
Applied Mathematics Letters 23 (2010) 68–72

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the properties of Lucas numbers with binomial coefficients
N. Taskara ∗, K. Uslu, H.H. Gulec
Selçuk University, Science Faculty, Department of Mathematics, 42075, Campus, Konya, Turkey

a r t i c l e i n f o

Article history:
Received 13 April 2009
Received in revised form 18 August 2009
Accepted 18 August 2009

Keywords:
Lucas numbers
Fibonacci numbers
Binomial coefficients

a b s t r a c t

In this study, some new properties of Lucas numbers with binomial coefficients have
been obtained to write Lucas sequences in a new direct way. In addition, some important
consequences of these results related to the Fibonacci numbers have been given.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fibonacci and Lucas numbers have long interested mathematicians for their intrinsic theory and their applications. For
rich applications of these numbers in science and nature, one can see the citations in [1–5]. For instance, the ratio of two
consecutive of these numbers converges to the Golden section α = 1+

√
5

2 . (The applications of Golden ratio appears inmany
research areas, particularly in Physics, Engineering, Architecture, Nature and Art. Physicists Naschie and Marek-Crnjac gave
some examples of theGolden ratio in Theoretical Physics and Physics of High Energy Particles [6–9]). Therefore, in this paper,
we are mainly interested in whether some newmathematical developments can be applied to these numbers. In this paper
we obtain new results about Lucas numbers. As a reminder for the rest of this paper, for n > 2, the well-known Fibonacci
{Fn} and Lucas {Ln} sequences are defined by Fn = Fn−1+ Fn−2 and Ln = Ln−1+ Ln−2, where F1 = F2 = 1 and L1 = 2, L2 = 1,
respectively. Moreover, for the first n Fibonacci numbers, it is well known that the sum of the squares is

∑n
i=1 F

2
i = FnFn+1.

Also
∑n
i=0

(
n−i
i

)
= Fn+1.

The sum of the squares formula is our motivation to look for combinatorial sums related to the square of Lucas numbers.
Thus, again for the motivation of the paper, we should note that, in [10], Spivey presented a new approach for evaluating
combinatorial sums by using finite differences. Also, he extended this new approach to handle binomial sums of the form∑n
k=0

( n
k

)
(−1)kak,

∑
k

( n
2k

)
ak and

∑
k

( n
2k+1

)
ak, as well as sums involving unsigned and signed Stirling numbers of the first

kind
∑n
k=0[

n
k ]ak and

∑n
k=0 s(n, k)ak.

There is also interest for k-Fibonacci polynomials. Let
{
Fk,n
}
n∈N be a k-Fibonacci sequence. Note that if k is a real variable

x then Fk,n = Fx,n and they correspond to the Fibonacci polynomials defined by

Fn+1(x) =

{1 if n = 0,
x if n = 1,
xFn(x)+ Fn−1(x) if n > 1,

(see [11]). Actually many relations for the derivatives of Fibonacci polynomials proved in that paper. As a final sentence of
this section, we note that in the reference [12], some new properties of Fibonacci numbers with binomial coefficients have
been investigated. Actually these new properties will be needed in the proof of one of the main results.
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2. Main results

In this study, we investigate the new properties of Lucas numbers in relation with Fibonacci numbers by using binomial
coefficients. This strategy allows us to obtain in easy form a family of Lucas sequences in a new and direct way.

Theorem 1. For n > 2 and n ∈ Z, we have the relation

Ln+6 = 21Ln−1 + 13Ln−2. (1)

Proof. Let us use the principle of mathematical induction on n.
For n = 3, it is easy to see that

L9 = 21L2 + 13L1 = 47.

Assume that it is true for all positive integers n = k, that is,

Lk+6 = 21Lk−1 + 13Lk−2. (2)

Adding Lk+5 to both sides of (2), we have

Lk+6 + Lk+5 = 21Lk−1 + 13Lk−2 + Lk+5.

Since Lk = Lk−1 + Lk−2, we first obtain Lk+7 = Lk+6 + Lk+5 on the left hand side of the above equality, and for on the right
hand side of the equality, we canwrite Lk+5 = Lk+4+Lk+3. Hence, by iterating this procedure, we canwrite Lk+1 = Lk+Lk−1.
Therefore

Lk+7 = 21Lk + 13Lk−1,

as required. �

In the following theorem, for special values of n ∈ Z, we will formulate special Lucas numbers in terms of their different
indices.

Theorem 2. For n ≥ 0 and n2 ∈ Z, we have the following relations:

(a) L3n+4 =
[
5
(∑n/2

i=0 2
2n+1−4i

(
n− i
n− 2i

))2
− 4

]1/2
,

(b) L2n+3 = 5
(∑n/2

i=0

(
n− i
n− 2i

))2
− 2.

Proof. (a) For n ≥ 0 and n2 ∈ Z, we know

F3(n+1) =
n/2∑
i=0

22n+1−4i
(
n− i
n− 2i

)
(3)

from [12]. Using the property in (3) and the equality L2n = 5F
2
n−1− 4 given in reference [4], in the following iteration, we

have a generalization

L4 =
[
5F 23 − 4

]1/2
=

[
5
((
0
0

)
21
)2
− 4

]1/2
= 4

L10 =
[
5F 29 − 4

]1/2
=

[
5
((
2
2

)
25 +

(
1
0

)
21
)2
− 4

]1/2
= 76

L16 =
[
5F 215 − 4

]1/2
=

[
5
((
4
4

)
29 +

(
3
2

)
25 +

(
2
0

)
21
)2
− 4

]1/2
= 1364

...

L3n+4 =
[
5F 23n+3 − 4

]1/2
=

[
5
((n
n

)
22n+1 +

(
n− 1
n− 2

)
22n−3 + · · · +

( n
2

0

)
21
)2
− 4

]1/2
.
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or using the summation symbol, we write

L3n+4 =

5( n/2∑
i=0

22n+1−4i
(
n− i
n− 2i

))2
− 4

1/2 .
(b) Using the equality L2n+3 = 5F 2n+1 − 2 given in reference [4], for

n+1
2 ∈ Z and n ≥ 1, Fn+1 =

∑ n−1
2
i=0

(
n− i
n− 2i

)
as given

in [12], the proof can be seen easily. �

By considering the proof of this above result, we can obtain the following theorem.

Theorem 3. For n ≥ 1 and n−12 ∈ Z, we have the following relations:

(a) L3n+4 =

[
5
(∑ n−1

2
i=0 2

2n+1−4i
(
n− i
n− 2i

))2
+ 4

]1/2
,

(b) L2n+3 = 5
(∑ n−1

2
i=0

(
n− i
n− 2i

))2
+ 2.

Proof. Proof of this theorem can be seen easily in a similar manner with Theorem 2. �

In addition to Theorem 2, we may also obtain more special Lucas numbers as in the following.

Theorem 4. For n ≥ 0 and n2 ∈ Z, we have the following relations:

(a) L3n+2 = 5
4

∑n/2
i=0 2

2n+1−4i
(
n− i
n− 2i

)
−
3
4 L3n+1,

(b) L3n+3 =
∑n/2
i=0 2

2n+1−4i
(
n− i
n− 2i

)
+ F3n+1.

Proof. (a) Let us use the principle of mathematical induction on n.

For n = 0, it is easy to see that

L2 =
5
4

[
21
(
0
0

)]
−
3
4
L1 = 1.

For n = 2, we write

L8 =
5
4

[
25
(
2
2

)
+ 21

(
1
0

)]
−
3
4
L7 = 29.

Assume that it is true for all positive integers n = 2k. That is,

L6k+2 =
5
4

k∑
i=0

24k+1−4i
(
2k− i
2k− 2i

)
−
3
4
L6k+1. (4)

Therefore, we have to show that it is true for n = 2k+ 2. In other words,

L6k+8 =
5
4

k+1∑
i=0

24k+5−4i
(
2k+ 2− i
2k+ 2− 2i

)
−
3
4
L6k+7.

Let us rewrite (4) by using (3),

L6k+2 =
5
4
F6k+3 −

3
4
L6k+1. (5)

Adding
∑3
i=1 L6k+2i+1 to both sides of (5), we have

L6k+2 +
3∑
i=1

L6k+2i+1 =
5
4
F6k+3 −

3
4
L6k+1 +

3∑
i=1

L6k+2i+1

L6k+8 =
5
4
F6k+3 −

3
4
L6k+1 +

3∑
i=1

L6k+2i+1.
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Since Fn = Fn+2− Fn+1, we first obtain F6k+3 = F6k+5− F6k+4 on the right hand side of above equality. Thus we can write

L6k+8 =
5
4
(F6k+5 − F6k+4)−

3
4
L6k+1 +

3∑
i=1

L6k+2i+1.

Hence, by iterating this procedure, we have

L6k+8 =
5
4
F6k+9 + 5F6k+9 − 10F6k+8 −

3
4
L6k+1 +

3∑
i=1

L6k+2i+1. (6)

Also, it is known from [4] that

Fn =
1
5
(Ln + Ln+2) . (7)

Using (7), we see F6k+9 = 1
5 (L6k+9 + L6k+11) and F6k+8 =

1
5 (L6k+8 + L6k+10). So one can easily rearrange (6) and have

L6k+8 =
5
4
F6k+9 + L6k+9 + L6k+11 − 2L6k+8 − 2L6k+10 −

3
4
L6k+1 +

3∑
i=1

L6k+2i+1.

Since Lk = Lk−1 + Lk−2, we can write L6k+1 = L6k+3 − L6k+2 and L6k+11 = L6k+10 + L6k+9. Hence, by iterating this procedure,
we obtain

3
4
L6k+7 = L6k+9 + L6k+11 − 2L6k+8 − 2L6k+10 −

3
4
L6k+1 +

3∑
i=1

L6k+2i+1.

It is obvious that

L6k+8 =
5
4
F6k+9 −

3
4
L6k+7.

After all, by using (3), we obtain

L6k+8 =
5
4

k+1∑
i=0

24k+5−4i
(
2k+ 2− i
2k+ 2− 2i

)
−
3
4
L6k+7,

which ends up the induction. Therefore we have the required formulate on L3n+2.

(b) The proof can be seen by using the principle of induction on n. �

By applying the same method as in the proof of Theorem 4, we have the following.

Theorem 5. For n ≥ 1 and n−12 ∈ Z, we have the following relations:

(a) L3n+2 = 5
4

∑ n−1
2
i=0 2

2n+1−4i
(
n− i
n− 2i

)
−
3
4 L3n+1,

(b) L3n+3 =
∑ n−1

2
i=0 2

2n+1−4i
(
n− i
n− 2i

)
+ F3n+1.

Proof. The proof is similar to the proof of Theorem 4. �

In the last part of this paper, we would like to present the following two facts other than the above results about how to
obtain some Lucas numbers with binomial coefficients. In fact we thought that this would be needed for the reader.
For n ≥ 0 and n ∈ Z, we have relations

L2n+2 =

5( n∑
i=0

(
n+ i
2i

))2
− 4

1/2

and

L2n+3 =

5( n∑
i=0

(
n+ 1+ i
1+ 2i

))2
+ 4

1/2 .
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