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Abstract

A coloring of the vertices of a graph G is nonrepetitive if no path in G forms a sequence consisting of two identical blocks.
The minimum number of colors needed is the Thue chromatic number, denoted by �(G). A famous theorem of Thue asserts that
�(P ) = 3 for any path P with at least four vertices. In this paper we study the Thue chromatic number of trees. In view of the fact
that �(T ) is bounded by 4 in this class we aim to describe the 4-chromatic trees. In particular, we study the 4-critical trees which
are minimal with respect to this property. Though there are many trees T with �(T ) = 4 we show that any of them has a sufficiently
large subdivision H such that �(H)=3. The proof relies on Thue sequences with additional properties involving palindromic words.
We also investigate nonrepetitive edge colorings of trees. By a similar argument we prove that any tree has a subdivision which can
be edge-colored by at most � + 1 colors without repetitions on paths.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let A be a set of symbols and let a=a1a2 . . . a2n be a sequence, with ai ∈ A, n�1. A sequence a is called a square if
ai =ai+n for all i=1, . . . , n. Let G be a simple graph and let f be a coloring of the vertices of G by symbols of A. We say
that f is nonrepetitive if for any simple path v1v2 . . . v2n in G the associated sequence of colors f (v1)f (v2) . . . f (v2n)

is not a square.
The minimum number of colors in a nonrepetitive coloring of G will be denoted by �(G). We will call it the Thue

chromatic number for reasons to be clear in a moment. For instance, if Pn is a path with n vertices then �(P3) = 2
while �(P4) = 3. Notice that a nonrepetitive coloring of G must be proper in the usual sense, but determining �(G) is
a nontrivial task even for paths or cycles. Indeed, the fact that �(Pn) = 3 for all n�4 follows from the famous result of
Thue [22] asserting the existence of nonrepetitive ternary sequences of any length (see [1,6–10,17,18]). This implies
that �(Cn)�4 where Cn is a cycle with n vertices. In fact, �(Cn) = 3 for all n�3 except for n = 5, 7, 9, 10, 14, 17, as
proved by Currie [12].
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Let �(d) denote the supremum of �(G) where G ranges over graphs of maximum degree at most d. Thus, �(2) = 4.
In [2] it was proved that there are absolute positive constants c1 and c2 such that

c1
d2

log d
��(d)�c2d

2.

The proof uses random graphs and the Lovász local lemma (see [3]).
In this paper we concentrate on trees as the first natural class of graphs (beyond paths) for a more detailed study.

Indeed, it is not hard to show that �(T )�4 for any tree T (Section 3). So, the main problem is to describe the class
of trees for which �(T ) = 4. This naturally leads to investigating 4-critical trees, that is, trees satisfying �(T ) = 4
with �(T ′) < 4 for any proper subgraph T ′ of T. The task appears, however, unexpectedly complex and leads to rather
difficult questions about the structure of infinite nonrepetitive words (Sections 4, 6). In particular, the question whether
there are infinitely many 4-critical trees is left open. One reason for this situation is perhaps a striking property (Theorem
3.5) which says that any tree has a subdivision S with �(S) = 3. We consider also nonrepetitive edge colorings and the
related Thue chromatic index �′(G). As demonstrated in [2], �′(T )�4(�(T ) − 1) for any tree T. We prove (Theorem
5.1) that any tree T has a subdivision S satisfying �′(S)��(T ) + 1. Proofs of both (vertex and edge) properties are
constructive and use palindromic structures in nonrepetitive ternary words.

2. Squares and palindromes

In this section we provide some necessary preliminaries. Let A be a set of symbols and let A+ denote the free
semigroup generated by A, that is, the set of all finite sequences (words) over A with concatenation of words as a
semigroup operation. A substitution over A is a map assigning to every symbol of A an element of A+. Any substitution
h : A → A+ may be extended to a homomorphism of A+ in the natural way: if w = w1 . . . wn is a word then
h(w) = h(w1) . . . h(wn). For instance, if A = {0, 1, 2} and h(0) = 1, h(1) = 20, h(2) = 210, then for w = 210 we have

h(w) = h(210) = h(2)h(1)h(0) = 210201.

Now, we define two types of words that will be crucial for our further purposes. A square is a word w that can
be written as w = xx for some x ∈ A+. A factor of a word w is any subsequence of consecutive terms of w. For
instance, 01120112 is a square containing 120 as a factor. A word is square-free if none of its factors is a square.
A palindrome is a word w = w1 . . . wn which looks the same when written backward, that is w = wn . . . w1. For
instance, 0121021201210 is a square-free palindrome.

A substitution h is square-free if for any square-free word w its image h(w) is also square-free. The first example of
such peculiar object found by Thue is defined by h(0) = 01201, h(1) = 020121 and h(2) = 0212021. Note that using
h we may produce arbitrarily long square-free words by a sequence of iterations h(0), h(h(0)), h(h(h(0))), . . . .

Let h be a substitution over A = {0, 1} defined by h(0) = 01, h(1) = 10. Define recursively a sequence of words tn
by t0 = 0 and tn = h(tn−1) for n�1. For instance,

t0 = 0,

t1 = 01,

t2 = 0110,

t3 = 01101001,

t4 = 0110100110010110.

Notice that t2n is a palindrome for any n�1. Further, let qn be a word obtained from t2n by counting ones between
consecutive zeros. For instance, q1 = 2 and q2 = 2102012.

Theorem 2.1 (Thue [23]). The words tn do not contain factors of the form axaxa, where a ∈ A and x ∈ A+. In
consequence, the words qn are square-free palindromes.

In the sequel we will refer to tn and qn as the Thue words.



B. Brešar et al. / Discrete Mathematics 307 (2007) 163–172 165

3. The Thue number of trees

We start with a proof of a general bound on �(T ) based on square-free sequences avoiding palindromes.

Theorem 3.1. Any tree has a nonrepetitive 4-coloring.

Proof. Let T be a tree with root r and k�1 the maximum distance from r. Let Li be the set of vertices at distance i from
the root, i = 0, . . . , k. Construct a sequence a = a0a1 . . . ak which is at the same time square-free and palindrome-free,
that is, no factor of a is a square nor a palindrome. Such a sequence may be obtained from any ternary square-free word
by inserting the fourth symbol between factors of length two. For instance, the word 0121021201210 gives

0132130231230132130.

Now, consider a coloring f : V (T ) → {0, 1, 2, 3} defined by f (v) = ai whenever v ∈ Li . We claim that this coloring
is nonrepetitive. Indeed, suppose that there is a path P = v1 . . . v2n in T such that the word w = f (v1) . . . f (v2n) is a
square. Since a is square-free there must be a vertex in P, say vh, whose neighbors vh−1, vh+1 are on the same level Li .
Without loss of generality we may assume that 1 < h�n and that vh is the root of T. Then the word w looks as follows:

w = ah−1ah−2 . . . a1a0a1 . . . ah−1ah . . . a2n−h.

If h < n then a palindrome a1a0a1 lies entirely in the first half of w. Since w is a square this palindrome appears in the
second half of w, and thus in a. If h = n we get

w = (an−1an−2 . . . a1a0)(a1 . . . an−1an).

Since w is a square we have ai = an−i for all i = 0, . . . , n − 1. Hence the word a0 . . . an is a palindrome. In both cases
we get a contradiction which completes the proof. �

By generalizing this argument Kündgen and Pelsmajer [15] proved that � (G) is at most 4k for every graph G of
treewidth at most k.

Recall that the eccentricity of a vertex u is the maximum distance between u and any other vertex, and that the radius
of a graph G, denoted rad(G), is the minimum eccentricity of its vertices. The center of a graph is the subgraph induced
by the vertices of minimum eccentricity. It is well-known that the center of a tree T consists of a vertex or an edge and
that it can be determined by deleting every leaf of T and continuing this procedure until the center is reached.

By a similar approach as in the proof of Theorem 3.1 we can show the following:

Lemma 3.2. Let T be a tree of rad(T )�4. Then �(T )�3.

Proof. Let u be a vertex of T from its center and arrange the vertices into levels Li , 0� i�4, where Li is the set of
vertices x with dT (u, x)=i. Let a=a0a1a2a3a4=21021 be the beginning of q2. Then the coloring f : V (F) → {0, 1, 2}
defined with f (v) = ai for v ∈ Li is easily verified to be square-free. �

There are many trees with �(T ) = 4. Perhaps the simplest way to convince oneself of this is to consider a 3-regular
tree of height 5. However, this tree is not minimal with respect to having this property. Define a 4-critical tree as a tree
T such that �(T ) = 4, but �(T ′) < 4 for any proper subtree T ′ of T.

A tree is called caterpillar if it consists of a path Pk on vertices v1, . . . , vk with some leaves added to each vertex
vi . The caterpillar with exactly one leaf in each vertex of the path Pk is called a comb Hk . Leafs of Hk will be denoted
by u1, u2, . . . , uk .

Now, consider a comb H5 with vertices u1, v1, v2 colored as shown below:

b − a − − −
| | | | |
a

,

where a, b are any different symbols from the set {0, 1, 2}. We denote this particular partial coloring of H5 by F and
call it a flop.
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Claim 1. A flop F cannot be extended to a nonrepetitive 3-coloring of H5.

Proof. Indeed, to avoid a square abab we must color the next two vertices by a new symbol c ∈ {0, 1, 2}:
b − a − c − −
| | | | |
a c

.

Now, to avoid caca we are forced to put b on the next two vertices:

b − a − c − b −
| | | | |
a c b

and similarly in the next step:

b − a − c − b − a

| | | | |
a c b a

.

Finally, the only possibility for the last vertex is c:

b − a − c − b − a
| | | | |
a c b a c

which produces a square bacbac. �

Proposition 3.3. H8 is a 4-critical tree.

Proof. First we prove that H8 is not 3-colorable (in the sense of Thue). So, assume on the contrary that there is a
nonrepetitive coloring of H8 with colors 0, 1, 2. We distinguish two cases with respect to a position of a palindrome in
the v2, v7-path. In fact, any square-free ternary word of length six must contain a factor of the form aba. By symmetry,
it suffices to consider only the following two cases: (1) aba appears on the triple v2v3v4:

− a − b − a − ◦ − ◦ − ◦ −
| | | | | | | |

◦ ◦ ◦ ◦
and (2) aba appears on the triple v3v4v5:

− − a − b − a − ◦ − ◦ − ◦
| | | | | | | |

◦ ◦ ◦ ◦
.

In both cases, however, we can find subgraphs isomorphic to a flop F (as depicted in diagrams above). This proves that
�(H8)�4 by Claim 1. Equality follows from Theorem 3.1.

To see that H8 is critical consider, for example, the graph H ′ = H8 − u8. We can color the path P by the word
12010210 and the sequence u1 . . . u7 by 0120210 as is shown below:

1 − 2 − 0 − 1 − 0 − 2 − 1 − 0
| | | | | | |
0 1 2 0 2 1 0

.

Other cases can be derived easily from this coloring and are left to the reader. �

The 4-critical trees will be further investigated in the next section. Using H8 as a subgraph we next present a large
class of trees with the Thue number equal to 4. In fact, all trees with no vertices of degree 2 have the Thue number 4
except the trees that are covered by Lemma 3.2.
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Theorem 3.4. Let T be a tree in which no vertex is of degree two. Then �(T )�3 if and only if rad(T )�4.

Proof. If rad(T )�4, �(T )�3 by Lemma 3.2. Conversely, suppose that rad(T )�5 and let u be a vertex of T from its
center. Then there exist vertices v and w such that dT (v, w) = 9 (and such that u is on the v, w-shortest path P). Then
the inner vertices of P induce the path on eight vertices and every vertex of it is of degree at least three. It follows that
H8 (the graph from Proposition 3.3) is a subgraph of T and consequently �(T )�4. �

The following result complements the above theorem by presenting a large class of trees with the Thue number less
than 4.

Theorem 3.5. Any tree has a subdivision which has a nonrepetitive 3-coloring.

Proof. Let T be a tree with root v and let k�2 be the maximum distance from v to any vertex of T. Arrange the vertices
of T into levels Li , i=1, . . . , k+1, so that the vertices of Li are at distance k+1− i from v. (Notice that this is different
numbering than the one we used earlier.) Next, consider the Thue words qi for i = 2, . . . , k + 1 defined in Section 2.
Clearly each of them is a square-free palindrome with symbol 2 in the middle, and may be written as qi = xi2x̃i , where
x̃i is a reversal of xi . Since qi−1 is an initial segment of qi , the word qk+1 may be written as

qk+1 = 2y12y2 . . . 2yk2yk+1,

where yi ∈ A+ is a nonempty word of length ni .
Now, subdivide each edge from Li to Li+1 with ni new vertices, 1� i�k. We claim that this subdivision can be

colored with symbols 0, 1, 2 without creating a square. To this end color the vertices of each level Li by color 2, for
i = 1, . . . , k + 1. Finally, color the added vertices so that reading along any added path from Li to Li+1 produces the
word yi , for i = 1, . . . , k. It is not hard to see that the sequence of colors on any path of the subdivided tree must form
a factor of qk+1. Therefore, the coloring is nonrepetitive which completes the proof. �

4. 4-Critical trees

In this section we provide further examples of 4-critical trees to give more flavor of the problem. All are subgraphs
of sufficiently large combs with one exception.

Let Hn be a comb. We call a tree T a quasi-comb if it can obtained from Hn by deleting some leafs of Hn. Similarly
as in the previous section we will denote the vertices on a path by v1, v2, . . . , vn and the corresponding leafs, if they
exist, by u1, u2, . . . , un. We will denote a quasi-comb by Hs , where s is a (finite) sequence that consists of integers
and symbols “−” defined in the following way. For any sequence of consecutive vertices vi+1, . . . , vi+k in the path
Pn such that all vj have leafs, while each of vi and vi+k+1 either does not have a leaf or its index is not within range
{1, . . . , n} we put integer k in the corresponding place in s. For each vertex vi which does not have a leaf we put the
symbol “−” in the corresponding place of s. For instance, H2−−4−1 denotes the following quasi-comb:

◦ − ◦ − ◦ − ◦ − ◦ − ◦ − ◦ − ◦ − ◦ − ◦
| | | | | | |
◦ ◦ ◦ ◦ ◦ ◦ ◦

.

Note that this notation is consistent with our notation for combs.

Proposition 4.1. H6− −4 is a 4-critical quasi-comb.

Proof. By the same reasoning as in the proof of Proposition 3.3 there is a palindrome 010 on the v1, v6-path. If this
palindrome appears on v1v2v3 (or on v4v5v6) we have a flop F and we are done by Claim 1:

a − b − a − ◦ − ◦ − ◦ − − − − − −
| | | | | | | | | |

◦ ◦ ◦ ◦
.
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If the palindrome appears on v2v3v4 again we have a flop F since H5 is isomorphic to H−−3−−:

− a − b − a − ◦ − ◦ − ◦ − ◦ − − − −
| | | | | | | | | |

◦ ◦ ◦
.

The only possibility that remains is when the palindrome aba, say 010, appears on vertices v3v4v5. Then, arguing as in
the proof of Claim 1, we obtain the unique partial coloring as below:

1 − 2 − 0 − 1 − 0 − 2 − 1 − 0 − − − −
| | | | | | | | | |
0 1 2 2 1

.

Now, the path v4, . . . , v8 is colored with 10210 and thus the color of v9 must be 1. This gives the palindrome 101 on
the vertices v7v8v9. All other vertices must then be colored in unique following way:

1 − 2 − 0 − 1 − 0 − 2 − 1 − 0 − 1 − 2 − 0 − 1
| | | | | | | | | |
0 1 2 2 1 2 0 1 2

.

However, in the above scheme we have a square on vertices v8v9 . . . v12u12 and we have thus shown that �(H6− −4)=4.
It remains to verify that H6− −4 is 4-critical. If we delete u12 the coloring below is sufficient:

1 − 2 − 0 − 1 − 0 − 2 − 1 − 0 − 1 − 2 − 0 − 1
| | | | | | | | |
0 1 2 0 2 1 2 0 1

.

If we delete u11, we can again use the above coloring and color u12 with 0. If u10 is missing we change the color of
v12 to 2 and color u12 with 1. When u9 is removed we color u10 and v11 with 1, u11 and v12 with 0, and u12 with 2.
When u6 is deleted one can color v8 with 0 and there is no problem to color the rest without squares. Similarly, v7 can
receive color 0 if u5 is missing and the rest is easy.

If we remove u1, we have the following square-free coloring:

0− 1 − 2 − 0 − 1 − 0 − 2 − 1 − 0 − 1 − 2 − 0
| | | | | | | | |
0 1 2 0 2 1 2 0 1

.

When u2, u3, or u4 are missing, we just adapt this coloring in an analogous way as before when u11, u10, or u9 were
missing, respectively. This completes the proof. �

Note that �(H6−5)=4, since H6− −4 is a subtree of H6−5. However, H6−5 is not 4-critical, since H6−5−{u8}=H6− −4.
Also the quasi-combs Hi−5−5 are not 4-critical for any i, since they all contain H6−5 as a subgraph. After several 4-
critical quasi-combs have been obtained, it appeared that some sort of systematic approach would be needed in their
study. As a first step Table 1 has been computed containing all 4-critical quasi-combs with up to 20 base vertices. To
make the table more transparent we used the following convention. A sequence of k symbols “–” is replaced by a small
integer k and H is omitted. For instance, the quasi-combs H8, H6− −4 from Propositions 3.3 and 4.1 are denoted as 8,
and 6 2 4 (=4 2 6), respectively.

In the next proposition we give an example of a graph containing a 4-critical tree which is not a quasi-comb. Let
T1 = H− − − − − −5− − − − − − and T2 = H− − − − − −3− − − − − −. Let T be a tree obtained from disjoint copies of T1,
T2 in the following way: remove the middle leaf u8 from T1 and u7 from T2 and join the two base vertices (v8 in T1
and v7 in T2) by an edge.

Proposition 4.2. There exists a 4-critical tree which is not a quasi-comb.

Proof. Let T be the tree constructed above. First we show that �(T ) = 4. We claim that T1 is uniquely 3-colorable (up
to a permutation of colors). Indeed, by the flop property a palindrome, say 010, must occupy the middle of this comb.
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Table 1
4-Critical quasi-combs of length n�20

n 4-Critical quasi-combs with n base vertices

8 8
12 4 2 6, 5 2 5
14 1 2 2 2 5 1 1, 1 2 3 2 4 1 1, 1 2 4 2 3 1 1, 1 2 5 2 2 1 1, 2 2 2 2 6, 2 23 2 5, 2 2 4 2 4, 2 2 5 2 3
15 1 4 2 2 6, 1 4 3 2 5, 1 4 4 2 4, 1 4 5 2 3, 3 3 1 2 6, 4 5 6, 4 3 1 2 5, 4 2 3 2 4, 5 5 5
16 1 1 5 5 1 1 2, 1 1 5 21 4 2, 5 6 5
17 4 3 3 3 4
18 1 1 5 7 4, 3 1 1 4 1 2 6, 3 1 1 1 1 5 6, 3 1 1 11 2 2 2 5, 5 8 5
19 4 6 1 2 6, 4 3 1 5 6, 4 3 1 2 2 2 5, 4 3 1 2 3 2 4, 4 2 2 3 1 2 5, 4 2 3 5 5,

5 5 2 2 5, 5 3 1 1 1 3 5, 5 2 1 3 1 2 5
20 4 2 3 6 5, 5 6 2 2 5

This implies the following unique coloring of T1:

2 1 2 0 1 0 2 1 0 1 2 0 1 0 2 1 2
| | | | |
0 2 1 2 0

.

Now observe that actually there are five different copies of T1 in T. This fact together with the uniqueness of 3-coloring
of T1 forces the following configuration of colors:

0 0
| |

2 1 2 0 1 0 2 1 2 0 1 0 2 1 2
|

2 1 2 0 1 0 2 1 0 1 2 0 1 0 2 1 2
| | | |
0 2 2 0

.

However, a square appears on the copy of T2, which proves that �(T ) = 4.
Hence T must contain a 4-critical tree. But, as one can check, all quasi-combs contained in T are 3-colorable, which

completes the proof. �

Our inspection of quasi-combs suggests the following heuristic method of proving that there are arbitrarily long
critical quasi-combs. Let Fk be an infinite quasi-comb built of an infinite number of copies of H5 separated by paths
of length k. If �(Fk) = 4 then by the compactness principle Fk must contain a finite subgraph G with �(G) = 4, which
in turn must contain a 4-critical subgraph. The infinitude of critical quasi-combs would follow if one could show that
�(Fk) = 4 for arbitrarily large k, and that �(H−···−5−···−) = 3 (which seems plausible). Actually, it would even suffice
if one could demonstrate that the set of different 3-colorings of Fk is countable for every k. This, however, does not
seem to follow from the known facts on nonrepetitive sequences. In particular, it is known that there are continuum
many ternary nonrepetitive sequences that differ in their final segments (cf. [6]).

5. The Thue chromatic index

In this section we switch to edge colorings. The defining condition of a nonrepetitive edge coloring of a graph G is
the same as in the vertex case: no path looks like a square. Note, however, that squares forming full cycles are allowed.
The minimum number of colors in a nonrepetitive edge coloring of a graph G is denoted by �′(G) and is called the Thue
chromatic index of G. For instance, �′(C4) = 2 while �′(C5) = 4. Clearly, �′(G) is at least �′(G), the usual chromatic
index of a graph G. This trivial lower bound is in [4] improved for certain trees. In general, �′(G)�c�2, for some
absolute constant c, as proved in [2]. For trees we have a better estimate �′(T )�4(�(T ) − 1), the proof of which is
also based on square-free words without palindromes.
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In analogy to Theorem 3.5 we will prove that any tree can be subdivided so that the Thue index of the subdivision
will be close to the optimal value.

Theorem 5.1. Any tree T has a subdivision that has a nonrepetitive edge coloring with at most �(T ) + 1 colors.

Proof. Choose any vertex of degree less than �(T ) as a root of T and order the vertices into k + 1 levels so that the
members of the ith level Li , i = 0, . . . , k, are at distance i from the root. Then take a square-free ternary word w that
can be written as

w = 0x10x20 . . . 0xk ,

where none of the words xi0xi+1 . . . xj−10xj is a palindrome (clearly, such a word exists for any k). Denote the length
of xi by �i . Next subdivide each edge e=uv, with u ∈ Li , v ∈ Li+1, by �i new vertices and color the uv-path along the
pattern 0xi . Finally, recolor all stars centered at the old vertices using � − 1 shades 0, 0′, 0′′, . . . , 0(�−2) of the color
0, so as to eliminate the situation in which incident edges have the same color.

We claim that this coloring is nonrepetitive. To prove it conveniently direct all edges towards the root. Clearly, any
directed path is colored nonrepetitively. So, assume p = e1 . . . erer+1 . . . e2n is a path with a square coloring, where the
edges er and er+1 have the same out-neighbor on the level Lj . By construction the colors of er and er+1 are different
shades of 0. Since two shades of 0 may appear only once in the path p we infer that r = n and e1, e2n are also colored
by different shades of 0. It follows that the edges e1, e2n are incident with old vertices on the same level, say Li .
Hence the color pattern on the path er+1 . . . e2n−1 coincides with the word xi0xi+1 . . . xj−10xj . On the other hand, it
coincides with the color pattern of the path e2 . . . en−1. Thus it must be a palindrome by construction of the coloring.
This contradiction completes the proof. �

The above result is in general optimal (for a path Pn for instance), however, for some trees we can do slightly better.
In the proof of our next result we will apply the following substitution found by Leech [16]:

h(0) = 0121021201210,

h(1) = 1202102012021,

h(2) = 2010210120102.

Leech proved that all words of the form h(n)(0) are square-free, but we will need a stronger property, that h is a
square-free substitution. This can be obtained easily by the following result of Crochemore characterizing square-free
substitutions.

Lemma 5.2 (Crochemore [11]). Let h be a substitution over A = {0, 1, 2}. Let m and M be the minimal and maximal
length of a word h(i), i ∈ A, respectively. Let k = max{3, 1 + �(M − 3)/m�}. Then h is square-free provided h(w) is
a square-free word for any square-free word of length at most k.

Lemma 5.3. The substitution of Leech is square-free.

Proof. By Lemma 5.2 it is enough to check that h(w) is square-free for all square-free words w of length 3. It is readily
seen that any such word is a factor of h(i) for some i = 0, 1, 2. Therefore, h(w) is a factor of the word h(h(h(0)))

which is already known to be square-free. Hence the same must be true of h(w). �

Proposition 5.4. Let T be any tree with �′(T )�3. Let H be a graph obtained from T by subdividing each edge of T
with exactly 12 vertices. Then �′(H)�3.

Proof. Let f be a nonrepetitive coloring of the edges of T with colors 0, 1, 2. Let e = uv be any edge of T and let Pe

be the corresponding path with 13 edges joining u and v in the subdivided graph H. Color the edges of the path Pe

consecutively by the symbols of the word h(f (i)), where h is the Leech’s substitution. The assertion follows from the
fact that h is square-free and each of the words h(i) is a palindrome. �



B. Brešar et al. / Discrete Mathematics 307 (2007) 163–172 171

Corollary 5.5. Let H be any subdivision of a star with at least 3 rays. Then �′(H) = �(H).

Proof. First notice that by the theorem any subdivision of a claw K1,3 is nonrepetitively 3-colorable. Now, let H be
a star subdivision with � > 3 rays R1, R2, . . . , R�. Color R1, R2, R3 as in a claw subdivision and the rest of rays
R4, . . . , R� along the same pattern as R3, say. Next, change the colors of the edges of R4, . . . , R� incident with the
center of S into symbols 4, . . . ,�. Clearly, this coloring is nonrepetitive. �

As for the vertex case we may ask for edge-critical quasi-combs. Indeed, it is easy to see that �′(G)�4 for any
quasi-comb (color the base path with three colors and the rest of the edges by the fourth color). An easy example of a
4-critical quasi-comb is H−1−−1−, but the question whether there are infinitely many of them also remains open.

6. Remarks and questions

It seems that eventual progress in studying nonrepetitive colorings will depend on our knowledge about distribution
of palindromes in sequences without repetitions. Let S = a1a2 . . . be an infinite square-free sequence of symbols
ai ∈ {0, 1, 2}. Consider the related sequence D(S) = d1d2 . . . defined by di = 2 if aiai+1ai+2 is a palindrome and
di = 3, otherwise. Notice that the sequence D(S) determines S uniquely up to a permutation of symbols. So, there are
continuum many of such sequences D(S).

Problem 1. Let k be a positive integer. Is there a set A of positive integers, with gaps of size at least k, such that for
every square-free sequence S over {0, 1, 2}, di = 3 for at least one number i ∈ A?

A positive answer would imply the existence of an infinitude of 4-critical quasi-combs in both versions of colorings
we considered.

Another approach is to look for a directed tree Q= (V , E) defined as follows. V (Q) is the set of all finite square-free
words with initial symbol 0, and (u, v) ∈ E(Q) if there is a symbol a ∈ {0, 1, 2} such that ua = v. A lot of deep
results were derived so far about the structure of Q, but none of them seems to be sufficiently strong for the problem of
critical trees. For instance, it is known that Q contains a subdivision of an infinite binary tree, which implies that the set
of infinite square-free words is perfect (with a natural topology) (cf. [13,20,21]). On the other hand, any path starting
from the root 0 can be extended to a path ending in a leaf of Q. If T is any 3-colorable tree then for any rooted copy of
T there must exist a homomorphism to Q mapping the root of T to the root of Q, and preserving colors of all vertices.

Problem 2. Let Bk be an infinite binary tree with each edge subdivided by k vertices. Is it true that there are infinitely
many k such that Bk is not a subgraph of Q?

It is not hard to demonstrate [14] that every graph has a subdivision which is nonrepetitively 5-colorable. In [5] this
bound was improved to 4. However, the following question remains open.

Problem 3. Is it true that every graph G has a subdivision S such that �(S)�3?
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