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This paper shows that the FPTAS for the min–max disjoint paths problem on directed
acyclic graphs by Yu et al. (2010) [7] can be improved by a rounding and searching
technique.
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1. Introduction

Let G = (V , E, w) be a directed acyclic graph (DAG), in which w is a non-negative integer weight on edges. For given
s, t ∈ V and fixed k > 1, the min–max k vertex disjoint paths (min–max k-VDP) problem looks for a set of k paths from s
to t such that the paths are pairwise vertex-disjoint except for the endpoints s and t , and the maximum length of the paths
is minimized, in which the length of a path is the total weight of the edges in the path. Yu et al. in [7] improved Li’s
result in [5] and gave a more efficient pseudo-polynomial time exact algorithm for the problem. They also improved the re-
sult in [2] and gave a fully polynomial time approximation scheme (FPTAS). Their FPTAS finds a (1 + ε)-approximation
in O (n2k(1/ε)k−1 logk−1 W ) time and O (n2k−1(1/ε)k−1 logk−1 W ) space, where n = |V | and W is the maximum length of
the optimal solution. This note shows that the rounding and searching techniques developed in [1,3,6] can be applied
to this problem and improve the time and the space complexities to O (n2k(1/ε)k−1) and O (n2k−1(1/ε)k−1), respec-
tively.

Using Li’s approach, Yu et al. reduced the min–max k-VDP problem to a min–max multi-weighted path problem on
an auxiliary DAG, and they obtained the improvement by giving a more efficient algorithm for the latter problem. Their
FPTAS is also based on the reduction to the multi-weight problem. Since the instance of the multi-weight problem is a DAG
with several weight functions on edges, so, in general, there is no obvious way to efficiently apply the rounding method.
However, using their exact algorithm as a testing algorithm and applying the rounding scheme on the original graph, we
can have a simpler and more efficient FPTAS. To make this note self contained, we detail the approach in the following.
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2. The efficient FPTAS

Let OPT(G) be the maximum weight of the paths in an optimal solution of the min–max k-VDP problem with input G .
The next result comes from [7].

Lemma 1. (See [7].) For a DAG G = (V , E, w) and λ � 0, whether OPT(G) � λ can be determined in O (nk+1(λ + 1)k−1) time and
O (nk(λ+1)k−1) space. In the case that OPT(G) � λ, an optimal solution can be constructed with the same time and space complexities.

Remark 2. The time and space complexities appeared in [7] are O (nk+1λk−1) and O (nkλk−1), respectively. It is the same for
λ > 0 but should be corrected as in Lemma 1 to include the case of λ = 0.

Note that by setting all edge weights to zero and λ = 0, Lemma 1 implies an algorithm for determining if there exists a
feasible solution, and the algorithm runs in O (nk+1) time and O (nk) space.

Let w1 < w2 < · · · < w p , p � |E|, be the distinct edge weights in G . Let E�t = {e ∈ E | w(e) � t} and G�t = (V , E�t). By
binary search we can find the minimum w∗ ∈ {wi | 1 � i � p} such that the graph G�w∗ is feasible. By the definition of w∗ ,
any optimal solution uses at least an edge of weight w∗ , and therefore we have w∗ � OPT(G). Furthermore, since a simple
path has at most n − 1 edges, we have OPT(G) � (n − 1)w∗ . Note that if w∗ = 0, we find the optimal 0; and if G�w p is

infeasible, there is no feasible solution. In both cases we solve the problem in O (nk+1) time. In the following, we assume
that both the cases are excluded.

Lemma 3. In O (nk+1 log n) time and O (nk) space, we can determine an upper bound U0 and a lower bound L0 of OPT(G) such that
U0 � nL0 and L0 > 0.

For any r � 1, let w/r(e) = �w(e)/r� and G/r = (V , E, w/r). The following algorithm is basically the same as the one
in [1]. Note that the condition OPT(G/r) � n/δ in Step 3 of the test procedure can be computed by the exact algorithm
mentioned in Lemma 1. To make the analysis easier, we slightly change the condition of the while loop (Step 2 in the
algorithm Rounding-and-Searching).

Procedure Test(M, δ)

/* test if OPT(G) > M or OPT(G) � (1 + δ)M */
1: r ← Mδ/n;
2: construct G/r ;
3: if OPT(G/r) � n/δ then return “Yes”;
4: else return “No”.

Lemma 4. If the test procedure returns “Yes”, OPT(G) � (1 + δ)M; and otherwise OPT(G) > M. The time and space complexities are
O (n2kδ1−k) and O (n2k−1δ1−k), respectively.

Proof. First we show the correctness. Let Q = {Q i | 1 � i � k} be a set of optimal paths of the problem, i.e., OPT(G) =
maxi{w(Q i)}, in which w(Q i) is the weight of path Q i . If OPT(G/r) � n/δ, there exist k paths Pi , 1 � i � k, such that
maxi{w/r(Pi)} � n/δ. Since rw/r(e) � w(e) < r(w/r(e) + 1) for any e ∈ E and any simple path has at most n − 1 edges,
maxi{w(Pi)} � rn/δ + r(n − 1). By r = Mδ/n, we have that maxi{w(Pi)} � M(1 + δ), which completes the proof of Yes-part.
On the other hand, if OPT(G/r) > n/δ, we have OPT(G) > rn/δ = M .

The time and the space complexities of the test procedure are dominated by Step 3, and the results directly come from
Lemma 1 with λ = n/δ. �
Algorithm Rounding-and-Searching

1: Set U = U0 and L = L0;
2: while U > 4L do
3: δ ← √

U/L − 1;
4: M ← √

U L/(1 + δ);
5: if Test(M, δ) returns “Yes” then
6: U ← M(1 + δ);
7: else
8: L ← M;
9: end while;
10: r ← Lε/n;
11: find and output OPT(G/r) by the exact algorithm mentioned in Lemma 1.
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Lemma 5. The algorithm Rounding-and-Searching computes a (1 + ε)-approximation solution.

Proof. The algorithm outputs OPT(G/r) with r = Lε/n and OPT(G) � L. Let Pi , 1 � i � k, be the optimal paths with respect
to G/r . Then we have maxi{w/r(Pi)} = OPT(G/r). Similar to the proof of Lemma 4, we have maxi{w(Pi)} � r · OPT(G/r) +
r(n − 1). Since OPT(G/r) � OPT(G)/r and r = Lε/n, we obtain

max
i

{
w(Pi)

}
� OPT(G) + Lε(n − 1)/n < (1 + ε)OPT(G). �

Lemma 6. The algorithm Rounding-and-Searching takes O (n2k(1/ε)k−1) time and O (n2k−1(1/ε)k−1) space.

Proof. The complexities for computing initial L0 and U0 are given in Lemma 3. Let Ui , Li , δi and Mi , 0 � i � q, be the
parameters used in the i-th iteration of the while loop. When it leaves the loop and goto Step 10, Uq+1 � 4Lq+1. Since the
optimal is at most Uq+1 and k is fixed, the time complexity of Step 11 is

O
(
nk+1(Uq+1/(Lq+1ε/n)

)k−1) = O
(
n2k(1/ε)k−1).

Similarly the step takes O (n2k−1(1/ε)k−1) space. The space complexity can be easily analyzed since it is the maximum one
in the iterations and Step 11. Since 4 < Ui/Li � n, (1/δi) < 1, and the total space complexity is O (n2k−1(1/ε)k−1).

To show the total time complexity is O (n2k(1/ε)k−1), it is sufficient to show that

q∑
i=0

(1/δi)
k−1 = O (1).

Since 1/δi < 1, we have (1/δi)
k−1 � 1/δi for any k � 2. Similar to the proof in [1] (seeing Appendix A), we can show that∑q

i=0(1/δi) = O (1), and so is
∑q

i=0(1/δi)
k−1. �

By Lemmas 5 and 6, we summarize the result in the following theorem.

Theorem 7. For any ε > 0 and fixed k > 1, a (1 + ε)-approximation of the min–max k-VDP on a DAG can be found in O (n2k(1/ε)k−1)

time and O (n2k−1(1/ε)k−1) space.

Yu et al. [7] also improved the algorithm in [4] and obtained the following result: for an undirected planar graph G and
nodes s, t adjacent to the unbounded face of G , there is an algorithm finding the min–max 2-VDP in O (n3W ) time and
O (n2W ) space, in which W is the optimal weight. By the same approach as above, we can have the following FPTAS.

Corollary 8. Given an undirected planar graph and two vertices adjacent to the unbounded face, for any ε > 0, the min–max 2-VDP
can be (1 + ε)-approximated in O (n4/ε) time and O (n3/ε) space.
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Appendix A

Proof of
∑q

i=0(1/δi) = O (1). (The proof is nothing but mimics the one in [1].) At each iteration, we set either Ui+1 = Mi(1 + δi)

or Li+1 = Mi . Since δi + 1 = √
Ui/Li and Mi = √

Ui Li/(1 + δi) = U 1/4
i L3/4

i , for both cases we have

Ui+1/Li+1 = (Ui/Li)
3/4. (A.1)

By definition,

1/δi = 1√
Ui/Li − 1

=
√

Li/Ui

1 − √
Li/Ui

< 2
√

Li/Ui

since Ui > 4Li . Hence,

q∑
(1/δi) = O

( q∑√
Li/Ui

)
.

i=0 i=0
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By (A.1),
√

Li/Ui = (Lq/Uq)
(1/2)(4/3)q−i

, and then

q∑
i=0

√
Li/Ui =

q∑
j=0

(Lq/Uq)
(1/2)(4/3) j

<

q∑
j=0

2−(4/3) j

since Uq > 4Lq . Using 2−(4/3) j+1 = (2−1 · 2−1/3)(4/3) j � (2−1/3) · 2−(4/3) j
repeatedly, we have 2−(4/3) j � (2−1/3) j · (2−1).

Therefore

q∑
j=0

2−(4/3) j
< 2−1

q∑
j=0

(
2−1/3) j

<
2−1

1 − 2−1/3
< 2.43. �
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