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ABSTRACT 

The first section surveys recent results on the permanental polynomial of a square 
matrix A, i.e., per(xZ-A). The second section concerns the permanental polynomial 
of the adjacency matrix of a graph. The final section is an introduction to the 
permanental polynomial of the Laplacian matrix of a graph. An appendix lists some of 
these latter polynomials. 

1. PERMANENTAL POLYNOMIALS 

Let A =(aii) be an n by n matrix over a field F. The permanental 
polynomial afforded by A is the permanent of the characteristic matrix, i.e., 

per(xZ-A)=x” -c~x~-’ +c~x~-~ - . . . +( -1)"~~. (1) 

*The work of this author was supported in part by NSF grant MCS 77-28437. The paper 
comprises an expanded version of his talk at the Auburn Matrix Theory Conference, March 1980. 
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It is easy to show that ck is the sum of the k by k principal subpermanents of 
A. In particular, ci = trace A and c, = per A. Of course, the permanental 
polynomial is not a linear algebraic function. It is not preserved under 
similarity. However, it is preserved under permutation similarity: 

per(xZ-P-‘AP)=per[P-‘(xl-A)P]=per(xZ-A) (2) 

for all n by n permutation matrices P. Following Engel, we denote the set of 
roots of the permanental polynomial of A (over an algebraic closure of F) by 
S,,(A) and call the elements of this set the permanental roots of A. It is the 
purpose of this first section to describe some of the recent results concerning 
these polynomials and their roots. In our description, we have taken the 
liberty of specializing some very general results to the particular case of 
interest to us here. In no case should our chatty remarks be taken as a 
definitive summary of any of the articles in the references. Finally, in order 
not to be bothered by the various restrictions placed on the field in the 
following results, we will henceforth take F to be the field of complex 
numbers. 

Chronologically first in our survey is a 1967 paper of J. L. Brenner and 
R. A. Brualdi. They proved the following: Suppose A is an n by n matrix with 
nonnegative entries and spectral radius p. Then S,,(A) C {z:I z 1 Gp}. (It 
follows from this result that the permanental roots of an M-matrix have 
positive real parts.) In 1975, R. Merris proved that for a normal n by n 
matrix A, 

where c=[1+(2n/~) ] . ’ ‘I2 In addition, he observed that if A is hermitian 
with eigenvalues h r > X a > . . . >A,, then each real permanental root of A is 
in the interval [A,, A,]. This resulted in the speculation that, for hermitian 
matrices, the constant c in (3) could be replaced with 1. In 1979, Miroslav 
Fiedler (unpublished) found the following example which ended the specula- 
tion: Let A ~41, --,IJ, where I, is the 4 by 4 identity matrix and J4 is the 4 by 
4 matrix each of whose entries is 1. The characteristic polynomial of A is 
x(x-~)~, but A has a permanental root of modulus approximately 46. (It may 
still be true that the real parts of the permanental roots of a hermitian matrix 
are bounded by the spectral radius.) 

In 1972, G. N. de Oliveira showed that S,,(A) is contained in the 
GerSgorin circles. In the same year, P. M. Gibson proved that S,,(A) lies in 
the ovals of Casini. In 1973, G. M. Engel established significantly more 
general (but not so easily stated) results. A special case of Engel’s theorem is 
this. If A is positive semidefinite hermitian, then any bound for the eigenval- 
ues of A involving absolute values of the entries of A is also a bound for the 
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permanental roots. (Using Engel’s result, it can be shown that per M 3 det M 
for any M-matrix M.) 

In 1971, G. N. de Oliveira proved that there exists an n-square matrix A 
with diagonal elements a r, uz,. . . , a, and such that per( xl- A) is a prescribed 
manic polynomial of degree n, if and only if -Zai is the coefficient of m-i 
in the prescribed polynomial. In 1972, S. Friedland showed that there always 
exists an n by n matrix with prescribed off diagonal elements and prescribed 
(manic, degree n) permanental polynomial. In a 1975 paper, Friedland 
considered the following problem: Given an n by n complex matrix A, and a 
set S of n complex numbers, does there exist a diagonal matrix D such that 
Sr,_( AD)= S? In 1978, D. K. Baxter gave necessary and sufficient conditions 
for the existence of a matrix with prescribed characteristic and permanental 
polynomials. 

In 1970, Oliveira conjectured that if A is irreducible and doubly stochas- 
tic, then per( xl- A) has no real roots if n is even and exactly one if n is odd. 
Almost immediately, B. N. Datta established Oliveira’s conjecture in some 
special cases. However, in the next three years, counterexamples were given 
by J. Csima, D. J. Hartfiel, and R. B. Levow. Finally, in 1978, P. M. Gibson 
showed that for each n> 7, there exists an n by n irreducible, doubly 
stochastic matrix A such that per( xl - A) has n real roots. 

If u is a permutation of degree n, denote by P, =(Sio(i)) the corresponding 
permutation matrix. Write 

go(x)=per(xZ-P,) 

=Xn-C1(u)X”--+c2(u)X”-2- . ..+(-l)“c.((J). 

Then ci is a (permutation) character of the symmetric group S,. If x is a class 
function of a subgroup G of S,, define 

g,“(x)= g$ If x(uk,(x). 
otG 

Finally, let h,(u) be the number of cycles of length t in the disjoint cycle 
factorization of u. Then the generalized cycle index polynomial of combina- 
torial analysis is 



276 R. MERRIS, K. R. REBMAN, AND W. WATKINS 

In 1979, K. Bogart and J. Gordon showed that 

a result which supplies Polya type enumeration theorems for certain hyper- 
graphs. 

2. THE ADJACENCY MATRIX OF A GRAPH 

Let G= (V, E) be a finite, nondirected graph without loops or multiple 
edges. Suppose the vertex set V= { oi, u2,. . . , on}. The adjacency matrix 
A(G) = ( aii) of G is the n by n matrix defined by 

1 if {ui,ui}EE,thesetofedges, 

0 otherwise. 

Of course, A(G) depends not only on G but on the labeling of the vertices. It 
is easy to see, however, that adjacency matrices afforded by the same graph 
with different labelings are permutation similar. Indeed, one can make the 
stronger statement that graphs G, and G, are isomorphic if and only if A(G,) 
is permutation similar to A( G,). Thus, any function of A(G) which is 
invariant under permutation similarity is, in fact, a function of the underlying 
graph. It follows from (2) that per[xZ-A(G)] is such a function. In the 
prejudice of the present authors, the permanental polynomial seems a natural 
tool in the study of graphs. Thus, we were surprised when our literature 
search turned up only one article on the subject [41]. In the interest of 
initiating further study, we present some elementary results concerning these 
polynomials. We begin with a Sachs type result. 

THEOREM 2.1. Let G be a graph. Write 

per[xZ-A(G)]=x”-c,x”-‘+c2xnP2- . ..+(-l)“~.,. 

Then 
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where the sum is over all subgraphs H on i vertices whose 
single edges or circuits, and k(H) is the number of circuits. 

components are 

Proof. Let Z = ( z,~) be an i by i principal submatrix of A(G). The rows 
(and columns) from which Z arises correspond to i vertices of G. Now 

wZ= 2 i~l%~i~. 
0 E s, 

(5) 

Consider the disjoint cycle factorization, (I= a,~, . . . a,, of a fixed u E Si. This 
corresponds to a partition of the i vertices into r disjoint sets. The diagonal 
product corresponding to u in (5) will be nonzero if and only if A(G) contains 
a 1 in position (i, u&i)) for each j in the orbit of up, 1 <p < T (in particular, 
only if u has no fixed points). In other words, if u corresponds to a nonzero 
diagonal product, then u determines a unique subgraph of the required form. 
However, u -l, for example, determines the same subgraph. Indeed, it is not 
hard to see that YES, determines the same subgraph if and only if 7r= 
u,Qlu~2.. .(J% , , where qi = 2 1, l<j<r. Since up-’ =a,_, if and only if up is a 
transposition (we are assuming u has no fixed points), the number of 
permutations in Si which correspond to a given subgraph H of the required 
form on the appropriate i vertices is 2 ‘cH) The result follows from the . 
representation of ci as the sum of all i by i principal subpermanents of A(G). 

EXAMPLE 2.2. Let 

G= E. 
Then cr =O, and c, =(number of edges)=5. 

c3 =21+21=4. 

c4: 

8 8 

c, =2l+2’ +2’ =4. Thus, per[xZ-A(G)]=x4 +5x2 -4x+4. 
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It follows from Theorem 2.1 that per A(G) =c,, = 0 if and only if G does 
not contain a spanning subgraph the components of which are cycles and 
edges (e.g., a tree on an odd number of vertices). By Konig’s theorem 
perA( G)=O if and only if A(G) contains an s by t submatrix of zeros, where 
s+t=n+ 1. Putting these two conditions together, we may make the some- 
what vague statement that the nonexistence of a spanning subgraph consist- 
ing of cycles and edges is equivalent to the presence in the complementary 
graph of some combination of a complete and a complete bipartite graph. 
(For example, if s=t and the submatrix is principal, G’>K,.) 

COROLLARY 2.3. Let T be a tree on n vertices. Let 

det[xZ-A(T)] =x” -a,x”-’ +a2xnp2 - . . . +( - l)na,, 

Then 

ci =/ail, lGi<n. 

Proof. By Sachs’s theorem, 

ai = ( - I)iZ (- l)uCH)2QH), 

H 

where the sum is over all subgraphs H on i vertices whose components are 
single edges or circuits, u(H) is the number of components, and k(H) is the 
number of circuits. Since T is a tree, it follows that ai =ci =O for i odd, and 
u(H) = i/2 for all H on i vertices with i even, Thus, there is no cancellation in 
the expression for ai, and comparing with (4) 

'i if iEOmod4 
ci = 

-ai if iE2mod4. n 

We say that two graphs, G, and G,, are adjacency cospectral if det[xZ- 
A(G,)]=det[xZ-AA(G and adjacency copermanental if per[xZ-AA(G 
per[xZ-A(G,)]. Then isomorphic graphs are both adjacency cospectral and 
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adjacency copermanental. A natural question is whether one or both of these 
polynomials can distinguish nonisomorphic graphs. Corollary 2.3 shows that, 
at least for trees, the permanental polynomial distinguishes nothing which was 
not already distinguished by the characteristic polynomial. Along these lines, 
A. J. Schwenk has proved that if t, is the number of unlabeled trees on p 
vertices, and if sp is the number of such trees which are adjacency cospectral 
with no other tree, then 

lim >=O. 
P’W p 

It follows from Corollary 2.3 that Schwenk’s theorem remains true if “adja- 
cency cospectral” is replaced with “adjacency copermanental.” 

The permanental polynomial seems a little better than the characteristic 
polynomial when it comes to distinguishing graphs which are not trees. For 
example, the permanental polynomial distinguishes the five adjacency 
cospectral graphs of [20]. However, J. Turner has given two graphs on 9 
vertices which are not trees, are nonisomorphic, and yet are adjacency 
copermanental (and adjacency cospectral). In a very recent article [23], C. R. 
Johnson and M. Newman consider a modified adjacency matrix, equivalent to 
replacing each zero in A(G) with an indeterminate y. Calling the new matrix 
A&G ), they find that det[ xl-A& G)] distinguishes many (but not all) 
adjacency cospectral graphs. It might be worthwhile to investigate this idea 
with determinant replaced by permanent. 

3. THE LAPLACIAN MATRIX OF A GRAPH 

Let G=(V,E), with vertex set V={u,,u,,...,u,} and edge set E= 

{ e,, e2,. . . , em}, be a graph as in the previous section. Let D(G) be the n by n 
diagonal matrix, the (i, i) entry of which is the valence (degree) of vertex z)~. 
Using the terminology of W. N. Anderson, we define the Laplacian of G to be 
the matrix L(G) =D(G)-A(G). Then, as observed by Kirchhoff, for any 
connected labeled graph G, all cofactors of L(G) are equal and their common 
value is the number of spanning trees of G. 

Of course, L(G) is symmetric. And, since all rows sum to zero, it is 
singular. Moreover, it follows from the GerSgorin circle theorem that L(G) is 
positive semidefinite. There are two other (well-known) proofs of this last fact 
which we would like to mention. The first of these involves an explicit, graph 
theoretical interpretation of the quadratic form of L(G), namely, 

x’L(G)x= 2 (xi -xi)“* 
(o,,o,)EE 
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The second proof involves the concept of the (0, 1, - 1) vertex-edge incidence 
matrix, which we proceed to develop. 

Suppose G has n vertices and m edges. Convert G into a directed graph 
by arbitrarily directing each of the edges [i.e., by converting each unordered 
edge e, = {us, vt} into an ordered edge (v,, v, )]. The corresponding n by m 
incidence matrix Q(G) = ( 9ii) is defined by 

9ii = I 
+ 1 if vi is the “positive” end of ei, 

- 1 if ui is the “negative” end of ej, 

0 otherwise. 

Of course, Q(G) depends not only on G, but on the way in which it was 
directed. It turns out, however, that L(G)=Q(G)Q(G)’ no matter how G is 
directed. (Unless explicitly stated otherwise, we will return to thinking of G as 
an undirected graph.) 

Suppose the eigenvalues of L(G) are A, >A, > . . . >A,_, >A, =O. It is 
not difficult to show that A,_, #O if and only if G is connected. (In a 
brilliant sequence of papers [ll- 131, M. Fiedler has obtained some remarka- 
ble results concerning the “algebraic connectivity” A,_, and its eigenspace.) 

In keeping with the spirit of this article, we wish to consider the 
permanental polynomial of the Laplacian: 

per[xZ-L(G)]=x n-biXn-r+b2Xn--2- . ..+(-I)“b Il. (6) 

It is easy to see that b, =traceL(G)=traceD(G)=B(vertex degrees)=2m. 
Of course, b, =perL(G). Since L(G) is positive semidefinite symmetric, so 
are each of its principal submatrices. Since the permanent of a positive 
semidefinite symmetric matrix is nonnegative, it follows that each bi, being a 
sum of permanents of principal submatrices, is nonnegative. In fact, we can 
say more. 

THEOREM 3.1. Let G be a connected graph with vertex valencies 

d,, d 2 ,..., d,. Zf r>l, then 

r!e, >b, >e,, 

where e,, is the rth elementary symmetric function of d,, d,, . . . , d,. 

Proof. The result is immediate from [27, Theorem l] and the fact that 
d l,. . , , d, are the main diagonal elements of the positive semidefinite sym- 
metric matrix L(G). H 
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If G is not connected, per[ xl- L( G )] is the product of the permanental 

polynomials of the Laplacians of the connected components of G. 

THEOREM 3.2. Let G, be a proper subgraph of the connected graph G. 
Suppose the Laplucian permanental polynomial of G is given by (6). Zf 

then bi >ci, l<i<k, and b,_i>ck_j, OGi<k. 

Proof. Let G, =(V,, E,), where Vi c V and E, CE. Since E, is a proper 
subset of E, b, >c,. Next, consider a t by t principal submatrix of L(G,), call 
it L,. The rows (and columns) of L, correspond to a subset W of the vertices. 
Let GW be the subgraph of G consisting of the vertices W and all edges of G 
which join vertices in W. Let Gy be the corresponding subgraph of G,. Then 
L,=L(Gy)+Dr, where Dy is a nonnegative (possibly zero) diagonal 
matrix. Each main diagonal entry of Dy counts the number of edges joining 
the corresponding vertex in G, to a vertex outside W. Now consider G2W, the 
complement of Gy in G w, i.e., G2W is a graph on the vertices W whose edges 
are precisely those edges of G w which are not edges of G y. Then L( G w ) = 
L(Gy)+ L(Gzw). Finally, the principal submatrix L of L(G), corresponding 
to the vertices of W, is given by L= L( GW) + Dw, where Dw is a nonnega- 
tive diagonal matrix. Each diagonal entry of Dw counts the number of edges 
joining the corresponding vertex in G to a vertex outside W. Since G, is a 
subgraph of G, Dw - Dy is a diagonal matrix with nonnegative entries. It 
follows that 

(7) 

Applying [31, Theorem 11, we obtain per Lapper L,, with equality if and only 
if GW = G and Dw = Dy. We have obtained a one to one correspondence 
between the t by t principal submatrices L, of L(G,) and some of the t by t 
principal submatrices L of L(G) such that per L>per L,. Moreover, since G, 
is a proper subgraph of G, there is at least one case of strict inequality. Thus, 
b, >ct, l<t<k. 

To prove the second group of inequalities, we may take k<n. Without 
loss of generality, we may assume G, is a graph on the last k vertices. (In the 
notation above, W={v,~k+l,2),,_k+2,...,~~}.) Let L, be a k-t by k-t 
principal submatrix of L( G,). Let L be the corresponding principal submatrix 
of L(G). Then, as above, per Laper L, with strict inequality for an ap 
propriate selection of the k-t vertices. Let L be the n-t by n-t principal 
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submatrix of L(G) lying in rows and columns 1,2,. . . , n-k and the k - t rows 
and columns from which L is drawn. It follows from [27, Theorem l] (also see 
[26]) that 

peri>d,d,. . .d,_kperL, 

where d,,d,,..., d,_, are the valences of vr, vs,. . . , vnpk. Since each of 
d 1,. . . , d n_k 2 1, we have found a one to one correspondence between the 
k - t by k - t principal s?bmatrices L, of L( G, ) and some of the n-t by n - t 
principal submatrices L of L(G), such that perL>perL,, with at least one 
(and usually very many) strict inequalities. It follows that b,_, >c~_~, O<t 
ck. n 

In spite of results like Theorems 3.1 and 3.2, a general Sachs type theorem 
for the permanental polynomial of the Laplacian seems far away. 

In the previous section we observed that there are nonisomorphic graphs 
G, and G, with per[IcZ--A(G,)]=per[xZ-A(G,)]. However, we do not know 
of a pair of nonisomorphic graphs for which per[ xl- L( G,)] = per[ XI- L( G,)]. 

COROLLARY 3.3. Let G be a graph on n vertices. Then 

n--2 (- lvf 
perL(G)<n! 2 

r=O r! ’ 

with equality if and only if G=K,, the complete graph on n vertices. 

Proof. By the second set of inequalities in Theorem 3.2, per L( K,)=b,, 
>c,, =per L(G) unless G= K,. It suffices to show that the right hand side of 
(8) is the permanent of L( K,). Notice that L( K,) = nl, -.I,,, where I, is the n 
by n identity matrix and 1, is the n by n matrix each of whose entries is 1. Let 
p(x) be the permanental polynomial of Z,. Then perL(K,)=p(n). If p(x)= 
xn -a,x”-l +a2xnM2 - . . . +( - l)“a”, then a, is the sum of all i by i 
principal subpermanents of .Z,. There are n!/i!(n-i)! of these, each with 
permanent i!. Since a 1 = trace J,, = n, the result follows. w 

If G is the star graph on n vertices (the tree with one vertex of valence 
n- 1 and the other n- 1 vertices of valence l), it can be shown that 
perL(G)=2(n-1). 

CONJECTURE 3.4. If G is a connected graph on n vertices, then per L( G) 
a 2( n - 1) with equality if and only if G is the star graph. 
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APPENDIX 

If G is a connected graph on n=6 vertices, let 

283 

6 
per[xZ-L(G)] =x6 + x (-l)“h,x”-‘. 

i=l 

Then h, =2m, where m is the number of edges of G. F. Harary [19, 
Appendix 11 lists all graphs on 6 vertices (using q where we use m). The list of 
Laplacian permanental polynomials in Table 1 follows Harary’s numbering. 

TABLE 1 

H-V 
m number b, 

5 7 46 
8 45 
9 43 

10 45 
11 44 
13 40 

7 66 
8 65 
9 65 

10 65 
11 64 
12 63 
13 64 
14 63 
15 60 
16 64 
18 63 
20 64 
21 62 

5 88 
6 88 
7 88 
8 86 
9 87 

10 86 

- b, 
120 
112 
98 

112 
104 
80 

b.., b, 
185 158 
160 122 
124 82 
161 126 
137 94 
85 46 

b, 
58 
38 
22 
42 
26 
10 

208 393 420 200 
198 353 342 138 
198 356 356 156 
196 344 330 134 
188 317 284 104 
180 292 248 84 
186 308 274 102 
178 284 242 86 
154 213 150 42 
188 316 280 100 
176 273 222 74 
186 305 262 90 
168 249 190 58 

312 657 778 410 
310 641 732 360 
312 654 760 380 
286 542 556 244 
296 578 612 276 
286 537 534 218 
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TABLE 1 (continued) 

Harar y 
m number b, b, h 

7 11 85 274 489 452 
12 87 298 586 614 
13 87 300 604 672 
14 87 300 602 656 
16 87 298 589 630 
17 86 290 562 580 
18 83 256 430 368 
19 84 268 477 446 
20 86 288 550 558 
21 86 284 524 504 
22 84 264 454 400 
23 88 308 625 686 
24 85 274 486 440 

bo 

168 
262 
324 
296 
282 
240 
124 
170 
230 
196 
140 
314 
156 

8 1 111 416 886 1016 492 
2 110 402 817 862 362 
3 109 390 770 788 320 
4 109 386 736 700 256 
5 114 452 1041 1300 680 
6 114 454 1061 1370 762 
7 114 452 1046 1332 728 
8 112 426 918 1040 468 
9 113 442 1006 1252 660 

10 112 426 921 1056 488 
11 111 412 853 918 394 
12 113 440 994 1234 662 
13 113 438 972 1148 548 
14 113 438 974 1168 588 
15 112 432 968 1184 608 
16 113 440 989 1204 616 
17 112 422 898 1024 496 
20 112 424 906 1022 470 
21 112 428 940 1120 564 
22 110 396 774 764 296 
23 114 456 1081 1440 848 
24 111 412 858 944 424 

9 1 138 560 1272 1536 768 
2 141 600 1457 1906 1050 
3 140 584 1365 1662 794 

- 
b, 
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TABLE 1 (continued) 
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HWW 
m number b, b, h b, b, 

9 4 139 568 1280 1480 668 
5 140 586 1388 1756 924 
6 141 598 1440 1860 1008 
7 144 644 1689 2442 1514 
8 143 628 1601 2236 1336 
9 143 628 1596 2200 1272 

10 143 630 1620 2298 1406 
11 142 612 1509 2002 1114 
12 141 594 1404 1740 868 
13 142 614 1528 2062 1174 
14 141 596 1416 1754 854 
16 142 612 1516 2048 1188 
17 144 648 1737 2646 1818 
18 141 598 1437 1836 968 
19 142 616 1544 2104 1208 
20 142 614 1533 2096 1232 
21 140 580 1333 1584 744 

10 1 173 806 2121 2970 1722 
2 175 840 2325 3506 2250 
3 174 824 2233 3270 2018 
4 174 822 2212 3196 1932 
5 172 792 2052 2824 1608 
6 172 786 1985 2566 1274 
7 176 856 2417 3736 2464 
8 175 838 2308 3458 2206 
9 173 800 2056 2722 1398 

10 175 838 2301 3404 2104 
11 174 820 2193 3136 1872 
12 176 858 2445 3870 2682 
14 176 856 2412 3696 2384 
15 175 840 2324 3496 2228 

11 1 209 1070 3098 4784 3068 
2 210 1088 3212 5096 3384 
3 211 1106 3329 5434 3754 
4 208 1044 2885 4046 2138 
5 210 1086 3189 5006 3266 
6 211 1108 3354 5544 3924 
7 212 1124 3449 5798 4186 
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TABLE 1 (continued) 

HaI=Y 
m number b, b, b4 bs b, 

11 8 212 1124 3442 5736 4048 
9 211 1104 3308 5360 3668 

12 1 250 1416 4578 7972 5828 
2 249 1398 4464 7668 5544 
3 249 1394 4410 7416 5148 
4 251 1436 4722 8432 6388 
5 252 1456 4860 8832 6800 

13 1 293 1794 6264 11772 9288 
2 294 1816 6436 12360 10040 

14 340 2248 8496 17328 14880 

15 390 2760 11160 24336 22320 

Note Added in Proof: In a forthcoming paper, the first author obtains a 
“Sachs type” theorem for the Laplacian permanental polynomial of a tree. As 
an application of his result, he confirms Conjecture 3.4. 
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