftp and prove Theorem 4. We begin with a
somewhat general situation. Consider a diagram D with skeleton ↑X , whose edges are labeled by
elements of �. For convenience, we express this by a diagram where there is a separate bead for
each t±1. D consists of a solid part ↑X and a dashed part, that each have beads on them. The skeleton
X (p) is de:ned by replacing each solid edge of ↑X by a parallel of p solid edges. The skeleton X (p)

has beads t±1 and the connected components of X (p)−(beads) are labeled by Zp according to the



1266 S. Garoufalidis, A. Kricker / Topology 43 (2004) 1247–1283

:gure shown below (for p= 4)

There is a projection map Bp :X (p) → X . A lift of a diagram D on X is a diagram on X (p) whose
dashed part is an isomorphic copy of the dashed part of D, where the location on X (p) of each
univalent vertex maps under Bp to the location of the corresponding univalent vertex on X . A
Zp-labeling of a diagram is an assignment of an element of Zp to each of the dashed or solid edges
that remain once we remove the beads of a diagram. A Zp-labeling of a diagram on X (p) is called
p-admissible if (after inserting the beads) it locally looks like

Now, we de:ne Liftp(D) to be the sum of all diagrams on X (p) that arise, when all the labels and
beads are forgotten, from all p-admissible labelings of all lifts of D. As usual, the sum over the
empty set is equal to zero.

Remark 5.1. Here is an alternative description of Liftp(D; �) for a labeling � of the edges of D by
monomials in t. Place a copy of (D; �) in ST in such a way that a bead t corresponds to an edge
going around the hole of ST , as in [20, Section 2.1]. Look at the p-fold cover Bp : ST → ST , and
consider the preimage Bp(D; �) ⊂ ST ⊂ S3 as an abstract linear combination of diagrams without
beads. This linear combination of diagrams equals to Liftp(D; �).

Remark 5.2. Notice that in case D has no skeleton, b connected components, and all the beads of
its edges are 1, then Liftp(D) = pbD.

Lemma 5.3. The above construction gives a well-de@ned map

Liftp :A(↑X ; �) → A(↑X (p)):

Proof. We need to show that the vertex invariance relations [12, Fig. 4] are preserved. There are
two possibilities: the case that all three edges in a vertex invariance relation are dashed, and the
case that two are part of the skeleton and the remaining is dashed.

In the :rst case, the vertex invariance relation is preserved because there is an obvious correspon-
dence between lifts that admit an admissible labeling.
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In the second case, the skeleton looks like (for p= 4, with the convention that Yt = t−1)

and again there is a correspondence between p-admissible labelings of lifts of the two sides of the
equation.

There is a symmetrized version

A(?X ; �) → A(?X (p))

of the Liftp map, de:ned as follows: a lift of a diagram D∈A(?X ; �) is a diagram in A(?X (p) ; �)
which consists of the same dashed part as D, with each univalent vertex labeled by one of the p
copies of the label of the univalent vertex of D that it corresponds to. There is an obvious notion
of an admissible labeling of a diagram in A(?X (p) ; �), which is a labeling satisfying the conditions
above, and also

Then, Liftp(D) is de:ned to be the sum of all diagrams on X (p) that arise, when all the labels and
beads are forgotten, from p-admissible labelings of lifts of D.

Lemma 5.4. (a) Liftp sends group-like elements to group-like elements and induces maps that @t
in the commutative diagram

Agp(↑X ; �)
�−−−→ Agp(?X ; �) −−−→ Agp(˜X ; �)

Liftp

! ! Liftp

! Liftp

Agp(↑X (p)) �−−−→ Agp(?X (p)) −−−→ Agp(˜X (p)):

(b) Liftp can be extended to a map Agp(˜X ; �
(p)
loc ) → Agp(˜X (p)), where �(p)

loc is the subring of
�loc that consists of all rational functions whose denominators do not vanish at the complex pth
root of unity.

Proof. (a) Let us call an element of A(↑X ; �) special if the beads of its skeleton equal to 1. Using
the vertex invariance relations, it follows that A(↑X ; �) is spanned by special elements.

It is easy to see that Liftp maps group-like elements of A(?X ; �) to group-like elements, and
special group-like elements in A(↑X ; �) to group-like elements in A(↑X ; �). Further, it is easy to
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show that the diagram

A(↑X ; �)
�−−−→ A(?X ; �)

Liftp

! ! Liftp

A(↑X (p)) �−−−→ A(?X (p))

commutes when evaluated at special elements of A(↑X ; �). From this, it follows that the left square
diagram of the lemma commutes.

For the right square, we need to show that the X -Iavored basing relations in Agp(?X ; �) are
mapped to X (p)-Iavored basing relations in Agp(?X (p)). There are two kinds of X -Iavored basing
relations, denoted by �gp

1 and �gp
2 in [12, Section 3]. First, we consider �gp

2 . Take two elements s1; s2

such that s1
�gp
2∼s2; we may assume that s2 is obtained from pushing t to each of the x-colored legs

of s1, for some x∈X . Corresponding to a diagram D1 appearing in s1, there exists a diagram D2 of
s2 obtained by pushing t onto each of the x-colored legs of D1. For example,

There is a 1–1 correspondence between admissible p-colorings of B−1
p (D1) and those of B−1

p (D2)
(if we cyclically permute at the same time the labels x(0); : : : ; x(p−1)), shown as follows:

Applying �gp
2 basing relations, the two results agree. In other words, Liftp(D)

�gp
2∼Liftp(D′).

Now, consider the case of �gp
1 , (in the formulation of [12, Section 3]). Given s1

�gp
1∼s2, there exists

an element s∈Agp(?X∪@h; �) with some legs labeled by @h, such that

s1 = con{h}(s);

s2 = con{h}(s(x → xeh))

for some x∈X , where con{h} is the operation that contracts all @h legs of a diagram to all h legs
of it. Now observe that

Liftp(s2) = Liftp(con{h}(s(x → xeh)))

= con{h(0) ; :::; h(p−1)} ◦ Liftp(s(x → xeh))

= con{h(0) ; :::; h(p−1)} ◦ Liftps(x(0) → x(0)eh
(0)
; : : : ; x(p−1) → x(p−1)eh

(p−1)
)
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�gp
1∼ Liftp(s(h → 0))

= Liftp(s1):

(b) Notice :rst that Liftp can be de:ned when beads are labeled by elements of C[t]=(tp − 1).
There is an isomorphism �(p)

loc =(t
p − 1) ∼= C[t]=(tp − 1) over C which gives rise (after composition

with the projection �(p)
loc → �(p)

loc =(t
p − 1)) to a map

chp :�
(p)
loc → C[t]=(tp − 1): (7)

Using this map, we can de:ne Liftp as before and check that the relations are preserved.

Remark 5.5. Liftp can also be extended to a map

Liftp :Agp;0(˜X ; �
(p)
loc ) → Agp(˜X (p))

by forgetting the matrix part, i.e., by Liftp(M; s) = Liftp(s).

Let L be a surgery presentation of a pair (M;K) as in Section 2.2 and let L(p) be the lift of L
to the p-fold cover of the solid torus, regarded as a link in S3. The following proposition is a key
point.

Proposition 5.6. With the above notation, we have

KZ(L(p)) = Liftp ◦ rat�p ◦ KZ rat(L):

Proof. We begin by recalling :rst how Z rat(L) is de:ned, following [12, Section 4]. The de:nition is
given by representing L in terms of objects called sliced crossed links in a solid torus. Sliced crossed
links are planar tangles of a speci:c shape that can be obtained from a generic height function of
a link L in a standard solid torus ST . Each component of their corresponding link in ST is marked
by a cross (×). Given a null homotopic link L in ST , choose a sliced crossed link representative
(T0; T1; T2) where T0 consists of local minima, T2 consists of local maxima and T1, thought of as a
tangle in I × I , equals to Iw � D. Here w, the gluing site, is a sequence in ↑ and ↓, and Yw is the
reverse sequence (where the reverse of is ).

For example, for w= ↓↑, we may have the following presentation of a knot in ST :

(and where the sliced crossed link is a tangle in an annulus). For typographical reasons, we will
often say that (T0; T1; T2) is the closure of the tangle D.
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Consider a representation of a null homotopic link L in ST by (T0; T1; T2) as above. Recall that the
fractional powers of � in the algebra (A(˜); #) are de:ned as follows: for integers n; m, �n=m ∈A(˜)
is the unique element whose constant term is 1 that satis:es (�n=m)m = �n.

Then, Z rat(L) is de:ned as the element of Agp(˜X ; �) obtained by composition of

(Z(T0); I Yw(1) ⊗ �w(�1=2); I Yw(1) ⊗ Iw(t); I Yw(1) ⊗ Z(D); I Yw(1) ⊗ �w(�1=2); Z(T2));

where Iw(a) means a skeleton component that consists of solid arcs with orientations according to
the arrows in w, with a (resp. Ya) placed on each ↑ (resp. ↓), and �w is the comultiplication obtained
by replacing a solid segment ↑ by a w-parallel of it. After cutting the sliced crossed link at the
crosses (×), we consider the resulting composition of diagrams as an element of Agp(˜X ; �). We
claim that

Lemma 5.7. rat� ◦ Z rat(L)∈Agp(˜X ; �) equals to the element obtained by composition of

(Z(T0); I Yw(1) ⊗ �w(�1=2); I Yw(1) ⊗ �w(�); I Yw(1) ⊗ Iw(t); I Yw(1) ⊗ Z(D); I Yw(1) ⊗ �w(�1=2); Z(T2)):

Proof. This follows easily from the de:nition of the rat� using the fact that the beads of the diagrams
in KZ rat(L) appear only at the gluing site.

In short, we will say that rat� ◦ Z rat(L) is obtained by the closure of the following sequence:

(�w(�1=2); �w(�); Iw(t); Z(D); �w(�1=2));

which we will draw schematically as follows:

Going back to the proof of Proposition 5.6, using �p= �−(p−1)=p, and the group-like basing relations
on Agp(˜X ; �), it follows that we can slide and cancel the powers of �. Thus the closure of the
above sequence for �= �p, equals to the following sequence:

Now, we calculate Liftp of the above sequence. Observe that both Z(D) and �1=p are exponentials
of series of connected diagrams with symmetric legs whose dashed graphs are not marked by any
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nontrivial beads. Thus, one can check that Liftp is the closure of the following diagram (there are
p copies displayed):

The proposition follows for Z . The extension to the stated normalization KZ is trivial.

The next proposition states that Liftp intertwines the integration maps
rat∫

and
∫
.

Proposition 5.8. The following diagram commutes:

Agp(˜X ; �loc)
rat∫

dX−−−→ Agp(�loc)

Liftp

! ! Liftp

Agp(˜X (p))
∫

dX (p)

−−−→ Agp(�)

Since
rat∫
,
∫

and Liftp are partially de:ned maps (de:ned for X -integrable elements and for di-
agrams with nonsingular beads when evaluated that complex pth roots of unity), the maps in the
above diagram should be restricted to the domain of de:nition of the maps, and the diagram then
commutes, as the proof shows.

Proof of Proposition 5.8. Consider a pair (M; s) where s is given by

s= exp

(
1
2

∑
i; j

xi

xj

Wij(t)

)
� R:

If we write

Liftp(s) = exp

1
2

∑
i; j

p−1∑
r=0

p−1∑
s=0

x(s)j

↑
x(r)i

W (p)
(i; r); ( j; s)

 � R′;

then, observe that

Liftp

(
xi

xj

Wij(t)

)
=

p−1∑
r=0

p−1∑
s=0

x(s)j

↑
x(r)i

W (p)
(i; r); ( j; s);

Liftp(R) = R′:
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Recall the map chp :�
(p)
loc → C[t]=(tp − 1) of Equation (7). It follows from the above that for

any r we have

chp(Wij(t)) =
p−1∑
s=0

W (p)
(i; r); ( j; s)t

s−r :

We wish to determine chp(Wij(t)−1), which we write as

chp(Wij(t)−1) =
p−1∑
s=0

W (p)′

(i; r); ( j; s)t
s−r :

Since .ij =
∑

k WikW−1
kj , we can solve for W (p)′

(i; r); ( j; s) in terms of W (p)
(i; r); ( j; s) and obtain that

Liftp

(
xi

xj

W−1
ij (t)

)
=

p−1∑
r=0

p−1∑
s=0

x(s)j

↑
x(r)i

(W (p))−1
(i; r); ( j; s):

Observe further the following consequence of the “state-sum” de:nition of Liftp: for diagrams
D1; D2 in A(?X ; �loc), we have that

Liftp(〈D1; D2〉X ) = 〈Liftp(D1);Liftp(D2)〉X (p) ∈A(�):

Now, we can :nish the proof of the proposition as follows:

Liftp

 rat∫
dX (s)

=Liftp

(〈
exp

(
−1
2

∑
i; j

xi

xj

W−1
ij (t)

)
; R

〉)
X

=

〈
Liftp

(
exp

(
−1
2

∑
i; j

xi

xj

W−1
ij (t)

))
;Liftp(R)

〉
X (p)

=

〈
exp

−1
2

∑
i; j

p−1∑
r=0

p−1∑
s=0

x(s)j

↑
x(r)i

(W (p))−1
(i; r); ( j; s)

 ; R′
〉

X (p)

=
∫

dX (p) Liftp(s):

Proof of Theorem 4. It follows immediately from Propositions 5.6 and 5.8.

5.2. The connection of Liftp with modp residues

Rozansky [26] considered the following vector space AR to lift the Kontsevich integral,

AR = (⊕G AR
G; loc · G)=(AS; IHX);

where the sum is over trivalent graphs G with oriented vertices and edges, and where

AR
G; loc = (Q[exp(H 1(G;Z))]loc)G
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is the G-invariant subring of the (Cohn) localization of the group-ring Q[exp(H 1(G;Z))] with respect
to the ideal of elements that augment to ±1. We will think of AR

G; loc as the coeWcients by which a
graph G is multiplied.

Note that Q[exp(H 1(G;Z))] can be identi:ed with the ring of Laurent polynomials in b1(G)
variables, where b1(G) is the :rst betti number of G. Thus �G; loc can be identi:ed with the ring of
rational functions p(s)=q(s) in b1(G) variables {s} for polynomials p and q such that q(1) = ±1.
Let �(p)

G; loc denote the subring of �G; loc that consists of functions p(s)=q(s) as above such that q,
evaluated at any complex pth roots of unity is nonzero. In [13] (see also [21]) the authors considered
a map:

Resp :A
R; (p)
G; loc → C

de:ned by

Resp

(
f(s)
g(s)

)
= p>(G)

∑
!p=1

f(!)
g(!)

;

where the sum is over all b1(G)-tuples (!1; : : : ; wb1(G)) of complex pth root of unity and where >(G)
is the Euler characteristic of G. This gives rise to a map Resp :AR → A(�).

Similarly, we have that

A(�loc) = (⊕G AG(�loc) · G)=(Relations);

where AG(�loc) is the G-invariant subspace of the vector space spanned by � : Edge(G) → �loc
modulo the Relations of Garoufalidis and Kricker [12, Figs. 2,3] which include the AS,IHX relations,
multilinearity on the beads of the edges and the Vertex Invariance Relation. An important diEerence
between AR and A(�loc) is the fact that AR

G; loc is an algebra whereas AG(�loc) is only a vector
space. Nevertheless, there is a map �R;G :AG(�loc) → AR

G; loc de:ned by

�R;G(�) =
1

Aut(G)

∑
�∈Aut(G)

∏
e∈Edge(G)

�e(t�(e))

where �=(�e(t)) : Edge(G) → �loc. The maps �R;G assemble together to de:ne a map �R :A(�loc) →
AR.

For example, consider the trivalent graph � whose edges are labeled by �; �; D∈�loc as shown
below

with automorphism group Aut(�) = Sym2 × Sym3 that acts on the algebra of rational functions
in three variables by permuting the variables and by inverting all variables simultaneously. Then,
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we have

�R;�(�; �; D) =
1
12

∑
�∈Aut(�)

�(t�(1))�(t�(2))D(t�(3))∈Q(t1; t2; t3):

We :nish by giving a promised relation between Liftp and Resp for p-regular rational functions:

Theorem 7. The following diagram commutes:

A(�(p)
loc )

�R−−→ AR

Liftp ↘ ↙ Resp

A(�):

Proof. Using the properties of Liftp and Resp it suWces to consider only trivalent graphs G with
edges decorated by elements in �, and in fact only those graphs whose edges are decorated by
powers of t. Moreover, since both Liftp and Resp satisfy the push relations, it suWces to consider
graphs whose edges along any forest are labeled by 1.

Fix a trivalent graph G with ordered edges ei decorated by �=(tm1 ; : : : ; tm3n). We begin by giving
a description of the algebra AR; loc in terms of local coordinates as follows. Choose a maximal
forest T and assume, without loss of generality, that the edges of G \ T are e1; : : : ; eb where b =
b1(G). Each edge ei corresponds to a 1-cocycle xi ∈C1(G;Q). Since H 1(G;Z) = Ker(C1(G;Z) →
C0(G;Z)), it follows that H 1(G;Z) is a (free) abelian group with generators x1; : : : ; x3n and relations∑

j : v∈@ej Kj; vxj = 0 for all vertices v of G and for appropriate local orientation signs Kj;v = ±1. It
follows that

Q[H 1(G;Q)] =
Q[t±1

1 ; : : : ; t±1
3n ](∏

j : v∈@ej tKj; vj = 1 for v∈ vertex(G)
) =Q[t±1

1 ; : : : ; t±1
b ];

where ti = exi . This implies that AR
G; loc is a G-invariant subalgebra of Q(t1; : : : ; tb).

Now, �R;G(�) is obtained by symmetrizing over G-automorphisms of the monomial tm1
1 : : : tmb

b . We
may assume that mi ∈ {0; : : : ; p − 1} for all i. Thus,

Resp(t
m1
1 : : : tmb

b ) =
pb0(G)

pb

∑
!p
1 =1

!m1
1

 : : :

∑
!p

b=1

!mb
b

= pb0(G).m1 ;0 : : : .mb;0:

On the other hand, an admissible p-coloring of (G; �) necessarily assigns the same color to each
connected component of G and then the consistency relations along the edges ei for i=1; : : : ; b show
that an admissible coloring exists only if mi=0, for i=1; : : : ; b, and in that case there are p admissible
colorings for each connected component of G. Thus, the number of admissible p-colorings is pb

0(G).
After symmetrization over G, the result follows.

The reader is encouraged to compare the above proof with [21, Lemmas 3.4.1, 3.4.2].
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5.3. The degree 2 part of Z rat

In this section, we prove Corollary 1.2. The following lemma reformulates where Q = Z rat
2 takes

values. Consider the vector space

�� = ⊗3�loc=((f; g; h) = (tf; tg; th); Aut(�))

Aut(�)=Sym3×Sym2 acts on ⊗3�loc by permuting the three factors and by applying the involution
of �loc simultaneously to all three factors.

Lemma 5.9. Q takes values in �� · �.

Proof. There are two trivalent graphs of degree 2, namely � and . Label the three oriented edges
of ei for i=1; 2; 3 where e2 is the label in the middle (nonloop) edge of . For f; g; h∈�loc,
let � (f; g; h)∈ � (�loc) · denote the corresponding element.

For p; q∈�, f; h∈�loc, we write q=
∑

k ak tk and compute

� (f;p; h) = �(f; (p=q):q; h)

=
∑
k

�(f; (p=q)aktk ; h) by multilinearity

=
∑
k

�(f;p=q;ak tkht−k) by the vertex invariance relation

= �(f;p=q; q(1)h):

Thus, � (�loc) is spanned by �(f;p; h) for f;p; h as above. Applying the above reasoning once
again, it follows that � (�loc) is spanned by �(f; 1; h) for f; h as above.
Applying the IHX relation

it follows that the natural map �� → A2(�loc) is onto. It is easy to see that it is also 1–1, thus a
vector space isomorphism.

Remark 5.10. In fact, one can show that Q takes values in the abelian subgroup ��;Z of ��

generated by ⊗3�Z.

Proof of Corollary 1.2. Consider the degree 2 part in the Equation of Theorem 1. On the one hand,
we have Z2 = 1=2� · � (see [22, Section 5.2]) and on the other hand, it follows by de:nition and
Lemma 5.9 that Z rat

2 = 1=6Q · �. Theorem 7 which compares liftings and residues concludes :rst
part of the corollary.
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For the second part, observe that Q is a rational function on S1 × S1, which is regular when
evaluated at complex roots of unity. Furthermore, by de:nition of Resp, it follows that

1
p
Rest1 ; t2 ; t3p Q(M;K) =

1
p2

∑
!p
1 =!p

2 =1

Q(M;K)(!1; !2; (!1!2)−1)

is the average of Q(M;K) on S1 × S1 (evaluated at pairs of complex pth roots of unity) and
converges to

∫
S1×S1 Q(M;K)(s) d�(s). This concludes the proof of Corollary 1.2.

6. Remembering the knot

In this section, we will brieIy discuss an extension of Theorem 1 for invariants of cyclic branched
covers in the presence of the lift of the branch locus.

We begin by noting that the rational invariant Z rat can be extended to an invariant of pairs (M;K)
of null homologous knots K in rational homology 3-spheres M , [12]. The extended invariant (which
we will denote by the same name), takes values in Agp;0(�loc) =B(�Z → Q)×Agp(�loc). In this
section, we will work in this generality.

Consider a pair (M;K) of a null homologous knot K in a rational homology 3-sphere M , and the
corresponding cyclic branched covers �p

(M;K). The preimage of K in �p
(M;K) is a knot Kbr, which we

claim is null homologous. Indeed, we can construct the branched coverings by cutting M −K along
a Seifert surface of K and gluing several copies side by side. This implies that a Seifert surface of
K in M lifts to a Seifert surface of Kbr in �p

(M;K).
If we wish, we may think of Kbr as a 0-framed knot in �p

(M;K) (where a 0-framing is obtained by
a parallel of Kbr along a Seifert surface, and is independent of the Seifert surface chosen).

We now consider the rational invariant Z rat(�p
(M;K); Kbr) of a p-regular pair (M;K), that is a pair

such that M and �p
(M;K) are rational homology 3-spheres and K is null homologous in M . For the

rational version of the lift map

Liftratp :Agp;0(�loc) → Agp;0(�loc):

de:ned below, we have the following improved version of Theorem 1.

Theorem 8. For all p and p-regular pairs (M;K), we have

Z rat(�p
(M;K); Kbr) = e�p(M;K)�=16Liftratp ◦ rat�p ◦ Z rat(M;K)∈Agp;0(�loc);

where �p = �−(p−1)=p, �= Z(S3; unknot).

The meaning of multiplying elements (M; s)∈Agp;0(�loc) by elements a∈A(�) is as follows:
a · (M; s) = (M; a � s).

Remark 6.1. Evaluating Agp;0(�loc) → Agp(�) at t=1 corresponds to forgetting the knot Kbr, thus
the above theorem is an improved version of Theorem 1.

The proof of Theorem 8, which is left as an exercise, follows the same lines as the proof of
Theorem 1 using properties of the Liftratp map rather than properties of the Liftp map.
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In the remaining section, we introduce the map Liftratp which is an enhancement of the map Liftp
of Section 5. We start by de:ning a map

Liftratp :A(↑X ; �) → A(↑X (p) ; �):

This map is de:ned in exactly the same way as the map Liftp of Lemma 5.3, except that instead
of forgetting all labels as the last step, we do the following replacement:

depending on a �= p − 1 or a= p − 1. As in Section 5.1, this leads to a well-de:ned map

Liftratp :Agp(˜X ; �) → Agp(˜X (p) ; �):

The next step is to extend this to a map of diagrams with rational beads in �(p)
loc . The following

lemma considers elements of the ring �(p)
loc .

Lemma 6.2. Every r(t)∈�(p)
loc can be written in the form r(t)=p(t)=q(tp) where p(t); q(t)∈�⊗C.

Proof. Using a partial fraction expansion of the denominator of r(t), it suWces to assume that
r(t) = 1=(t − a)k for some k¿ 1. In that case, we have

1
t − a

=
∏p−1

i=1 (t − a!i)
tp − ap

where != exp(2Bi=p).

Now, we can introduce the de:nition of Liftratp for diagrams with labels in �(p)
loc . Consider such a

diagram D, and replace each bead r(t) by a product of beads p(t) 1=q(tp) using Lemma 6.2. Now,
consider the diagrams obtained by p-admissible colorings of the lift B−1

p (D), that is colorings of the
lift that satisfy the following conditions:

Finally forget the beads of the edges, as follows:

Liftratp (D) is de:ned to be the resulting combination of diagrams. We leave as an exercise to show
that this is well-de:ned, independent of the quotient used in Lemma 6.2 above.
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Remark 6.3. The map Liftratp :Agp(˜X ; �
(p)
loc ) → Agp(˜X ; �loc) is an algebra map, using the disjoint

union multiplication.

Finally, we de:ne

Liftratp :Agp;0(˜X ; �
(p)
loc ) → Agp;0(˜X (p) ; �loc)

by

Liftratp (M (t); s) = (M (t → T (p)
t );Liftratp (s));

where T (p)
t is the p by p matrix (given by example for p= 4)

T (p)
t =


0 1 0 0

0 0 1 0

0 0 0 1

t 0 0 0

 : (8)

The substitution of Eq. (8) is motivated from the combinatorics of lifting struts (the analogue of
Proposition 5.8 for the Liftratp map), but also from the following lemma from algebraic topology,
that was communicated to us by Levine, and improved our understanding.

Lemma 6.4. Consider a null homotopic link L in a standard solid torus ST , with equivariant linking
matrix A(t) and its lift L(p) in ST under the p-fold covering map Bp : ST → ST . Then, L(p) is null
homotopic in ST with equivariant linking matrix given by A(t → T (p)

t ).

Proof. Consider the commutative diagram

S̃T B′→ ST

↘ B ↓ Bp

ST

where B and B′ are universal covering maps. Since Bp is 1–1 on fundamental groups, it follows that
L(p) is null homotopic in ST . Choose representatives L′

i of the components Li of L in the universal
cover S̃T , for i = 1; : : : ; l where l is the number of components of L. Then,

Aij(t) =
∞∑
k=0

lk(L′
i ; t

kL′
j)t

k :

On the other hand, {trL′
i} is a choice of representatives of the lifts of L(p) to S̃T , for r=0; : : : ; p−1,

and l= 1; : : : ; l. Furthermore, if (Bij; rs(t)) is the equivariant linking matrix of L(p), we have

B(t)ij; rs(t) =
∞∑
k=0

lk(trL′
i ; t

k+jL′
j)t

k :
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It follows that if we collect all powers of t modulo p in Laurent polynomials aijk such that

tr−sAij(t) =
p−1∑
k=0

aij; rs; k(tp)

(for r; s= 0; : : : ; p − 1), then

Bij; rs(t) = aij; rs;0:

Writing this in matrix form, gives the result.

We end this section with a comment regarding the commutativity of rat and Liftratp as endomor-

phisms of Agp(�(p)
loc ):

Lemma 6.5. For �∈Agp(?), we have

Liftratp ◦ rat� = rat�p ◦ Liftratp :

7. The wheeled invariants

The goal of this independent section is to discuss the relation between twisting and wheeling of
diagrams and, as an application, to give an alternative version of Theorem 1 in terms of the wheeled
rational invariant Z rat; introduced below.

Recall the wheeling and unwheeling maps from Section 4.2.

Lemma 7.1. For x∈A(?), we have

+(x) = 〈+;+〉−1 x
−1

;

+−1
#
(x) = 〈+;+〉x ;

where the notation +−1
# means the inverse of +∈A(?) using the # multiplication (rather than the

disjoint union multiplication).

Note that >(+r
#) = �r , for all r ∈Q, by notation.

Proof. The :rst identity follows from Lemma 4.4(a) using the identity

+̂−1(+) = 〈+;+〉−1+

of [3, Proposition 3.3, Corollary 3.5].
The second identity follows from the :rst, after inverting the operators involved. Speci:cally,

Lemma 4.4(b) implies that

y= 1(y)

= +−1
#
(+(y))



1280 S. Garoufalidis, A. Kricker / Topology 43 (2004) 1247–1283

= +−1
#
(〈+;+〉−1 y

−1

)

= 〈+;+〉−1+−1
#
(y

−1

):

Setting x = y
−1

, we have that y = x and the above implies that

x = 〈+;+〉−1 +−1
#
(x):

The wheeled invariant Z is de:ned by wheeling the Z invariant of each of the component of
a link. Although Z is an invariant of links equivalent to the Z invariant, in many cases the Z
invariant behaves in a more natural way, as was explained in [3]. Similarly, we de:ne the wheeled
rational invariant Z rat; by

Z rat; (M;K) = rat
+−1
#

◦ Z rat(M;K)∈Agp;0(�loc):

The naming of Z rat; is justi:ed by the following equation

Hair+ ◦ Z rat; (M;K) = 〈+;+〉Z (M;K)∈A(?);

which follows from Corollary 4.10 (with �= +−1
# ) and Lemma 7.1.

The rational wheeled invariant Z rat; behaves in some ways more naturally than the Z rat invariant.
A support of this belief is the following version of Theorem 8:

Theorem 9. For all p and p-regular pairs (M;K) we have

Z rat; (�p
(M;K); Kbr) = e�p(M;K)�=16 Liftp ◦ Z rat; (M;K)∈Agp;0(�loc):

The proof uses the same formal calculation that proves Theorem 1, together with the following
version of Theorem 4.

Theorem 10. With the notation of Theorem 4, we have

Liftp

 rat∫
dX KZ rat; (L)

=
∫

dX (p) KZ (L(p)):

The proof of Theorem 10 follows from the proof of Proposition 5.6.
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Appendix A. Diagrammatic calculus

In this section, we :nish the proof of Theorem 4.11 using the identities and using the notation of

[12, Appendices A–E]. The rest of the proof uses the function-theory properties of the
rat∫
-integration

[12, Appendix A–E]. These properties are expressed in terms of the combinatorics of gluings of

legs of diagrams.
rat∫
-integration is a diagrammatic formal Gaussian integration that mimics closely

the Feynman diagram expansion of perturbative quantum :eld theory. Keep this in mind particularly
with manipulations below called the “.-function trick”, “integration by parts lemma” and “completing
the square”. The uninitiated reader may consult [2, Part I,II] for examples and motivation of the
combinatorial calculus and also [3,4,1]. We will follow the notation of [2,12] here.

We focus on the term
rat∫

dX (’( KZ rat(L))): Let us assume that the canonical decomposition
of KZ rat(L) is

KZ rat(L) = exp

(
1
2

∑ xi

xj

Wij

)
� R;

suppressing summation indices. We perform a standard move (the “.-function trick”) to write this
as 〈

R(y); exp

(
1
2

∑ xi

xj

Wij +
yj

xi

)〉
Y

;

where Y is a set in 1–1 correspondence with X . Continuing,

rat∫
dX (’( KZ rat(L))) =

〈
’(R(y));

rat∫
dX

(
exp

(
1
2

∑
’

(
xj

xi

Wij

)
+

yi

xi

))〉
Y

:

The “integration by parts lemma” [12] implies that

rat∫
dX

(
exp

(
1
2

∑
’

(
xj

xi

Wij

)
+

yj

xi

))

=

rat∫
dX

((
exp

(∑
’

(
−

xj

yi

W−1
ij

)))
[X exp

(
1
2

∑
’

(
xj

xi

Wij

)
+

yi

xi

))
:

“Completing the square” implies that the above equals to:

exp

(
−1
2

∑
’

(
yj

yi

W−1
ij

)) rat∫
dX

(
exp

(
1
2

∑
’

(
xj

xi

Wij

)))
:
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Returning to the expression in question:
rat∫

dX (’( KZ rat(L))) =

rat∫
dX

(
exp

(
1
2

∑
’

(
xj

xi

Wij

)))

�
〈
’ (R(y)) ; exp

(
−1
2

∑
’

(
yj

yi

W−1
ij

))〉
Y

:

The second factor equals to ’(Z rat(M;K)). The :rst factor contains only sums of disjoint union of
wheels. We can repeat the arguments which lead to the proof of the of the Wheels identity in this
case, [12, Appendix E].

rat∫
dX

(
exp

(
1
2

∑
’

(
xj

xi

Wij

)))

=

rat∫
dX

(
exp

(
1
2

∑ (
xj

xi

Wij +

(
’

(
xj

xi

Wij

)
−

xj

xi

Wij

))))

=

〈
exp

(
−1
2

∑ xj

xi

W−1
ij

)
; exp

(
1
2

(
’

(
xj

xi

Wij

)
−

xj

xi

Wij

))〉
X

=exp
(

−1
2
tr log(W−1’(W ))

)
:
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