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SUMMARY phorylation motifs comprising Pro-Pro-Pro-Ser-Pro (PPPSP)
Low-density lipoprotein receptor related proteins 5
and 6 (LRP5/6) are transmembrane receptors that
initiate Wnt/b-catenin signaling. Phosphorylation of
PPPSP motifs in the LRP6 cytoplasmic domain is
crucial for signal transduction. Using a kinome-wide
RNAi screen, we show that PPPSP phosphorylation
requires the Drosophila Cyclin-dependent kinase
(CDK) L63. L63 and its vertebrate homolog PFTK are
regulated by the membrane tethered G2/M Cyclin,
Cyclin Y, which mediates binding to and phosphory-
lation of LRP6. As a consequence, LRP6 phosphory-
lation and Wnt/b-catenin signaling are under cell
cycle control and peak at G2/M phase; knockdown
of the mitotic regulator CDC25/string, which results
in G2/M arrest, enhances Wnt signaling in a Cyclin
Y-dependent manner. In Xenopus embryos, Cyclin
Y is required in vivo for LRP6 phosphorylation,
maternal Wnt signaling, and Wnt-dependent antero-
posterior embryonic patterning. G2/M priming of
LRP6 by a Cyclin/CDK complex introduces an unex-
pected new layer of regulation of Wnt signaling.

INTRODUCTION

Wnt/b-catenin signaling regulates patterning and cell prolifera-

tion throughout embryonic development and is widely implicated

in human disease, notably cancer, (Clevers, 2006; Logan and

Nusse, 2004; Moon et al., 2004; Polakis, 2000; Reya and Clevers,

2005; Wodarz and Nusse, 1998). Two principal classes of trans-

membrane (TM) receptors function to transduce Wnt/b-catenin

signaling; the seven pass TM Frizzled (Fz) proteins (Bhanot

et al., 1996) and the single pass TM low density lipoprotein

receptor-related proteins 5 and 6 (LRP5/6; Drosophila Arrow;

Pinson et al., 2000; Tamai et al., 2000; Wehrli et al., 2000). Friz-

zled receptors activate b-catenin-dependent (canonical) as

well as b-catenin-independent (noncanonical, such as planar

cell polarity) pathways, while LRP5/6 function more specifically

in the Wnt/b-catenin pathway (He et al., 2004).

LRP6 signaling requires Ser/Thr phosphorylation of its intra-

cellular domain (ICD), which contains five PPPSPXS dual phos-
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and directly adjacent casein kinase 1 (CK1) sites (see Fig-

ure S1A available online; Davidson et al., 2005; Macdonald

et al., 2008; Tamai et al., 2004; Wolf et al., 2008; Zeng et al.,

2005, 2008). Phosphorylation of the most N-terminal PPPSP

(S1490) involves glycogen synthase kinase 3 (GSK3) (Zeng

et al., 2005), while CK1g phosphorylates two Ser/Thr clusters

near S1490 (see Figure S1A; Davidson et al., 2005). Phosphoryla-

tion of CK1 sites is downstream of, and requires, PPPSP

phosphorylation (Davidson et al., 2005); however, alternative

epistasis models have also been proposed (Yum et al., 2009).

Both PPPSP and CK1 site phosphorylation is necessary for

Axin binding to LRP6 and Wnt/b-catenin pathway activation

(Davidson et al., 2005; Tamai et al., 2004; Zeng et al., 2005). Phos-

phorylated PPPSPXS motifs directly inhibit the ability of GSK3 to

phosphorylate b-catenin, providing a potential mechanism link-

ing LRP6 activation to b-catenin stabilization (Cselenyi et al.,

2008; Piao et al., 2008; Wu et al., 2009). Investigating how LRP6

phosphorylation is regulated is thus crucial for understanding

Wnt receptor activation and downstream signaling. We observed

constitutive, non-Wnt-induced S1490 phosphorylation (David-

son et al., 2005, this study), suggesting that additional proline-

directed kinases may be involved, such as the ERK or Cyclin-

dependent kinase (CDK) subgroups (Manning et al., 2002).

CDKs are regulators of the cell cycle and require Cyclin part-

ners, whose levels are precisely controlled during the cell cycle,

endowing CDKs with both temporal activity and substrate spec-

ificity (Morgan, 1997). Several less well-characterized CDK-like

proteins exist, including the PFTAIRE kinase subfamily (Sauer

et al., 1996). Here, we report on the identification of a Cyclin/

PFTAIRE-CDK complex that phosphorylates LRP6 S1490 in

a cell cycle-dependent manner, which brings Wnt/b-catenin

signaling under G2/M control and introduces a surprising new

principle in Wnt regulation.
RESULTS

Identification of a Cyclin/CDK Required for LRP6 PPPSP
Phosphorylation
One controversial question in LRP6 regulation concerns whether

PPPSP phosphorylation is exclusively Wnt induced (Binnerts

et al., 2007; Bryja et al., 2007; Khan et al., 2007; Zeng et al.,

2005, 2008) or also constitutive (Davidson et al., 2005; Wolf
evier Inc.
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Figure 1. Identification of the PFTAIRE CDK, L63 as an LRP6 Kinase

(A) Scheme of Drosophila kinome-wide RNAi screen.

(B) Wg reporter assay from one of the 96-well plates screened as in (A).

(C) LRP6 western blots of lysates from row E and part of row H of the 96-well plate shown in (B), with the gene transcripts targeted by dsRNA shown above.

Simultaneous reduction of LRP6 phosphorylation and Wg signaling was observed for L63 and gish RNAi (asterisks/diamonds).

(D) Wg reporter assay (upper graph) and LRP6 western blots (lower panels) from the same LRP6 transfected Drosophila S2R+ cells treated with indicated dsRNA

(RNAi).

(E) Wg reporter assays in S2R+ cells transfected with either wg, LRP6, or dsh as pathway activators and treated with the indicated dsRNA (RNAi).
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et al., 2008). We have evidence suggesting that protein kinases

in addition to GSK3 are involved in LRP6 PPPSP phosphoryla-

tion (detailed in Figure S1). To search for such additional LRP6

PPPSP kinases, we performed a kinome-wide RNAi screen,

using Drosophila cells transfected with mammalian LRP6

(Figure 1A). Transfection of mammalian LRP6 without Wingless

(Wg; Drosophila Wnt) is sufficient to induce a robust signaling

response, possibly because forced receptor oligomerization

upon overexpression partially bypasses Wnt requirement (Bilic

et al., 2007). TOPFLASH (Wnt) reporter assay (Figure 1B) and

LRP6 western blot screening (Figure 1C) expectedly identified

the LRP6 kinase gish/CK1g (Davidson et al., 2005), which

reduced Wg signaling (Figures 1B and 1D) and T1479 phosphor-

ylation (Figure 1C), without effecting S1490 phosphorylation

levels (Figures 1C and 1D). This is in agreement with the

proposed epistasis of PPPSP and CK1 site phosphorylation

(Davidson et al., 2005; Zeng et al., 2005).

Importantly, we identified a single candidate PPPSP kinase,

the CDK-like putative cell cycle regulator L63/Eip63E (Betten-

court-Dias et al., 2004; Stowers et al., 2000). L63 RNAi reduced

Wg signaling (Figure 1B) and phosphorylation of LRP6 at

both S1490 and T1479 (Figure 1C). A second, nonoverlapping

L63 RNAi probe confirmed this effect (Figure 1D). Consistent

with it acting at the level of LRP6, L63 RNAi reduced Wg- and
Developme
LRP6-induced reporter activity but had no effect on Dsh-induced

signaling (Figure 1E).

Bona fide CDKs are cell cycle regulated because they depend

on Cyclins for their enzymatic activity (Murray, 2004). We

searched ‘‘BioGrid’’ database (http://www.thebiogrid.org) and

found one genome-wide yeast-two-hybrid study that identified

an uncharacterized Drosophila Cyclin, CG14939, as a potential

L63 interactor (Stanyon et al., 2004). Two highly related, evolu-

tionarily conserved homologs of CG14939 exist in most verte-

brates, CCNY (Cyclin Y) and CCNYL1 (Cyclin Y-like 1). However,

humans appear to have two additional members (CCNYL2 and

CCNYL3). We therefore refer to Drosophila CG14939 as DCyclin

Y. In agreement with a recent report (Jiang et al., 2009), we found

that a putative N-terminal myristoylation signal localizes Cyclin Y

at the plasma membrane (Figure S2A). Dcyclin Y RNAi phe-

nocopied L63 RNAi (Figure 2A), confirming it is a regulatory

subunit of L63. Combining L63 and Dcyclin Y RNAi only margin-

ally enhanced these effects (Figure 2A). Like L63 RNAi, Dcyclin Y

RNAi reduced TOPFLASH signaling induced by Wg and LRP6,

but not Dsh (not shown). We next addressed the requirement

of DCyclin Y/L63 for PPPSP phosphorylation of endogenous

Arrow in Drosophila cells. Both Sp1490 antibody and an anti-

Arrow antibody recognized a Drosophila protein of the expected

size (Figure 2B, lane 1). Confirming specific detection, the
ntal Cell 17, 788–799, December 15, 2009 ª2009 Elsevier Inc. 789
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Figure 2. Cyclin Y Mediates LRP6 Phosphorylation

(A) Wg reporter assay (upper graph) and LRP6 western

blots (lower panels) from the same LRP6 transfected

Drosophila S2R+ cells treated with the indicated dsRNA

(RNAi).

(B) Western blots of untransfected S2R+ cells treated with

the indicated dsRNA (RNAi). The loading control (lower

panel) is a nonspecific band detected by Sp1490 antibody.

(C) Western blots from HEK293T cells transfected with the

indicated genes.

(D) Wg reporter assay (upper graph) and LRP6 western

blots (lower panels) of the same pftk1 and/or LRP6 trans-

fected S2R+ cells treated with the indicated dsRNA (RNAi).

(E) Western blots from MEF cells transfected with the

indicated siRNAs.

(F) Western blots (WB) of immunoprecipitates (IP) or initial

lysates (input) from HEK293T cells transfected as indi-

cated.

(G) Cyclin Y(CCNY)/L63 in vitro kinase assay. Autoradiog-

raphy (upper panel) and anti-FLAG WB (lower panel),

shows 32P incorporation and protein production controls,

respectively.
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Sp1490 antibody signal was phosphatase sensitive (not shown)

and was eliminated by arrow RNAi (Figure 2B, lane 2). Using this

antibody, we observed a reduced phosphorylation of Arrow with

either L63 or Dcyclin Y RNAi and enhanced reduction by

simultaneous targeting (Figure 2B, lane 5), thus demonstrating

their functional interaction. Taken together, these results support

the requirement of a Cyclin/CDK complex for LRP6/Arrow

PPPSP phosphorylation and Wnt signaling.

Vertebrate Cyclin Y/Pftk1 Phosphorylates LRP6
The closest vertebrate L63 homologs are the PFTAIRE CDKs,

PFTK1 and PFTK2 and the related PCTAIRE CDKs, PCTK1, -2,

and -3 (Charrasse et al., 1999; Okuda et al., 1992; Shu et al.,

2007). We tested the ability of Cyclin Y and Pftk1 to phosphory-

late PPPSP when coexpressed with LRP6. Pftk1 or Cyclin Y

alone had little effect, however their combined expression with

LRP6 resulted in strong enhancement (Figures 2C and S2F).

The myristoylation defective Cyclin Y G2A mutant (Figure 2C),
790 Developmental Cell 17, 788–799, December 15, 2009 ª2009 Elsevier Inc.
as well as Cyclin C and Cyclin I (data not shown),

showed no synergy with Pftk1 in this assay.

Cyclin Y/Pftk overexpression had no effect on

CK1 site phosphorylation in the absence of Wnt

(Figure 2C); however, they enhanced Tp1479

when cells were treated with Wnt (Figure S2B).

This further confirms that S1490 phosphoryla-

tion sensitizes, or primes, downstream T1479

phosphorylation in the presence of Wnt (David-

son et al., 2005; Zeng et al., 2005). Furthermore,

when expressed in Drosophila cells, Pftk1

rescued the decrease in S1490 phosphorylation

and Wg signaling caused by L63 RNAi (Fig-

ure 2D). Mammalian Cyclin Y overexpression

likewise rescued the Dcyclin Y RNAi phenotype

in Drosophila cells (Figure S2C). Knockdown of

pftk1 and -2 by siRNA in mouse embryonic

fibroblasts (MEF) and human embryonic kidney

(HEK) cells was, however, without effect (Fig-
ure 2E and data not shown). This is likely due to functional

compensation since all five PFTAIRE/PCTAIRE CDKs are

expressed in these cells and their combined (partial) knock

down was also ineffective (data not shown). In contrast, siRNAs

targeting both ccny and ccnyl1 mRNAs, but neither alone,

reduced S1490 phosphorylation in MEF cells (Figures 2E and

S2D). Furthermore, reduced LRP6 PPPSP phosphorylation in

CCNY/CCNYL1 siRNA transfected HEK cells was accompanied

by reduced endogenous Wnt signaling (Figure S2E). qPCR

confirmed >70% knockdown of all siRNA targeted transcripts

(not shown). Consistent with these results, CCNY was very

recently shown to directly interact with and regulate PFTK1

(Jiang et al., 2009).

Cyclin Y/Pftk Associate with and Phosphorylate LRP6
We next tested the directness of LRP6 phosphorylation by the

Cyclin Y/CDK complex. Coimmunoprecipitation (coIP) experi-

ments showed that LRP6 associates with Cyclin Y but not, or
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Figure 3. G2/M Cell Cycle Phase Enhance-

ment of Cyclin Y, LRP6 Phosphorylation,

and Wnt Signaling

(A–C) Western blots (WB) of V5-Pftk1, V5-CCNY,

and V5-GFP (A), endogenous CCNY (B), or endog-

enous LRP6 (C) in asynchronous (asyn.) HEK293

cells or cells arrested at indicated phases of the

cell cycle by drug treatment. FACS analysis of

cells is shown beneath corresponding lanes.

(D) Western blots of endogenous proteins from

HeLa cell lysates after release from double thymi-

dine block for indicated times. FACS analysis of

cells is shown beneath corresponding lanes.

(E) Normalized Wnt and BMP reporter assays of

control or ligand stimulated, asynchronous, or

cell cycle-arrested HEK293 cells. FACS analyses

of cells are shown in Figure S3B.

(F) qPCR analysis of indicated genes in nonmitotic

or mitotic HeLa cells treated for 1h with Wnt3a

before mitotic shake-off. Values are normalized

to GAPDH.
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only weakly, with Pftk (Figure 2F). However, coexpression of Pftk

with Cyclin Y enhanced coIP of LRP6 (Figure 2F) and the same

was true for the Drosophila homologs, DCyclin Y and L63

(Figure S2F). Binding of LRP6 to the Cyclin Y/CDK complex

was always accompanied by enhanced S1490 phosphorylation.

Also, there was a severe reduction in the ability of G2A mutant

CCNY to associate with LRP6 (Figure S2G), in agreement with

its reduced activity (Figure 2C). Thus, Pftk and Cyclin Y synergize

to form a functional complex with LRP6 that results in its

phosphorylation. We used in vitro kinase assays to further

corroborate the directness of this phosphorylation. Neither

immunopurified L63 alone nor Cyclin Y alone phosphorylated

a soluble, intracellular LRP6 domain (LRP6-C3; Figure 2G) but,
Developmental Cell 17, 788–799, D
importantly, their combination resulted

in robust LRP6 phosphorylation. An LRP6

mutant (m5) that harbors Alanine point

mutations within all PPPSP motifs (Tamai

et al., 2004) was not phosphorylated. We

conclude that Cyclin Y recruits its CDK

partner to LRP6 at the membrane and

phosphorylates its PPPSP motifs.

Cell Cycle Regulated
Phosphorylation of LRP5/6
Since a Cyclin/CDK complex can phos-

phorylate LRP6 we investigated whether

Wnt signaling is cell cycle regulated.

Progression through the cell cycle is

driven largely by regulation of CDKs,

predominantly via Ubiquitin mediated

degradation of their Cyclin subunits

(Murray, 2004). We first demonstrated

that Cyclin Y is subject to ubiquitination

(Figure S3A). Pftk1 was not ubiquitinated

and did not alter Cyclin Y ubiquitination;

however, it was markedly enhanced/

stabilized by Cyclin Y.
We then monitored overexpressed Cyclin Y and Pftk1 levels in

drug synchronized HEK293 cells and observed a clear enrich-

ment of both CCNY and Pftk1 in Nocodazole-treated cells

arrested at G2/M (Figure 3A). Parallel FACS analysis confirmed

cell cycle phase enrichment. We also detected clear enrichment

of endogenous CCNY at G2/M (Figure 3B). Cyclin Y thus

behaves like G2/M Cyclins (Murray, 2004), and this predicts

that phosphorylation of LRP6 is enhanced at this stage. Indeed,

endogenous Sp1490 levels showed a distinct peak in G2/M

arrested cells (Figure 3C). To analyze cell cycle dependent

LRP6 phosphorylation and CCNY levels with a more detailed

time-course we performed double thymidine block at G1/S

and release in HeLa cells. This confirmed that Sp1490 levels
ecember 15, 2009 ª2009 Elsevier Inc. 791
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peak during G2/M along with endogenous Cyclin Y, the mitotic

Cyclin B, and cytoplasmic b-catenin (Figure 3D). As PPPSP

phosphorylation is required for LRP6 signaling, this also pre-

dicts that Wnt signaling in HEK293 cells should be maximal at

G2/M. Indeed, both low level endogenous Wnt signaling as

well as Wnt3a stimulated signaling were maximal in cells

arrested at G2/M with Nocodazole (Figures 3E and S3B). Lower

BMP signaling at G2/M was not due to drug toxicity since BMP

induced SMAD1/5/8 phosphorylation was unaffected (not

shown).

To confirm that Wnt signaling is predominant at G2/M not only

in pharmacologically synchronized cells but also in untreated

cells we employed mitotic shake-off to enrich for G2/M cells.

We used intron-specific primers to monitor nascent transcripts

of the direct Wnt target gene AXIN2, which is 4-fold Wnt-induc-

ible in HeLa cells (not shown). In the mitotic cell fraction we found

a 2-fold RNA enrichment of the mitotic marker PLK1 (Alvarez

et al., 2001) and AXIN2, but not the control gene SMAD6

(Figure 3F). Taken together, these results indicate that Cyclin Y

regulates Wnt signaling via G2/M specific phosphorylation of

LRP6.
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Figure 4. Phospho-LRP6 Signalosomes Predominate in Mitotic

Cells

(A) Confocal microscopy of P19 cells stained with Hoechst and LRP6 Tp1479

antibody. siRNA transfected cells were treated with control or Wnt3a condi-

tioned medium, as indicated. Arrowheads indicate M phase cells (condensed
Cell Cycle-Dependent LRP6 Signalosome Formation
To further confirm the phenomenon of cell cycle-dependent Wnt

signaling without using drug treatment, we performed Tp1479

immunofluorescence to detect Wnt-induced Lrp6 signalosomes

(Bilic et al., 2007) in P19 cells (Figure 4). Upon Wnt treatment

Tp1479 positive aggregates were detected in the majority of

cells (Figure 4A); however, the signal was much stronger in

mitotic cells, which are marked by their characteristic con-

densed chromosomes (Figures 4A and 4B). In contrast, there

was no difference in BMP4 induced Smad1/5/8 phosphorylation

(data not shown). siRNAs targeting lrp5,6 significantly reduced

the vesicular Tp1479 signal, confirming antibody specificity

(Figure 4A). We conclude that maximal LRP6 signalosome

formation occurs in mitotic cells.

chromosomes) and arrows indicate Lrp6 signalosomes in non-M phase cells.

Note that M phase cells show much stronger Tp1479 staining (vesicular

clouds) compared to nonmitotic cells (few speckles). Centrosomal staining is

unspecific (not significantly reduced by LRP5/6 siRNA). Bar is 10 mm.

(B) Quantification of confocal microscopy analysis shown in (A). The occur-

rence of strong Tp1479 positive cells was scored in non-M phase (n = 100)

and M phase (n = 80) cells as distinguished by Hoechst staining.
Cyclin Y Is Required for Lrp6 Phosphorylation, Wnt
Signaling, and A-P Patterning in Xenopus Embryos
We next addressed the physiological relevance of Lrp6 phos-

phorylation by the Cyclin Y/CDK complex using Xenopus

embryos, where Wnt/b-catenin signaling regulates anteroposte-

rior (a-p) patterning at gastrula and neurula stage (Niehrs, 2004).

Both ccny and ccnyl1 genes are expressed throughout early

development and of the PFTAIRE and PCTAIRE CDKs pftk2,

pctk2, and pctk3 show expression at gastrula or neurula stage

(Figure S4). By in situ hybridization expression of cyclin Y genes

was not spatially restricted (data not shown).

Morpholino antisense oligonucleotides (MO) targeting Xeno-

pus lrp6 (Hassler et al., 2007) abolished a 200 kD band recog-

nized by the Sp1490 antibody (Figure 5A), confirming its specific

detection of endogenous Lrp6. Embryos injected with MOs

targeting both Xenopus cyclin Y transcripts (cycY MO), but

neither alone (not shown), showed a significant reduction in

PPPSP phosphorylation (Figure 5A). The anti-Cyclin Y antibody

confirmed MO knockdown. Like mammalian cell culture loss of

function, injection of MOs targeting pftks/pctks had no signifi-

cant effects on Lrp6 phosphorylation levels or on embryonic
792 Developmental Cell 17, 788–799, December 15, 2009 ª2009 Els
development (data not shown), likely reflecting functional

redundancy.

Injection of cycY MO downregulated the Wnt reporter

TOPFLASH and this was rescued by coinjection of human

CCNY mRNA, further confirming Morpholino specificity, as well

as by b-catenin mRNA, confirming that cycY MO did not unspe-

cifically/irreversibly block Wnt signaling (Figure 5B). Downregu-

lation was observed in early neurula but not blastula, consistent

with reduction of zygotic Wnt signaling (data not shown). These

results indicate an in vivo requirement for Cyclin Y in Wnt

signaling.

Phenotypically, cyclin Y morphants were anteriorized (Fig-

ure 5C), characteristic of reduced zygotic Wnt signaling (Niehrs,

2001). Indeed, they phenocopied lrp6 morphants (Figure 5C).

Anteriorization by lrp6 or cycY MO was strongest when
evier Inc.
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Figure 5. Cyclin Y Is Required for Wnt/b-Catenin Signaling during Xenopus A-P Patterning
(A) Western blots of endogenous proteins from early neurula (stage 14) Xenopus embryos injected equatorially into each blastomere at the four-cell stage with

Morpholino oligonucleotides (MO) targeting either lrp6 or both cyclin Y (cycY MO) transcripts. Asterisks indicate nonspecific bands.

(B) TOPFLASH reporter assays in stage 13 embryos injected as in (A) with cycY MOs alone or together with either 500 pg hCCNY mRNA or 63 pg b-catenin-GFP

mRNA.

(C) Tailbud (stage 32) embryos microinjected with cycY MOs or lrp6 MO as in (A). 0% (n = 39) of control, 61% (n = 38) of cycY, and 70% (n = 53) of lrp6 MO injected

embryos were anteriorized.

(D) Early tailbud (stage 28) embryos injected as in (A) with limiting MO doses. 0% (n = 30) of control, 0% (n = 42) of cycY, 0% (n = 63) of lrp6, and 91% (n = 53) of

cycY + lrp6 MO-injected embryos showed strong anteriorization (dorsoanterior index > 6; Kao and Elinson, 1988).

(E) qPCR analysis of otx2 mRNA in stage 15 embryos injected as in (A) with limiting MO doses. mRNA levels were normalized to odc.

(F) Whole-mount in situ hybridizations for the forebrain marker bf1 on mid-neurula (stage 15/16) embryos injected in one blastomere at the two-cell stage with

either control or cycY MOs and/or lrp6 MO. Beta-galactosidase mRNA was coinjected as tracer (blue/green staining).

(G) Western blots of endogenous proteins from mature oocytes injected equatorially with cycY MOs alone or together with 125 pg hCCNY mRNA.

(H) TOPFLASH reporter assays in Xenopus embryos injected equatorially as oocytes with control MO or b-catenin MO or cycY MOs. For rescue, fertilized embryos

were injected with 50 pg b-catenin-GFP mRNA.

(I) qPCR analysis of the indicated genes in Xenopus embryos injected equatorially as oocytes as in (H).
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equatorial, not animal, regions were injected (data not shown),

indicating a predominant requirement in mesendoderm rather

than ectoderm. Importantly, limiting doses of lrp6 and cycY

MOs synergized to anteriorize embryos (Figure 5D), consistent

with a functional interaction of the proteins. Supporting this,

qPCR and in situ hybridization analysis of neurula stage embryos

injected with limiting doses of lrp6 and cycY MO showed

synergistic upregulation of the anterior neural markers, otx2

(Figure 5E) and bf1 (Figure 5F), respectively, a hallmark of zygotic

Wnt/b-catenin inhibition.
Developme
No significant differences in the number of mitotic cells were

seen in embryos injected with lrp6 and/or cycY MOs, ruling out

cell proliferation effects on axial patterning (data not shown).

We conclude that during Xenopus development, Cyclin Y is

required to mediate Lrp6 phosphorylation and zygotic Wnt/

b-catenin signaling during a-p patterning.

We next addressed the role of maternally expressed cyclin Y

(Figure S4) on maternal Wnt signaling (Heasman et al., 2000).

CycY MO reduced maternal Lrp6 PPPSP phosphorylation

in oocytes and this effect was rescued by CCNY mRNA
ntal Cell 17, 788–799, December 15, 2009 ª2009 Elsevier Inc. 793
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Figure 6. Cell Cycle Regulation of Lrp6

Phosphorylation and Wnt Signaling In Vivo

(A) Western blots of endogenous proteins from

Xenopus eggs treated with the calcium ionophore

A23187 for indicated times (minutes). M, meta-

phase II; I, interphase.

(B) Western blots of endogenous proteins from

lysates of late neurula stage (stage 18) Xenopus

embryos injected with control or cycY MOs as in

Figure 5A, and, where indicated, treated for 8 hr

with nocodazole.

(C) Wg reporter assay (upper graph) and LRP6

western blots (lower panels) from the same

LRP6 transfected Drosophila S2R+ cells treated

with the indicated dsRNA (RNAi).

(D) Wg reporter assay of S2R+ cells transfected

with reporter plasmids only (measuring endoge-

nous Wnt activity) and treated with the indicated

dsRNA (RNAi).

(E) Wnt reporter assays (left panel) in stage 11+

Xenopus embryos injected equatorially at the

four-cell stage with control MO or lrp6 MOs alone

or together with cdc25B MO. Western blots (right

panel) of endogenous proteins from stage 11+

Xenopus embryos injected with control MO, or

lrp6 MO alone or together with cdc25B MO.

Note the strong increase of Sp1490 by cdc25

MO (compare lanes 2 and 3).
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(Figure 5G). Using the host transfer technique (Mir and Heasman,

2009), we then monitored the effect of maternal Cyclin Y deple-

tion on Wnt signaling. CycY MO-injected oocytes did not survive

past early neurula, precluding a phenotypic analysis. However,

at late blastula and early gastrula, there was a clear inhibition

of both TOPFLASH reporter (Figure 5H) and expression of the

direct maternal Wnt target genes siamois and Xnr3 (Figure 5I).

These effects were specifically due to reduced Wnt signaling,

since they were rescued by b-catenin and since Xvex1 and

Xbra levels (which are regulated by BMP, FGF, and nodal)

were not significantly altered (Figures 5H and 5I).

We conclude that Cyclin Y is required for Wnt signaling during

early Xenopus development.
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Cell Cycle Regulation of Lrp6
Phosphorylation and Wnt Signaling
in Xenopus

To analyze cell cycle dependence of

both PPPSP phosphorylation and Wnt

signaling in Xenopus, we first used unfer-

tilized Xenopus eggs, which are naturally

arrested at metaphase II, when Lrp6

PPPSP phosphorylation is expected to

be maximal. Xenopus eggs can be

released from metaphase II arrest with

the Ca2+ ionophore A23187 (Higa et al.,

2006; Murray, 1991). Strikingly, phos-

pho-Lrp6 levels decreased within 10 min

of A23187 treatment (Figure 6A). Con-

comitant reduction of G2/M specific

phospho-Histone H3 confirmed release

from metaphase. This indicates that
Lrp6 phosphorylation is cell cycle regulated maternally, in agree-

ment with the maternal Cyclin Y depletion data.

Second, we tested whether G2/M arrest by Nocodazole

induced Sp1490 in Xenopus embryos. Nocodazole treatment

indeed upregulated endogenous Lrp6 phosphorylation. Impor-

tantly, this upregulation was blocked by cycY MO injection

(Figure 6B), indicating that Cyclin Y confers the LRP6 respon-

siveness to G2/M phase. Analysis of pH3 confirmed the increase

in mitotic cells in Nocodazole treated embryos.

Next, we sought to test the role of cell cycle on Wnt signaling

in Xenopus embryos without recourse to pharmacological

inhibitors. The CDC25 cell cycle regulators (CDC25A, B, and C)

are phosphatases that control mitotic progression at G2/M by
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(A) G2/M priming model of LRP6 phosphorylation. PPPSP phosphorylation by

Cyclin Y/CDK primes LRP6 for subsequent CK1g mediated phosphorylation

upon extracellular Wnt stimulation. Combined phosphorylation at PPPSP

and CK1 sites promotes Axin binding (not shown for simplicity). Dashed arrow

represents Wnt-dependent phosphorylation of LRP6 at CK1 sites by CK1g.

Wnt induced, GSK3-mediated PPPSP phosphorylation is not shown for

simplicity.

(B) Positive feedback loop between cell cycle and Wnt receptor activation.

Note that Wnt/LRP6 signaling impacts the cell cycle both by promoting G1

progression as well as by directly regulating the mitotic apparatus.
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activating CDK1 (Gautier et al., 1991; Strausfeld et al., 1991).

Consistent with our data, it was recently reported that intestinal

cells of CDC25 triple-knockout mice arrest at G2/M and have

enhanced Wnt signaling (Lee et al., 2009). We therefore repro-

duced this result and asked if the effect is Cyclin Y dependent.

We first tested the effect of string (stg; Drosophila CDC25)

RNAi on Wg signaling and LRP6 phosphorylation in LRP6

transfected S2R+ cells. Consistent with G/2M arrest, stg RNAi

resulted in fewer and larger cells (Edgar and O’Farrell, 1989;

not shown). As predicted, it also increased both Wg signaling

and LRP6 phosphorylation. Importantly, Dcyclin Y RNAi blocked

these effects (Figure 6C), confirming that Cyclin Y confers the

LRP6 responsiveness to G2/M phase. Stg RNAi also enhanced

TOPFLASH activity from endogenous wg signaling in a Cyclin

Y-dependent manner (Figure 6D). We next depleted CDC25B

in Xenopus embryos using a published Morpholino (Ueno

et al., 2008) to ask if this would increase Wnt signaling or Lrp6

phosphorylation in gastrulae, similar to Drosophila cells. By itself,

cdc25B MO had no significant effect on TOPFLASH reporter in

wild-type gastrulae, possibly because phospho-LRP6 is not

limiting. We therefore sensitized the system by Morpholino-

depletion of LRP6, which reduced total LRP6, phospho-LRP6

and TOPFLASH activity (Figure 6E). Importantly, injection of

cdc25B MO increased both TOPFLASH activity and phospho-

LRP6, but not total LRP6. This neutralization of one Morpholino

effect by another is a striking confirmation of the G2/M input

into LRP6 regulation.

Taken together, these results provide compelling evidence

that LRP6 phosphorylation at G2/M by a Cyclin Y/CDK complex

promotes Wnt/Wg signaling not only in Drosophila- and mamma-

lian-cultured cells but also in a developing embryo.

DISCUSSION

An important issue in the field of Wnt/b-catenin signaling

concerns the regulation of LRP5/6/Arrow function via phosphor-

ylation. Here, we have identified the unusual plasma membrane

tethered Cyclin Y/PFTAIRE complex which functions predomi-

nantly at the G2/M phase of the cell cycle to phosphorylate the

PPPSP motifs of LRP6. The results suggest a G2/M priming

model of LRP5/6/Arrow phosphorylation, where the Cyclin Y/

CDK complex phosphorylates LRP6 at PPPSP motifs, which

then primes adjacent phosphorylation by CK1 (Figure 7A).

However, PPPSP priming alone is not sufficient for phosphoryla-

tion by CK1, as Wnt-induced LRP6 aggregation is also required

(Bilic et al., 2007). Combined phosphorylation at PPPSP and

CK1 sites then promotes Gsk3-Axin binding to LRP6 and signal-

osome formation. Since GSK3 and Cyclin Y/CDK are both

essential for LRP6 priming they apparently act nonredundantly.

So why is there a dual kinase input to PPPSP phosphorylation?

The phosphorylation of LRP6 by GSK3 occurs in acute response

to Wnt signaling and it was suggested that it serves to amplify

receptor activation (Macdonald et al., 2008; Wolf et al., 2008;

Zeng et al., 2005, 2008). Cyclin Y/CDK phosphorylates Wnt

independently at G2/M, thereby gating signal transduction in

proliferating cells. One possibility is that individually both kinases

prime LRP6 substoichiometrically at the five PPPSP sites and

that only their combined action is sufficient for full LRP6 signaling

competence.
Developme
Cell Cycle Regulation of Wnt Signaling
Our findings have important implications for the link between

proliferation and Wnt signaling. It has been long known that there

is cross talk between mitogenic growth factors and Wnt

signaling (Shackleford et al., 1993; Dailey et al., 2005; Fodde

and Brabletz, 2007; Katoh and Katoh, 2006; Ten Berge et al.,

2008). Our results may explain why mitogenic growth factors

synergize with Wnt/b-catenin signaling, namely by G2/M priming

of LRP6 through enhanced cell proliferation, which sensitizes

LRP6 for incoming Wnt signals. Moreover, not only extracellular

but also intracellular cell cycle check point regulators controlling

G2/M entry are likely to affect Wnt signaling.

Wnt/b-catenin signaling itself promotes G1 progression by

inducing c-myc and cyclin D1 (He et al., 1998; Tetsu and

McCormick, 1999). This suggests that Wnt/b-catenin signaling

can entrain a positive feedback loop in proliferating cells by

promoting cell cycle progression, which triggers LRP6 phosphor-

ylation at G2/M (Figure 7B). Simultaneous stimulation by Wnt and

mitogenic growth factors could initiate such a loop. Indeed, our

results may explain the previously noted G2/M enrichment of

b-catenin and Wnt signaling (Olmeda et al., 2003; Orford et al.,

1999). Likewise, protein levels of the direct Wnt target gene

Axin2, considered a marker gene for Wnt/b-catenin signaling,

also peak during mitosis (Hadjihannas et al., 2006).

What may be the function of a Wnt positive feedback loop

during the cell cycle? One of the many roles of Wnt/beta-catenin

signaling is to promote cell proliferation and the positive feed-

back loop suggested by our study may enhance the systems’

levels properties of the cell cycle. Specifically, the loop may

promote synchrony of cell cycle regulated events or constitute

a bistable switch between cell proliferation and cell cycle exit.
ntal Cell 17, 788–799, December 15, 2009 ª2009 Elsevier Inc. 795
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One interesting question raised by our study concerns prefer-

ential transcription of Wnt target genes around G2/M. Most

genes are transcriptionally silenced between late prophase and

early telophase (Gottesfeld and Forbes, 1997), yet TOPFLASH

reporter and AXIN2 peak around G2/M. It will therefore be inter-

esting to investigate whether Wnt target genes are transcribed

during the more permissive stages G2, early prophase, or late

telophase.

Another important question raised by our study is whether G2/

M priming is essential or only modulatory for Wnt/b-catenin

signaling in general, in particular in light of Wnt signaling in nondi-

viding cells. The fact that LRP6 signaling is promoted by G2/M

phase does not exclude Wnt/b-catenin signaling in other cell

cycle phases or in nondividing cells. Even though during inter-

phase the levels of LRP6 signalosomes, Sp1490, b-catenin,

and reporter activation are lower compared to G2/M, such

Wnt/b-catenin signaling is likely physiologically relevant and

may involve additional PPPSP kinases, such as GSK3. Surpris-

ingly little is known about Wnt/b-catenin signaling in nondividing

cells. In transgenic Wnt-reporter mice, Wnt activity is detected in

apparently postmitotic cells in the adult brain, retina, and certain

liver cells (Liu et al., 2007). In the adult liver, Wnt/b-catenin

signaling controls perivenous gene expression (Benhamouche

et al., 2006). Furthermore, Wnts play a role in axon remodeling

in postmitotic neurons (Salinas, 2005) and at least one study

suggests that this can involve the b-catenin pathway (Zaghetto

et al., 2007). In light of our results it will be interesting to examine

more systematically Wnt/b-catenin signaling and in particular the

LRP6 kinases involved in postmitotic cells.

Wnt/b-Catenin Signaling and Mitosis
Traditionally it is thought that Wnt/b-catenin signaling acts to

regulate gene expression of downstream targets (Logan and

Nusse, 2004; Stadeli et al., 2006). Why then should Wnt/b-cate-

nin signaling peak at G2/M? One likely answer is that compo-

nents of the Wnt/b-catenin pathway play a crucial role during

mitosis beyond transcriptional activation. In C. elegans, Wnt

signaling regulates the orientation of the mitotic spindle in early

development (reviewed in Walston and Hardin, 2006). In

mammalian cells, phosphorylated b-catenin itself binds to

centrosomes and is involved in spindle separation during mitosis

(Bahmanyar et al., 2008; Huang et al., 2007; Kaplan et al., 2004).

Likewise, GSK3, Adenomatous polyposis coli protein (APC) and

Axin2, which are components of the b-catenin destruction

complex, also have direct functions in mitosis (Kockeritz et al.,

2006; Aoki and Taketo, 2007; Hadjihannas et al., 2006). Taken

together these data suggest that Cyclin Y/CDK phosphorylates

LRP6 at G2/M to induce Wnt/b-catenin signaling for orches-

trating a mitotic program.

EXPERIMENTAL PROCEDURES

Antibodies

Rabbit polyclonal anti-Cyclin Y1 antibody was raised against a synthetic peptide

(NH2-CPRWSPAIIS-COOH) and affinity-purified. Rabbit polyclonal Sp1490,

Tp1479, and T1479 antibodies were as described (Davidson et al., 2005). Anti-

Arrow antibody was a kind gift from S. DiNardo. Other antibodies used were:

anti-FLAG, anti-Erk, alpha-Tubulin, anti-b-Catenin (Sigma); anti-pSmad1/5/8,

anti-LRP6 (C5C7); anti-GSK3a (Cell Signaling); anti-b-Actin, anti-phospho-

Histone 3-Ser10 (pH 3) (Abcam); anti-CCNB (Transduction Laboratories).
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Kinome-wide RNAi Screen for LRP6 PPPSP Kinases

Ten-centimeter plates of Drosophila S2R+ cells were transfected with 2.5 mg of

pAc-LRP6, 1.5 mg LEF7-luc, 1.5 mg pPacPL-lef1, 500 ng pAc-EYFP, and 5 mg

empty pAc5.1 vector and 16 hr later cells were added to 96-well plates prear-

rayed with dsRNAs, targeting all annotated Drosophila kinases, for gene

silencing as described (Boutros et al., 2004). After 5 days, cells were harvested

in 50 ml passive lysis buffer (plb, Promega), immediately split in two and 6 ml of

53 cholate buffer (5% sodium cholate, 200 mM Tris-HCl [pH 7.0], 750 mM

NaCl, 50 mM NaF, 25 mM Na3VO4, 5 mM PMSF, and protease inhibitors)

was added to one-half which was vortexed, spun, and 20 ml clarified superna-

tant added to 7 ml 43 SDS-PAGE loading buffer. SDS-PAGE/western blot anal-

ysis was performed with Sp1490, Tp1479, and T1479 antibodies to detect

LRP6 PPPSP and CK1 cluster 1 phosphorylation levels and total LRP6 levels,

respectively. Remaining lysates in plb were used for Wg luciferase reporter

assays.

Plasmids

L63 open reading frame was subcloned into pCS2+, as were human CYCLIN Y,

Drosophila cyclin Y (CG14939), and mouse pftk1. Where indicated, N-terminal

FLAG or V5 and C-terminal EGFP tags were added. The G2A CCNY mutant

clones were generated by PCR. In Figure 2D mouse pftk1 subcloned into

pActin5.1 was used. Other constructs were previously described (Davidson

et al., 2005; Miller and Moon, 1997).

Cell Culture, Luciferase Reporter Assays, coIP Assays, and siRNA

Transfection

Drosophila S2R+ cells were maintained at 25� C in Schneider’s medium con-

taining 10% FCS. HEK293T, HEK293, and mouse embryonic fibroblast

(MEF) cell lines were maintained at 37� C and 10% CO2 in DMEM containing

10% FCS. Mouse Wnt3a conditioned medium was produced from mouse

L cells stably transfected with mouse wnt3a and control conditioned medium

was from nontransfected L cells (ATCC CRL-2647 and CRL-2648, respec-

tively; Shibamoto et al., 1998).

For S2R+ Wg reporter assays and/or WB the following amounts of DNA were

transfected in 6-well plates using Effectene (QIAGEN): 500 ng of pAc-human-

LRP6, pPacPL-wg and Mt-dsh; 250 ng of pAc5.1-mouse-pftk1, pAc-human-

CCNY, LEF7-luc (TOPFLASH), and pPacPL-lef1; 125ng pRp128-Rluc (Renilla

control). Sixteen hours later, cells were added to dsRNA for gene silencing as

described (Bartscherer et al., 2006). Dsh expression was induced with 500 mM

CuSO4 24 hr before cell harvest. dsRNAs were checked for off target effects

using E-RNAi (Arziman et al., 2005; http://rnai.dkfz.de).

For Figure 2C, HEK293T cells were transfected in 24-well plates using jetPEI

transfection reagent. Amounts transfected were: pCS-human-LPR6, 100 ng;

pCMV-mouse-mesd, 25 ng; pCS-V5-mouse-pftk1, 400 ng; pCS-human-

CCNY-wild-type or G2A mutant, 12.5 ng. Twenty-four hours after transfection,

cells were harvested in 1% Triton lysis buffer (1% Triton X-100, 50 mM Tris-HCl

[pH 7.0], 150 mM NaCl, 25 mM NaF, 5 mM Na3VO4, 5 mM EDTA and protease

inhibitors) for western blot analysis.

For luciferase reporter assays in Figure 3E, HEK293 cells in 6-well plates

were transfected in triplicate with 160 ng TOPFLASH reporter plasmid using

Fugene 6, synchronized as described under ‘‘Cell Cycle and Flow Cytometry’’

and stimulated for 8 hr with control or Wnt3a conditioned medium or 50 ng/ml

of control (BSA) or recombinant BMP4 protein (R&D). During Wnt and

BMP treatment the drug concentrations were reduced to half to maintain

cell cycle arrest at G1/S and G2/M. Cells were collected and either fixed for

flow cytometry or lysed for luciferase assay. Luciferase activity was normalized

to total protein content by BCA method (SIGMA). For BMP reporter assay,

a stable HEK293 cell line harboring a BREx4 element (Hata et al., 2000) in

a dLuc reporter (Ueda et al., 2005) was used. For siRNAs, Dharmacon Smart-

pools were transfected using Dharmafect 1 (Dharmacon) according to the

manufacturer.

All error bars shown are SD from mean of triplicates.

Embryos, Oocytes, In Situ Hybridization, Luciferase Reporter

Assays, and RT-PCR

In vitro fertilization, embryo culture, staging, preparation of mRNA, microinjec-

tion, and in situ hybridization were carried out as described (Gawantka
evier Inc.

http://rnai.dkfz.de
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et al., 1995). Whole-mount Xenopus immunostaining was carried out using

anti-pH3 essentially as described (Sive et al., 2000).

Stage 6 oocytes were manually defolliculated, injected equaltorially with

MOs or mRNA, and cultured a total of 60–72 hr at 18� C in oocyte culture

medium (OCM). Oocyte maturation was stimulated with 2 mM progesterone

in OCM for 12 hr (Zuck et al., 1998). For western blot shown in Figure 5G,

MOs were injected into oocytes just after defolliculation, and mRNA was

injected 48 hr after. Oocytes were harvested after maturation and processed

for WB. For qPCR analysis shown in Figure 5I, oocytes were injected with

MOs after defolliculation and fertilized using the host transfer technique

(Mir and Heasman, 2009). Embryos were sorted from host embryos and

maintained in 0.33 Barth. At four-cell stage, embryos were injected with

reporters together with either control mRNA or b-catenin-GFP mRNA.

For Xenopus, Wnt reporter assays shown in Figures 5B, 5H, and 6E, 50 pg

TOPFLASH DNA containing three copies of the TCF-binding site, together

with 12.5 pg pRLTK (Renilla) DNA for normalization, was injected equatorially

into four-cell stage Xenopus embryos together with MOs and mRNAs. Lucif-

erase assays were carried out using the Promega dual luciferase assay

system.

qPCR assays were performed using an LC480 light cycler (Roche). PCR

primers used for amplification of Xenopus laevis transcripts are provided in

Table S1. Morpholino antisense oligonucleotides (Gene Tools) were designed

to target both Xenopus laevis and tropicalis ccny and ccnyl1 and have

the following sequences: ccny, 50-CACAGCAGGATGTGGTGTTCCCCAT-30;

ccnyl1, 50-CGCAACAGGTCACGGTGTTCCCCAT-30. Lrp6 (Hassler et al.,

2007) and cdc25B Morpholinos (Ueno et al., 2008) have been described previ-

ously. Equal amount of MO were injected by adjustment with the standard

control MO, where necessary. Doses injected (ng/embryo) were 2–6 (lrp6),

40–80 (ccny + ccnyl1 mix, 1:1), 80 (cdc25); ng/oocyte: 13–30 (ccny + ccnyl1

mix, 1:1), 20 (b-catenin).

For western blot analysis, whole Xenopus embryos or oocytes were homog-

enized in Triton lysis buffer at 1 embryo/oocyte per 10 ml, cleared twice by

centrifugation (20,000 3 g, 5 min at 4�C), heated at 99�C for 2 min with SDS

loading buffer, and analyzed by SDS-PAGE.

Egg extracts for Figure 6A were prepared essentially as described (Murray,

1991) from eggs treated or not treated with 5 mM A23187 in presence of

100 mg/ml cycloheximide (Sigma) and homogenized in Triton lysis buffer.

In Vitro Kinase Assays

FLAG-LRP6C3 (10 mg), FLAG-C3m5 mutant (5 mg), FLAG-L63 (6 mg), FLAG-

CCNY (3 mg), and pCS2+ (5 mg) were transfected separately in HEK293T cells

in 10 cm dishes. After 40 hr, cells were lysed in buffer containing 2% NP40;

lysates from LRP6-C3, -C3m5, or control transfected cells were immunopre-

cipitated on FLAG-M2 beads for 1 hr at 4�C, then lysates from L63 and/or

CCNY or control transfected cells were coimmunoprecipitated on the beads

for 1 hr at 4�C as indicated in Figure 2G. Beads were washed once with 2%

NP40 buffer containing 0.5 M NaCl and equilibrated in kinase buffer lacking

ATP. Reactions were initiated by combining 50 ml beads with 50 ml of kinase

buffer supplemented with 10 mCi ATP and incubated for 1 hr at 30�C; kinase

reaction buffer contained 80 mM Na-b-glycerolphosphate, 15 mM MgCl2,

20 mM EGTA, 0.1 mM Na3VO4, 1.0 mM NaF, 1 mM DTT, 50 mM ATP. Reaction

products were washed once with cold PBS, dissolved in 50 ml SDS loading

buffer (95�C, 5 min) and supernatants analyzed by autoradiography and

western blot.

Cell Cycle and Flow Cytometry

For G1/S arrest, HEK293 cells were treated with 4 mg/ml Aphidicolin for 16 to

24 hr. For S-phase cells, Aphidicolin-arrested cells were washed with PBS

and released into growth for 8 hr. For G2/M arrest, cells were treated with

100 ng/ml Nocodazole for 16 to 24 hr. Cell cycle states were confirmed by

flow cytometry after trypsinization, fixation in 70% ethanol, and staining with

50 mg/ml propidium iodide for 30 min at 37� C. Cells (at least 10,000) were

analyzed on a FACSCalibur (BD). For western blot analysis after synchroniza-

tion, HEK293 cells were harvested either directly in Triton buffer for total cell

lysates (Figures 3A and 3B) or, for membrane fractions (Figure 3C), homoge-

nized in hypotonic buffer (5 mM HEPES [pH 7.0], 1 mM MgCl2, 10 mM

Na-Pyrophosphate, 10 mM NaF, 5 mM Na3VO4, and protease inhibitors)

with 40 Dounce strokes, nuclei removed by low-speed centrifugation
Developme
(2500 rpm, 5 min, 4� C) then membranes pelleted (20,000 3 g, 10 min, 4�C),

dissolved in SDS loading buffer, heated at 95� C for 5 min and analyzed by

SDS-PAGE.

For double thymidine block in Figure 3D, HeLa cells were treated 2 3 19 hr

with 2 mM thymidine, with 9 hr recovery between treatments. G1/S arrested

cells were then washed to progress through the cell cycle. Cells were fixed

for FACS analysis or fractionated for western blot analysis as described above.

SDS-PAGE/WB was performed on both cytosolic (b-catenin, CCNB, Tubulin)

and membrane fractions (LRP6, CCNY).

For mitotic shake-off, HeLa cells were treated with control or Wnt3a condi-

tioned medium for 1 hr and culture dishes gently tapped. Dislodged (mitotic)

and adherent (nonmitotic) cells were pelleted by centrifugation then split for

either RNA extraction using TRIZOL reagent or FACS analysis after ethanol

fixation. qPCR primers used are shown in Table S1.

Immunofluorescence Analysis

For P19 immunofluorescence staining, cells were reverse transfected in 6-well

plates with 100 nM control or LRP5/6 siRNAs (Dharmacon) using Lipofectamine

2000 (Invitrogen). After 1 day, cells were re-plated on glass coverslips in 10 cm

dishes. 24 hr after replating, cells were treated with control or Wnt3a-

conditioned medium containing 3 mM Epoxomicin (SIGMA) for 3 hr and immu-

nostained as described (Bilic et al., 2007). Endogenous phosphorylated LRP6

signalosomes were detected with anti-Tp1479 followed by goat anti-rabbit

Alexa-488 (Molecular Probes). The Tp1479 antibody was cleared after over-

night incubating at 4� C with Xenopus egg extract prebound to activated

CH-Sepharose 4B (SIGMA). Nuclei were visualized by Hoechst staining. Fixed

samples were examined on a confocal laser scanning microscope (Nikon C1si).

SUPPLEMENTAL DATA

Supplemental Data include four figures and one table and can be found with

this article online at http://www.cell.com/developmental-cell/supplemental/
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