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SUMMARY

Trimethylation of histone H3 at lysine 4 (H3K4me3)
is a chromatin modification known to mark the tran-
scription start sites of active genes. Here, we show
that H3K4me3 domains that spread more broadly
over genes in a given cell type preferentially mark
genes that are essential for the identity and func-
tion of that cell type. Using the broadest H3K4me3
domains as a discovery tool in neural progenitor
cells, we identify novel regulators of these cells.
Machine learning models reveal that the broadest
H3K4me3 domains represent a distinct entity, char-
acterized by increased marks of elongation. The
broadest H3K4me3 domains also have more paused
polymerase at their promoters, suggesting a unique
transcriptional output. Indeed, genes marked by
the broadest H3K4me3 domains exhibit enhanced
transcriptional consistency rather than increased
transcriptional levels, and perturbation of H3K4me3
breadth leads to changes in transcriptional consis-
tency. Thus, H3K4me3 breadth contains information
that could ensure transcriptional precision at key cell
identity/function genes.

INTRODUCTION

Diverse cell types within multicellular organisms are character-

ized by specific transcriptional profiles. Chromatin states influ-

ence some aspects of transcription, such as expression levels

or alternative splicing, and may play a role in the establish-

ment and maintenance of gene expression programs (Bernstein

et al., 2005, 2012). For example, subtypes of enhancers direct

the high expression of cell identity genes (Parker et al., 2013;

Rada-Iglesias et al., 2011; Whyte et al., 2013). Whether other

aspects of transcription are linked to cell identity and can be

predicted by chromatin states is unknown.
Trimethylation of histone H3 lysine 4 (H3K4me3) is a major

chromatin modification in eukaryotes (Santos-Rosa et al.,

2002; Strahl et al., 1999). Modifiers of H3K4me3 play roles in

fundamental biological processes, including embryonic devel-

opment (Ingham, 1998) and stem cell biology (Ang et al., 2011;

Schmitz et al., 2011). Perturbations in H3K4me3-modifying com-

plexes lead to cancer inmammals (Shilatifard, 2012) and lifespan

changes in invertebrates (Greer et al., 2010; Siebold et al., 2010).

The H3K4me3 modification is associated with the promoters of

actively transcribed genes (Barski et al., 2007; Guenther et al.,

2007; Santos-Rosa et al., 2002) and is thought to serve as a tran-

scriptional on/off switch (Dong et al., 2012). However, H3K4me3

can also mark poised genes (Bernstein et al., 2006), and tran-

scription can occur in the absence of H3K4me3 (Hödl and

Basler, 2012). Thus, how this mark affects specific transcrip-

tional outputs to influence diverse cellular functions is still largely

unclear.

Important information regarding specific transcriptional

outputs could be contained in the spread of epigenetic modifi-

cations over a genomic locus. Repressive chromatin marks,

such as H3K9me3, are deposited over broad genomic regions

(�megabases) (Shah et al., 2013; Soufi et al., 2012; Zhu et al.,

2013). Active chromatin marks are usually restricted to specific

genomic loci but have also been observed in broader deposits

(�kilobases) (Parker et al., 2013). For example, broad deposi-

tions of H3K4me3 have been reported in embryonic stem cells

(ESCs), Wilms tumor cells, hematopoietic stem cells, and hair

follicle stem cells at some key regulators in these cells (Adli

et al., 2010; Aiden et al., 2010; Lien et al., 2011). However,

the overall biological significance of H3K4me3 breadth is

unexplored.

Here, we performed a meta-analysis of the H3K4me3 mark,

which revealed that extremely broad H3K4me3 domains in one

cell type mark cell identity/function genes in that cell type across

species. Using the broadest H3K4me3 domains, we discovered

novel regulators of neural progenitor cells and propose that

these domains could be used to identify regulators of a particular

cell type. Remarkably, genes marked by the broadest H3K4me3

domains showed increased transcriptional consistency (i.e., low
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transcriptional variability), and perturbation of H3K4me3 breadth

led to changes in transcriptional consistency. Our study iden-

tifies a new chromatin signature linked to transcriptional consis-

tency and cell identity and highlights that breadth is a key

component of chromatin states.

RESULTS

Broad H3K4me3 Domains Mark Subsets of Genes in All
Organisms but Do Not Predict Expression Levels
To investigate the importance of H3K4me3 breadth, we

analyzed the landscape of H3K4me3 domains in >200 data

sets of H3K4me3 chromatin immunoprecipitation followed by

sequencing (ChIP-seq) or microarray hybridization (ChIP-chip)

in stem, differentiated, or cancer cells from nine species (Table

S1 available online). Consistent with previous reports, H3K4me3

was mostly present in 1–2 kb regions around transcription start

sites (TSSs) (Figures 1A–1C). However, as previously noted in

mammalian stem cells (Adli et al., 2010; Aiden et al., 2010; Lien

et al., 2011), broader domains of H3K4me3 spanning up to 60 kb

were present in all cell types and organisms (Figures 1A–1C and

S1A).BroadH3K4me3domainsweremostly foundclose togenes,

extending both 50 and 30 of TSSs (Figure 1C). The genes marked

by these regions were different between cell types (Figure S1B).

Broad H3K4me3 domains were not associated with higher

H3K4me3 ChIP intensities (Figure S1C and S1D) and were

observed regardless of sequencing depth, method of chromatin

fragmentation, peak-calling algorithm (Figure S1E), or H3K4me3

antibody.

We asked whether broader H3K4me3 domains may be ex-

plained by underlying promoter or gene structure or by expres-

sion levels. Broader H3K4me3 regions did not mark gene

cluster regions (Figure S1F). There was no correlation between

H3K4me3 domain breadth and gene length (Figure S1G) nor

with the numbers of used TSSs (e.g., alternative promoters) (Fig-

ures S1H and S1I). H3K4me3 breadth did not correlate with

mRNA levels (Figures 1D and 1E), even when comparing the

most extreme examples (the top 5% broadest H3K4me3 do-

mains) to the rest of the breadth distribution (Figure S1J). Thus,

broad H3K4me3 domains are present in many cell types across

taxa but cannot be explained as simple readouts of promoter

complexity or high expression levels. These observations

prompted us to investigate the biological relevance of broad

H3K4me3 domains.

Broad H3K4me3 Domains Preferentially Mark Cell
Identity and Function Genes in a Given Cell Type
To assess whether broad H3K4me3 domainsmark specific gene

sets, we analyzed H3K4me3 ChIP-seq data sets from >20

different cell and tissue types in mice and humans. When

compared to all H3K4me3 domains, the top 5% broadest

H3K4me3 domains in a particular cell/tissue type enriched for

annotations linked to the ‘‘function’’ (e.g., specialized cytoskel-

eton for contractile cells) and the ‘‘identity’’ (e.g., factors required

to establish that cell lineage) (Figures S2A and S2B). In human

embryonic stem cells (hESCs), the set of 5% broadest

H3K4me3 domains enriched the most, along the H3K4me3

breadth continuum, for validated embryonic stem cell regulators
674 Cell 158, 673–688, July 31, 2014 ª2014 Elsevier Inc.
(Figures 2A and S2C and Table S2). In contrast, the broadest do-

mains of other histone marks (e.g., H3K27ac) or the top 5%most

‘‘intense’’ H3K4me3 domains (i.e., with the highest ChIP-seq

signal normalized to peak breadth) did not strongly enrich for

stem cell regulators (Figure 2A). More generally, along the

breadth continuum, the top 5% broadest H3K4me3 domains in

a given cell/tissue type most enriched for genes with important

functions for that particular cell/tissue type across cell types

and taxa (Figure 2B).

We next askedwhether the broadest H3K4me3domains could

separate cells or tissues by lineage better than the complete set

of H3K4me3 domains (Zhu et al., 2013). The top 5% H3K4me3

broadest domains indeed discriminated cells or tissues accord-

ing to their lineage in human and mouse (Figures 2C and S2D).

Clusteringqualitymeasures showed that the set of the 5%broad-

est H3K4me3 domains outperformed all other 5% subsets of

H3K4me3 domains (binned by breadth or intensity) as well as

the complete set of H3K4me3 domains (Figures 2D and S2E–

S2G). The broadest H3K4me3 domains could also distinguish

fibroblasts from fully and even partially reprogrammed iPSCs

(Figures S2H and S2I). Reciprocally, genes encoding factors

known to be critical for cell identity/fate (e.g., Myod1 in skeletal

muscle) had significantly broader H3K4me3 domains in the

relevant tissue than expected by chance (p < 2.22 3 10�308 in

Kolmogorov-Smirnov test; Figure 2E and Table S3).

A prediction from these observations is that a subset of the

broadest H3K4me3 domains should be remodeled as cells

differentiate along a lineage. Indeed, some of the top 5% broad-

est H3K4me3 domains are remodeled between progenitors and

derived progeny (e.g., adipocyte progenitors and adipocytes)

(Figure 2F). Genes that gained the top 5% broadest H3K4me3

domains during differentiation were enriched for differentiated

cell functions (e.g., lipid homeostasis), whereas genes that lost

the top 5% broadest H3K4me3 domains were enriched for pro-

genitor cell functions (e.g., cell proliferation) (Figure S2J). A sub-

set of genes was marked by broad H3K4me3 domains in most

cells (e.g., Foxo3), and those marked genes tended to be shared

between mouse and human (p < 1.4 3 10�75 in Fisher’s exact

test), perhaps representing genes that are key for basic cell func-

tion across tissues.

Next, we compared the top 5% broadest H3K4me3 domains

to another signature linked to cell identity, ‘‘super-enhancers’’

(Whyte et al., 2013). Genes marked by the top 5% broadest

H3K4me3 domains were distinct from genes assigned to

super-enhancers (Figure S2K). The top 5% broadest H3K4me3

domains and super-enhancers were similarly effective at pre-

dicting validated stem cell regulators in mESCs (Figure S2L),

but the broadest H3K4me3 domains discriminated better

between lineages (Figure S2M). Additionally, the breadth of

H3K4me3 domains provides a ranking system to further enrich

for key regulators (Figure S2L). Thus, the top 5% broadest

H3K4me3 domains have the potential to identify genes with

functions in a given cell type or lineage.

Broad H3K4me3 Domains as a Discovery Tool for Novel
Regulators of Neural Progenitor Cells
We tested whether the top 5% broadest H3K4me3 domains

could be used to discover novel regulators in a particular cell
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Figure 1. H3K4me3 Breadth Is an Evolutionarily Conserved Feature that Is Not Predictive of Expression Levels

(A and B) Breadth distributions of H3K4me3 ChIP-seq peaks in H1 hESCs (A) and C2C12-derived myotubes (B) display ‘‘heavy right tails,’’ indicative of broader

H3K4me3 domains than expected. (Inserts) Example H3K4me3 regions in H1 hESCs or C2C12 myotubes; (black bar) ChIP-seq peaks called by MACS2.

(C) H3K4me3 ChIP signal sorted by breadth at �5 kb,+5 kb around transcription start sites (TSSs).

(D and E) mRNA levels are not a function of H3K4me3 breadth quantile at the population (left) or single-cell (right) level by RNA-seq in H1 hESCs (D) or C2C12

myoblasts (E). (Insert) Pearson correlation coefficients.

See also Figure S1J.
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Figure 2. H3K4me3 Breadth Enriches for Genes that Are Important for Cell Identity and Function

(A) The top 5% broadest H3K4me3 domains enrich for stem cell regulators in H1 hESCs. Enrichment expressed as �log10 (p value) in Fisher’s exact test.

(Red dashed line) p = 0.05. See also Figure S2C.

(legend continued on next page)
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type. We chose adult neural progenitor cells (NPCs) because

these cells give rise to all brain cell types and may be a source

of cells for regenerative therapies (Bonaguidi et al., 2011;

Doetsch et al., 1999; Lujan et al., 2012). We generated

H3K4me3 ChIP-seq data sets from NPC cultures isolated from

adult mice and from the microdissected brain region that hosts

these cells in vivo (Figures 3A–3C and S3A).

As seen in other cell types, genes marked by the top 5%

broadest H3K4me3 domains in adult NPCs were enriched for

known regulators based on a literature-curated list (Figures

2B, 3C, and S3B and Table S2). A large fraction of broad

H3K4me3 domains in NPCs mark genes encoding transcription

factors, noncoding RNAs, or both (Figure 3D). Interestingly, the

broadest H3K4me3 domains in NPCs marked genes that had

not been previously implicated in the maintenance of the

neuronal lineage (e.g., Bahcc1, Fam72a, 2610017I09Rik; Fig-

ure 3D and Table S4) and genes that, while involved in brain

development, have not been studied in adult/postnatal NPCs

(e.g., Otx1) (Sakurai et al., 2010).

Using a lentiviral-based RNA interference (shRNA) approach,

we knocked down candidate genes marked by the broadest

H3K4me3 domains in primary NPCs, and we quantified the abil-

ity of NPCs to proliferate and generate new neurons (neurogen-

esis) (Figures 3E and S3C). Knockdown of known regulators p53

and Sox2 had the expected effect on NPC proliferation and neu-

rogenesis (Figures 3F, 3G, and 3I) (Wang et al., 2011). Knocking

down two-thirds of genes marked by broad H3K4me3 domains

(12/18) significantly decreased NPC proliferation (Figures 3F,

3G, S3D, and S3E), whereas knockdown of control genes (i.e.,

genes with shorter or no H3K4me3 domains) did not signifi-

cantly affect NPC proliferation. Knockdown of a subset of genes

marked by the broadest H3K4me3 domains also decreased

neurogenesis, suggesting that they are necessary for the differ-

entiation ability of NPCs (Figures 3H, 3I, and S3F). These include

the genes encoding the transcription factor SALL1, the homeo-

box transcription factor OTX1, and BAHCC1, a protein with

a bromo-adjacent homology domain that can bind acetylated

histones (Kuo et al., 2012). In contrast, knockdown of

Fam72a, a gene misregulated in an Alzheimer’s mouse model

(Nehar et al., 2009), led to an increase in neurogenesis, suggest-

ing that FAM72A may function to restrain differentiation in the

progenitor state (Figures 3H, 3I, and S3F). Thus, this targeted

screen allowed us to identify previously uncharacterized genes

involved in NPC self-renewal and/or neurogenesis and to

confirm that the top 5% broadest H3K4me3 domains can be

used to discover genes that regulate the biology of a given

cell type. To facilitate the use of H3K4me3 breadth as a dis-

covery tool in other systems, we created a searchable data-
(B) The top 5% broadest H3K4me3 domains enrich for genes involved in cell/t

(see Extended Experimental Procedures and Table S2). The NPC data set is des

(C) Hierarchical clustering of the top 5% broadest H3K4me3 domains from hum

(D) Measure of cluster tightness (Silhouette index) from different sets of H3K4me

(E) Quantile-by-quantile (Q-Q) plot of the quantile ranks of H3K4me3 domains

(Table S3). Significance in Kolmogorov-Smirnov test.

(F) H3K4me3 breadth is remodeled at a subset of loci during differentiation. (Left) S

adipocyte. (Right) Remodeled top 5% broadest H3K4me3 domains between pre

See also Figure S2J.
base accessible at http://bddb.stanford.edu (Figure S3G and

Table S5).

The Top 5% Broadest H3K4me3 Domains Represent a
Distinct Subclass of H3K4me3 Domains
Considering their association with biological function, we asked

whether the top 5% broadest H3K4me3 domains constitute

a distinct entity with specific (epi-)genomic characteristics.

We used four different classification algorithms—a family of

machine-learning algorithms that can learn to separate entities

based on discriminating features. We built classification models

based on the co-occurrence of protein binding profiles and chro-

matin modifications with H3K4me3 domains in 13 cell types and

organisms (Figures 4A, S4A, Table S1, and Extended Experi-

mental Procedures). All four algorithms were able to discriminate

with high accuracy (>75%) the top 5% broadest H3K4me3

domains apart from random sets of the same number of

H3K4me3 domains from the rest of the distribution (Figures 4B

and S4B–S4D). In contrast, models built from the top 5% most

intense H3K4me3 peaks lacked discriminative power (Figures

4B and S4D). The discriminative power of the classification

models remained high when the top 5% H3K4me3 broadest

domains were compared to domains up to the 85th percentile

of the breadth distribution and then sharply dropped (Figure 4C).

The presence of this inflexion point supports the notion that a

specific set of features distinguishes the broadest H3K4me3 do-

mains from the rest of the distribution. Reciprocally, H3K4me3

domains sharing the discriminating (epi-)genomic characteris-

tics of the broadest H3K4me3 domains were broader than ex-

pected by chance (Figure 4D). Together, these results suggest

that specific combinations of histone marks and protein binding

distinguish the top 5% broadest H3K4me3 domains from the

rest of the breadth continuum.

We next asked which (epi-)genomic characteristics most

contributed to the ability of models to accurately discriminate

the top 5% broadest H3K4me3 domains from the rest of the

distribution (Figure S4E). Consistent with the tissue-spe-

cific genomic deposition pattern of H3K4me3 breadth, we found

that lineage-specific transcription factors (TFs), such as MYOD/

MYOG in myotubes, were recurrent important contributors

to the models (Figure 4B). The enrichment of lineage-specific

TFs at broad H3K4me3 domains was observed in multiple other

cell types (Figure S4G). Other important recurrent contributors

included the transcription initiation complex (e.g., TAFs and RNA

polymerase II [Pol II]), marks of transcriptional elongation (e.g.,

H3K79me2), the H3K4me3 reader CHD1, which is involved in

nucleosome repositioning at transcribed genes (Smolle et al.,

2012), and the transcriptional repressor SIN3A, which constrains
issue function. Significance as scaled �log10 (p value) in Fisher’s exact test

cribed in Figures 3A–3C.

an tissues and cells based on Jaccard Index similarity. See also Figure S2D.

3 domains in human tissues. See also Figures S2E–S2G.

marking known cell identity or reprogramming genes in tissue of relevance

catterplots of H3K4me3 breadth for adipogenesis (3T3L1 in pre- versusmature

- and mature adipocytes.
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spurious transcription in yeast (Carrozza et al., 2005) (Figures 4B,

4E, 4F, S4E, and S4F). These contributors point toward a link

between extreme H3K4me3 breadth and specific regulation of

transcriptional initiationandelongation—asurprisingfindinggiven

that H3K4me3breadth is not correlatedwith expression level (Fig-

ures1EandS1H)and that themodelswerebuilt todiscriminate the

top 5% broadest H3K4me3 domains from the rest of H3K4me3

domains, all of which are thought to be transcriptionally active.

The Top 5%Broadest H3K4me3Domains Exhibit Unique
Regulation of Pol II Pausing and Elongation
We examined whether the top 5% broadest H3K4me3 domains

had unique features of transcriptional regulation. Increasing

H3K4me3 domain breadth was associated with enriched bind-

ing of positive regulators of transcription elongation (e.g., super

elongation complex, P-TEFb) (p < 1 3 10�4 in permutation test;

Figures 5A, 5B, and S5A–S5E) (Luo et al., 2012; Sims et al.,

2004). The top 5% broadest H3K4me3 domains were also the

most likely to be bound by Pol II (Figures 5A, 5B, and S5B–S5E)

despite similar numbers of Pol-II-binding sites (Figure S1H).

The top 5% broadest H3K4me3 domains are associated with

overall higher levels of Pol II (p < 4.7 3 10�2 in one-sample Wil-

coxon tests; Figures 5D and S5G). Serine-2-phosphorylated

Pol II (Ser2P), which is characteristic of productive elongation

(Sims et al., 2004), was significantly higher at genes marked by

the top 5% broadest H3K4me3 domains (p < 8.0 3 10�3 in

one-sample Wilcoxon tests; Figures 5E and 5F). Somewhat sur-

prisingly, serine-5-phosphorylatedPol II (Ser5P), which is associ-

ated with transcriptional initiation, was also increased at genes

marked by top 5% broadest H3K4me3 domains (p < 8.0 3

10�3 in one-sample Wilcoxon tests; Figures S5H and S5I). This

observation, coupledwith the association of the top 5%broadest

H3K4me3 domains to factors that promote Pol II pausing (e.g.,

NELFA) (Sims et al., 2004) (Figures 5A, 5B, and S5A), suggests

that broad H3K4me3 domains are associated with Pol II pausing.

Indeed, genes marked by the top 5% broadest H3K4me3 do-

mains had significantly higher traveling ratios, a measure of Pol

II pausing (p < 2.93 10�2 in one-sample Wilcoxon tests; Figures

5G, 5H, and S5J). Though it may seem contradictory that the

same class of domains would associate with increased elonga-

tion and Pol II pausing, this phenomenon may represent a foot-
Figure 3. The Top 5% Broadest H3K4me3 Domains Can Be Used as a D

(A) Experimental design for H3K4me3 ChIP-seq data sets in primary cultures of

(B) H3K4me3 ChIP-seq peaks at a known NPC regulator in independent NPC p

MACS2.

(C) Distribution of H3K4me3 ChIP-seq peaks as a function of their breadth in NPC

(D) Genes associated to the top 30 broadest H3K4me3 domains in NPCs. Domain

(RP) rank of rank product.

(E) Experimental design to test the role of genes marked by the top 5% broades

(F) Proliferation capacity as normalized MTT optical density relative to control. M

more independent hairpins. (Hashed blue bars) Genes whose role in NPCs was

et al., 2013). See also Figure S3D.

(G) Proliferation capacity as percentage of infected cells that formed primary neuro

conducted in triplicate.

(H) Images of new neurons upon Fam72a knockdown. (Green) TUJ1, neurons; (b

(I) Neurogenesis measured by percentage of DCX+ cells (new neurons) normaliz

Mean + SEM of at least two independent experiments conducted in triplicate with

n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.005 in a Wilcoxon test against
print of steady Pol II release from a heavily preloaded promoter.

Increased Pol II pausing at proximal promoters has been sug-

gested to promote chromatin accessibility (Gilchrist et al.,

2010). Indeed, promoters of genes coated by the top 5% broad-

est H3K4me3 domains were more accessible than promoters

marked by shorter H3K4me3 domains, as assessed by DNase-

seq (p < 4.2 3 10�20 in one-sample Wilcoxon tests; Figures 5I

and S5K) or ATAC-seq (Buenrostro et al., 2013) (p = 4.9 3

10�156 in one-sample Wilcoxon tests; Figure S5L). Thus, the

top 5% broadest H3K4me3 domains are associated with unique

regulation of Pol II initiation and elongation and increased chro-

matin accessibility, suggesting a specific transcriptional output.

The Top 5% Broadest H3K4me3 Domains Are
Associated with Increased Transcriptional Consistency
Increased Pol II pausing and elongation have been linked

to transcriptional consistency (e.g., lower transcriptional vari-

ability, or ‘‘transcriptional noise,’’ in single cells) (Boettiger

et al., 2011; Lagha et al., 2013). In addition, increased chromatin

accessibility at promoters may facilitate transcriptional consis-

tency, in part by minimizing transcriptional bursting (Field

et al., 2008). We asked whether the top 5% broadest

H3K4me3 domains are associated with transcriptional consis-

tency (Figure 6A). To measure transcriptional consistency in

single cells, we calculated the variance in expression relative

to expression level for each gene in single-cell RNA-seq data

sets (Table S6). Remarkably, genes marked by the top 5%

broadest H3K4me3 domains had reduced transcriptional vari-

ability in single-cell RNA-seq experiments (p < 4.6 3 10�26 in

one-sample Wilcoxon tests; Figure 6B). Transcriptional consis-

tency significantly increased with H3K4me3 breadth, but not

with peak intensity (Figure S6A).

To expand our analysis, we tested transcriptional consistency

in data sets generated from cell populations. A gene with stable

transcription levels will tend to have consistent expression

values between biological replicates of cell populations despite

microvariations in the environment (Figure 6A) (Dong et al.,

2011). Similar to our observations at the single-cell level, analysis

of 15 different cell population transcriptome data sets (Table S6)

showed that genes marked by the top 5% broadest H3K4me3

domains had reduced transcriptional variability (p < 4 3 10�3
iscovery Tool to Identify New Regulators of Neural Progenitor Cells

neural progenitors (NPCs) and microdissected niche (subventricular zone).

rimary cultures and in the NPC niche. (Black bars) ChIP-seq peaks called by

s reveals that known NPC regulators are marked by broad H3K4me3 domains.

s ranked by decreasing H3K4me3 breadth. Known regulators of NPCs in bold.

t H3K4me3 domains in NPC proliferation and neurogenesis.

ean + SD of two independent experiments conducted in triplicate with two or

discovered while this study was in preparation (Agoston et al., 2014; Ninkovic

spheres relative to control. Mean + SDof at least two independent experiments

lue) DAPI, nuclei.

ed to control.

two or more independent hairpins. See also Figure S3F. In all relevant panels:

control with Bonferroni correction for multiple testing.
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Figure 4. The Broadest H3K4me3 Domains Are Characterized by a Specific Epigenomic Signature

(A) Simplified scheme of computational modeling. See also Figure S4A.

(B) Average classification accuracy and most important contributors associated to the top 5% broadest H3K4me3 domains identified by Random Forest models

in 13 cell types and organisms. Contributors for which no data was available are shown in gray with diagonal lines. Tissue-specific transcription factors (TFs) refer

(legend continued on next page)
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in one-sample Wilcoxon tests; Figures 6C and S6B–S6D).

The broadest H3K4me3 domains were also associated with

increased transcriptional consistency when considering only

nascent RNA levels in cell populations by GRO-seq (general

run-on sequencing) (p < 6.6 3 10�94 in one-sample Wilcoxon

tests; Figures 6D, S6E and Table S6), indicating that transcrip-

tional consistency at the broadest H3K4me3 domains does

not result from increased mRNA stability. By performing RNA-

seq, we confirmed that genes marked by the top 5% broadest

H3K4me3 domains in primary NPC cultures were more tran-

scriptionally consistent in these cells (p = 1.2 3 10�130 in a

one-sample Wilcoxon test; Figures 6E, 6F and 7E). Transcrip-

tional consistency increased as a function of H3K4me3 domain

breadth in NPCs (Figure 6G). Together, our results indicate that

the broadest H3K4me3 domains are linked to transcriptional

consistency.

Perturbation of H3K4me3 Breadth Leads to Changes in
Transcriptional Consistency
We next tested whether perturbation of H3K4me3 breadth could

result in changes in transcriptional consistency. H3K4me3 is

deposited by members of the COMPASS/Trithorax/Trithorax-

related family of methyltransferase complexes and is removed

by the JARID1 family of demethylases (Black et al., 2012). Com-

ponents of the H3K4me3 regulatory machinery were enriched

to bind loci marked by the broadest H3K4me3 domains (Fig-

ure S7A), suggesting that these regions may require increased

presence of regulators for their deposition/maintenance.

We used the adult NPC model to test whether decreasing

H3K4me3 breadth could affect transcriptional consistency (Fig-

ure 7A). Because WDR5 is an essential scaffolding subunit

shared by all COMPASS/Trithorax-like complexes (Trievel and

Shilatifard, 2009), we reasoned that its knockdown might be

more efficient at reducing H3K4me3 breadth than that of individ-

ual methyltransferases. We tested the effect of short-term (24 hr)

Wdr5 knockdown on H3K4me3 levels and breadth in NPCs

(Figure 7A). By 24 hr of knockdown,Wdr5mRNA andWDR5 pro-

tein levels were reduced (Figures 7B, S7B and S7C) without ma-

jor consequences on cell viability (Figure S7D). Short-term

WDR5 depletion led to a global reduction of H3K4me3 levels in

NPCs but did not significantly affect methylation of other histone

residues (Figure 7B). In line with the global decrease of

H3K4me3, there was a decrease in the signal-to-noise ratio of

H3K4me3 ChIP-seq from Wdr5 shRNA-treated cells compared

to control cells (Figures S7E and S7F). After accounting for the

overall loss of H3K4me3 ChIP-seq intensity (Extended Experi-

mental Procedures, Figure S7E, and S7F), we observed that

H3K4me3 breadth decreased genome wide in response to

WDR5 depletion (Figures 7C and S7G). The mean proportion of

H3K4me3 domains maintaining or losing breadth was fairly con-
to: NANOG (H1 hESCs), SMAD2/3 (H9 hESCs), STAT5 (GM12878), NANOG (mE

Figures S4B–S4E.

(C) Accuracy of progressive classifications in H1 hESCs and mESCs. Classificatio

quantile subsets along the breadth continuum. The accuracy of progressive classi

5% broadest H3K4me3 domains.

(D) Breadth of H3K4me3 domains ‘‘with/without the top 5% broadest H3K4me3

(E and F) Example domains with/without signature in H1 hESCs. (Black bars) Pe
stant above the 30th percentile of breadth (Figure S7G). Thus, a

short-term Wdr5 knockdown provides a way to compare genes

at which H3K4me3 breadth is reduced ormaintained (Figure 7C).

To evaluate the impact of H3K4me3 breadth reduction on tran-

scriptional consistency, we generated RNA-seq data sets from

replicates of NPC cultures infected with control or Wdr5 shRNA

(Figures 7A and S7I). In line with our results in uninfected NPCs

(Figure 6G), H3K4me3 breadth enriched for increased transcrip-

tional consistency in control-infected NPCs (Figure 7E, top).

Upon short-term Wdr5 knockdown, only a few genes were

differentially expressed (Figure S7H). In contrast, genes with

reduced H3K4me3 breadth (<50% of original breadth) upon

Wdr5 knockdown exhibited increased transcriptional variability

compared to genes with maintained breadth (Figure 7D). Reduc-

tion of H3K4me3 breadth was most significantly associated with

loss of transcriptional consistency at the top 5% broadest

H3K4me3 domains (Figures 7D and 7E, bottom). Thus, reduction

of H3K4me3 breadth is associated with a decrease in transcrip-

tional consistency.

To test the effect of H3K4me3 breadth extension on transcrip-

tional consistency, we used H3K4me3 ChIP-seq data sets and

expression microarrays obtained in mESCs following short-

term (48 hr) knockdown of the H3K4me3 demethylase Jarid1b/

Kdm5b (Schmitz et al., 2011). Depletion of JARID1B induces

a substantial increase in H3K4me3 levels in mESCs (Schmitz

et al., 2011). After accounting for changes in H3K4me3 ChIP-

seq intensity, we observed that H3K4me3 breadth tended to in-

crease genome wide in response to Jarid1b knockdown (Figures

7F, S7K, and S7L). Few genes were differentially expressed after

short-term knockdown of Jarid1b (Figures S7K and S7M). How-

ever, genes that gained H3K4me3 breadth (>23 their original

breadth) upon Jarid1b knockdown had a significant decrease

in transcriptional variability compared against those that

maintained H3K4me3 breadth (Figures 7G and S7L). There

was no further gain of transcriptional consistency upon Jarid1b

knockdown for genes marked by the top 5% broadest domains

(Figure 7G), perhaps because genes marked by these domains

have already reached their lowest level of variability. The

decreased transcriptional variability associated with the exten-

sion of H3K4me3 breadth in mESCs mirrors our findings that

reduced H3K4me3 breadth leads to increased transcriptional

variability in NPCs. Together, these results are consistent with

the idea that the broadest H3K4me3 domains may promote

transcriptional consistency at key cell identity/function genes

(Figure 7H).

DISCUSSION

Through meta-analysis of high-throughput genomics data,

construction of machine-learning models, and experimental
SCs), MYOG/MYOD (myotubes), and LIN-13 (C. elegans embryos). See also

ns performed between the top 5% broadest H3K4me3 domains and other 5%

fications reflects the ability to discriminate domains of that quantile from the top

domain signature’’ in H1 hESCs and in mESCs.

aks called by MACS2.
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validation of predictions, we uncover the existence of a subclass

of H3K4me3 domains that preferentially marks genes that are

important for cell identity and function. Our study also identifies

for the first time a genome-wide link between a specific chro-

matin landscape, H3K4me3 breadth, and low transcriptional

variability. We propose to refer to this subclass of broad

H3K4me3 domains as ‘‘buffer domains,’’ as they may help to

prevent spurious bursts of transcription.

Buffer Domains as a Cell Identity Signature and
Discovery Tool
Several epigenetic signatures have been linked to cell identity or

developmental genes: active enhancers (regions of enrichment

for H3K4me1, H3K27ac, and p300 binding) (Heintzman et al.,

2009; Rada-Iglesias et al., 2011), super-enhancers (regions

intensely bound by mediator and cell-specific transcription fac-

tors) (Whyte et al., 2013), stretch enhancers (extended enhancer

regions) (Parker et al., 2013), and DNA methylation canyons or

valleys (large hypomethylated regions) (Jeong et al., 2014; Xie

et al., 2013). Although there is some overlap in the genes

marked by buffer domains and other signatures, many genes

are uniquely captured by each of these signatures (Figure S2K;

B.A.B., D.U., and A.B., unpublished data). Thus, complementary

strategies of transcriptional regulation may control cell identity,

with buffer domains tuning transcriptional consistency and

super/stretch enhancers promoting high expression (Parker

et al., 2013; Whyte et al., 2013).

Here, we test the potential of the buffer domain signature

to assist in the discovery of new cell identity/function genes

in NPCs. We identify new regulators of NPC proliferation and

neurogenesis, such as the putative chromatin reader Bahcc1

or the noncoding RNA 2610017I09Rik. Although we have not

assessed the function of all genes marked by buffer domains

in NPCs, our study illustrates the potential of this signature

to identify new regulators and annotate poorly characterized

genes. As reprogramming factors tend to be marked by buffer

domains, this signature may also help to find candidates for re-

programming cells into a cell type of interest, a task facilitated

by our web-accessible database (http://bddb.stanford.edu).

The predictive value of buffer domains could also be used

to identify genes in contexts for which few functional genes
Figure 5. The Top 5% Broadest H3K4me3 Domains Are Associated wi

(A) Differential binding of components of the elongation machinery to top 5% ve

mutation test.

(B) Enrichments for components of the elongationmachinery inmESCs expressed

the H3K4me3 breadth continuum (see A for enrichment at the top 5% broadest

(C) Mean ChIP-seq enrichment of total Pol II in mESCs. TSS, transcription start s

(D) Normalized Pol II ChIP-seq density over the proximal promoter and gene body.

distribution are also significant in one-sided Wilcoxon tests (9.6 3 10�10 < p < 5

(E) Mean ChIP-seq enrichment of elongating Pol II (Ser2P) in mESCs. TSS, trans

(F) Normalized elongating Pol II (Ser2P) ChIP-seq density over gene bodies. Co

distribution are also significant in one-sided Wilcoxon tests (7.3 3 10�23 < p < 2

(G) Measure of Pol II pausing. Traveling ratio is defined as background-subtracte

(H) Normalized traveling ratios. Comparisons of top 5% broadest H3K4me3 do

Wilcoxon tests (1.8 3 10�9 < p < 4.7 3 10�2) (continued in Figure S5K).

(I) Significance for increased chromatin accessibility inmESCs against expected g

relevant panels: p values for the top 5% broadest H3K4me3-domain-associated

genome-wide value from 10,000 random samplings (red dashed line).
have been identified so far, such as aging or neurological

disorders.

A Specific Transcriptional Output Linked to H3K4me3
Breadth
There is a general consensus that H3K4me3 plays a role in

transcriptional initiation (Lauberth et al., 2013). However, recent

work in Drosophila suggests that H3K4me3 may be dispens-

able for the expression of some genes (Hödl and Basler, 2012).

Here, we find that short-term manipulation of H3K4me3

breadth impacts transcriptional consistency, which suggests

that H3K4me3 may ensure the robustness of transcriptional out-

puts. Interestingly, deficiencies in histone acetyltransferases

or chromatin remodelers lead to increased transcriptional noise

in yeast (Hansen and O’Shea, 2013; Raser and O’Shea, 2004;

Weinberger et al., 2012), supporting the idea that chromatin

states are critical for transcriptional precision.

The mechanisms leading to the deposition/maintenance

of broad H3K4me3 domains and their connection with Pol II

regulation and transcriptional consistency are still unknown.

Subunits of H3K4me3-depositing complexes are required for

Pol II priming (Pérez-Lluch et al., 2011) and may promote Pol

II release into productive elongation (Ardehali et al., 2011).

Conversely, PAF1, which associates with elongating Pol II,

can recruit methyltransferase complexes responsible for the

deposition of both H3K4me3 and H3K79me2 (Krogan et al.,

2003), an elongation mark enriched at the broadest H3K4me3

domains. Based on these previous findings and our own, we

propose a model in which, at some key regulatory genes, a

positive feedback mechanism may link robust initiation and

elongation of Pol II with sustained H3K4me3 deposition over

broad regions (Figure 7H). Sustained elongation may first allow

increased recruitment of H3K4me3-depositing complexes

to specific genes. In turn, this recruitment would promote the

broadening of H3K4me3 deposits and subsequent recruitment

of the H3K4me3 reader CHD1, which facilitates the passage

of elongating Pol II (Smolle et al., 2012). This loop could work

toward ensuring transcriptional consistency at specific loci.

How these loci get selected is unclear, though tissue-specific

transcription factors, which are enriched at the broadest

H3K4me3 domains, might be involved. As transcription factor
th Marks of Transcriptional Elongation and Pol II Pausing

rsus non-top 5% broadest H3K4me3 domains in mESCs. p values from per-

as a percentage of themaximal binding enrichment that can be observed along

H3K4me3 domains). See also Figures S5A–S5E.

ite; TTS, transcription termination site.

Comparisons of the top 5%broadest H3K4me3 domains against the rest of the

.4 3 10�3) (continued in Figure S5G).

cription start site; TTS, transcription termination site.

mparisons of the top 5% broadest H3K4me3 domains against the rest of the

.6 3 10�5) (continued in Figure S5J).

d ChIP-seq density value of Pol II at the promoter versus gene body.

mains against the rest of the distribution that is also significant in one-sided

enome-wide value shown as�log10 (p value) in one-sidedWilcoxon tests. In all

genes calculated in one-sided, one-sample Wilcoxon tests against expected

Cell 158, 673–688, July 31, 2014 ª2014 Elsevier Inc. 683

http://bddb.stanford.edu


A B

C D

E F G

Figure 6. H3K4me3 Breadth Is Associated with Transcriptional Consistency

(A) Transcriptional consistency/variability at the level of single cells or cell populations is defined as variance of expression levels scaled to expression levels

(i.e., scaled variance).

(legend continued on next page)
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dynamics has been associated with transcriptional noise (Han-

sen and O’Shea, 2013), there may also exist an interplay

between transcription factor binding and H3K4me3 breadth in

tuning transcriptional consistency.

Biological Implications of Regulating Transcriptional
Consistency
Control of transcriptional noise, through Pol II pausing or nucle-

osome positioning, has emerged as a new layer of complexity

in biological processes (Levine, 2011; Raser and O’Shea,

2004). In metazoans, a dual requirement for transcriptional con-

sistency has been observed. Reduction of transcription sto-

chasticity is required for embryo patterning (Lagha et al.,

2013; Raj et al., 2010), yet increased transcriptional variability

may be permissive for cell-fate decisions (Balázsi et al.,

2011). Although the importance of transcriptional consistency

postdevelopment is not fully understood, transcriptional noise

increases with age in cardiomyocytes (Bahar et al., 2006), but

not in hematopoietic stem cells (Warren et al., 2007). The prev-

alence of buffer domains suggests that control of transcrip-

tional consistency is critical in most cells and organisms. This

conserved signature may ensure consistent expression of key

genes involved in identity maintenance against variations of a

fluctuating environment, a feature that may be lost during aging

or disease.

EXPERIMENTAL PROCEDURES

H3K4me3 ChIP-Seq Analysis

Publiclyavailabledata setswereobtained fromENCODE (Bernsteinetal., 2012),

Roadmap Epigenomics (Zhu et al., 2013), GEO data sets, ArrayExpress/EBI,

or Sequence Read Archive (SRA) (Table S1). ChIP-seq experiments in NPCs

were performed as previously described (Webb et al., 2013), using H3K4me3

antibody (Active Motif, antibody 39159). Libraries were generated according

to Illumina instructions and were sequenced on an Illumina GAII sequencer.

Reads were mapped to reference genomes using bowtie0.12.7 (Langmead

et al., 2009). ChIP-seq peaks were called using MACS2.08 (Feng et al., 2012)

with the ‘‘—broad’’ option for histone marks. Peaks were assigned to the

gene with the closest TSS.

Proliferation and Neurogenesis in Primary NPC Culture

Adult/postnatal mouse NPCs were isolated by microdissection of the subven-

tricular zone andweremaintained as nonadherent neurospheres, as described

previously (Webb et al., 2013). For proliferation or neurogenesis assays,

adherent adult (proliferation) or postnatal NPCs (neurogenesis) were trans-

duced with a 30% lentiviral dilution and were selected using 0.5 mg/ml of

puromycin (Invivogen). For proliferation, cell growth was quantified by MTT

(Molecular Probes) 4 days following infection. For neurogenesis, cells were
(B) Transcriptional variability at the single-cell level (steady-state mRNA). Compa

tribution are also significant in Wilcoxon tests (2.9 3 10�93 < p < 2.4 3 10�16). S

(C) Transcriptional variability at the cell population level (steady-state mRNA). Co

distribution are also significant in Wilcoxon tests (1.5 3 10�170 < p < 3.9 3 10�3

(D) Transcriptional variability at the cell population level (nascent mRNA byGRO-s

the distribution are also significant in Wilcoxon tests (1.8 3 10�51 < p < 4.4 3 10

(E) Experimental design for RNA-seq data sets in primary NPCs cultures.

(F) Transcriptional variability at the cell population level in adult NPCs (steady-sta

rest of the distribution are also significant in a Wilcoxon test (p = 3.7 3 10�12).

(G) Significance for lower transcriptional variability in adult NPCs against expe

Wilcoxon tests. In all relevant panels: p values for the top 5% broadest H3K4me3-

against expected transcriptome-wide value from 10,000 random samplings (red
plated to account for proliferation differences and were then switched to

NPC differentiation media for 4 days. The number of new neurons was

assessed by Doublecortin (DCX) staining (Santa Cruz, sc-8066).

Transcriptional Variability

Transcriptional variability was assessed using microarray or RNA-seq data

sets with R 3 replicates generated in conditions matching H3K4me3 ChIP

data sets. The expression variance per gene across replicates was scaled to

the expression level of the gene (i.e., normalized to maximum level observed

for that gene). Details are in the Extended Experimental Procedures.
ACCESSION NUMBERS

Previously published data sets are reported in Tables S1 and S6. Sequencing

data have been deposited to the Sequence Read Archive (SRA) under acces-

sion number SRP024294.
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Supplemental Information includes Extended Experimental Procedures, seven

tables, and seven figures and can be found with this article online at http://dx.
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Figure 7. Experimental Perturbation of H3K4me3 Breadth Results in Changes to Transcriptional Consistency

(A) Experimental design to study the effect of knocking down Wdr5 in primary NPC cultures.

(B) Western blot analysis of NPCs treated in control (empty vector) or Wdr5 knockdown after 24 hr of infection. See also Figure S7B.

(legend continued on next page)
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