p = 0.16). Mean dice coefficient for PTV_3D and PTV_4D was 78%.

Conclusions: ITV_4D was larger than GTV_3D which was missed on free breathing CT scan and hence compromised PTV_4D coverage with 95% isodose. DVH for OAR was not statistically different. Tumour delineation on 4D captures tumour motion and improves PTV coverage with the prescribed dose.

255 DOSIMETRIC COMPARISON OF THREE TECHNIQUES FOR SPINE STEREOTACTIC BODY RADIOTHERAPY
Safi Aljabab1, Balamurugan Velayappan2, Eric Vandervoort1, Jamie Bahm1, Robert Zohr1, John Sinclair3, Janos Szanto1, Shawn Malone2
1University of Ottawa, Ottawa, ON
2National University Cancer Institute, Singapore
3The Ottawa Hospital Cancer Centre, Ottawa, ON

Purpose: The use of Stereotactic Body Radiotherapy (SBRT) in patients presenting with oligo-metastatic spine disease has increased. However, technical challenges remain due to the concave target juxtaposed with the spinal cord. It remains unclear if a particular technique allows for superior target volume coverage whilst sparing critical structures. We aimed to evaluate the dosimetric advantages between three modalities for spine SBRT: CyberKnife (CK), Volumetric Modulated Arc Therapy (VMAT) and Helical Tomotherapy with Dynamic Jaws (HT).

Methods and Materials: Datasets from 10 consecutive patients treated with CK were utilized. Contours were based on the International Spine Radiosurgery Consortium Consensus Guidelines. All patients were planned to receive 24 Grays (Gy) in 2 fractions, with the primary goals of: 1) maintaining the max tolerance of the cord (≤ 17 Gy) or cauda equina (≤ 20Gy); and 2) the clinical target volume (CTV) to receive at least 95% of the prescribed dose. During planning priority was given to OAR tolerance. Treatment plans were generated by separate dosimetrists on the technique-specific software then compared using Velocity AI. Parameters of comparison include target volume coverage, maximum cord (or cauda) dose, Conformity Index (CI), Gradient Index (GI), Homogeneity Index (HI), treatment time per fraction (TT) and monitor units (MU) per fraction. Statistical analysis was performed with STATA v14.

Results: CTV mean DB% coverage was significantly worse with VMAT (85.7%) versus CK (93.9%) and HT (91.2%, p = 0.01). The CTV mean D2% and mean HI were significantly greater in CK (129.7%; 41.86) versus VMAT (109.5%; 26.96) and HT (107.6%; 21.17, p < 0.01 for both). There was no difference in mean CI between CK (0.58) and HT (0.60) both were more conformal than VMAT (0.42, p < 0.01). Mean CI was sharpest in CK (3.96) versus HT (4.86) and VMAT (10.28, p < 0.03). VMAT had the least treatment time and MU usage per fraction (8.5 minutes, 9764 MU) versus HT (27 minutes, 11419 MU) and CK (62.4 minutes, 14059 MU, p < 0.01). There was no significant difference between the three techniques in the maximum dose to the cord or cauda equina.

Conclusions: CK and TOMO plans were both able to achieve conformal target coverage while respecting cord tolerance. Dose heterogeneity was significantly larger in CK. VMAT required the least treatment time and MU, but had the least steep GI, CI and target coverage especially for concave shaped targets.

256 NEW ASPECTS REGARDING THE RADIATION OF THALAMIC GLIOMAS
Edwin Boekle1, Christiane Matuschek2, Wilfried Budach1, Anne Haymann3
1Heinrich Heine University, Dusseldorf, Germany
2University of Dusseldorf, Dusseldorf, Germany
3MD Anderson, Houston, TX

Purpose: Thalamic tumours represent 5.2% of all intracranial tumours and are typically diagnosed in the paediatric population. These tumours arise from glial cells with an aggressive behavior and a high grade histology. They have a poor prognosis. The aim of this study was to find new approaches for defining the clinical target volume for these tumours.

Methods and Materials: Clinical data was collected form archived files of 30 patients diagnosed with thalamic gliomas based on pathologic and radiologic criteria.

Results: Three patterns of tumour spread were found. The first pattern followed the thalamic tributaries of the posterior part of the internal cerebral veins. These were the anterior and superior thalamic veins. For the second pattern the close proximity of the internal cerebral vein branches of the superior thalamic veins was a potential route of spread between the medial surfaces of the thalami. In addition to spread across the midline tumours could also spread along the adjacent tectal, pineal and/or vermian veins. The third pattern of thalamic tumour spread was found in gliomas which use the anterior tributaries of the internal cerebral venous architecture of the posterior and inferior branches from the basal vein of Rosenthal.

Conclusions: Thalamic gliomas spread upon the peritumoural architecture of the periventricular/subgial Scherer structures and this knowledge should be used for redefining the clinical target volume for radiation therapy in thalamic gliomas.