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Abstract

We investigate Cayley graphs of semigroups and show that they sometimes enjoy properties
analogous to those of the Cayley graphs of groups.
c© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let G be a semigroup, and letS be a nonempty subset ofG. The Cayley graph
Cay(G, S) of G relative toS is defined as the graph with vertex setG and edge setE(S)

consisting of those ordered pairs(x, y) such thatsx = y for somes ∈ S (see[7]).
The aim of this paper is to describe all semigroups with Cayley graphs satisfying certain

transitivity properties similar to those possessed by all Cayley graphs of groups. Let us first
define a few properties which hold true for the Cayley graphs of groups.

Let D(V, E) be a graph with vertex setV and edge setE ⊆ V × V . A mapping
φ : V → V is called anendomorphismof the graphD if (uφ, vφ) ∈ E for all (u, v) ∈ E.
An automorphismis an endomorphism that is one-to-one and onto.

A graphD(V, E) is said to bevertex-transitiveif, for any two verticesx, y ∈ V , there
exists an automorphismφ ∈ Aut(D) such thatxφ = y (see[1]). More generally, a subset
A of End(D) is said to bevertex-transitiveon D, andD is said to beA-vertex-transitive
if, for any two verticesx, y ∈ V , there exists an endomorphismφ ∈ A such thatxφ = y
(see[3, Section 11.1]).

All Cayley graphs of groups are vertex-transitive, since the group on which the Cayley
graph is defined acts by right multiplication as a vertex-transitive group of automorphisms.
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Cayley graphs of groups have received much attention in the literature and many interesting
results have been obtained (see[1, 2, 5, 8]).

Now let G be a semigroup and letS ⊆ G. Denote the automorphism group
(endomorphism monoid) of Cay(G, S) by AutS(G) (respectively, EndS(G)). Thus

AutS(G) = Aut(Cay(G, S)) and EndS(G) = End(Cay(G, S)).

It is easily seen that each element ofG, acting by right multiplication, defines
an endomorphism of the Cayley graph Cay(G, S). Denote by R(G) the set of all
endomorphisms of Cay(G, S) defined by the right multiplications by elements ofG.

An elementφ ∈ EndS(G) will be called acolour-preserving endomorphismif sx = y
impliess(xφ) = yφ, for everyx, y ∈ G ands ∈ S. If we regard an edge(x, sx), for s ∈ S,
as having ‘colour’s, so that the elements ofSare thought of as colours associated with the
edges of the Cayley graph, then every colour-preserving endomorphism maps each edge
to an edge of the same colour. Denote by ColEndS(G) (and ColAutS(G)) the sets of all
colour-preserving endomorphisms (respectively, automorphisms) of Cay(G, S). Evidently,

ColAutS(G) ⊆ AutS(G),

R(G) ⊆ ColEndS(G) ⊆ EndS(G),

and ColAutS(G), R(G), ColEndS(G) are submonoids of EndS(G).
Let G be a semigroup,S a subset ofG and let A ⊆ B ⊆ EndS(G). If A is vertex-

transitive on Cay(G, S), then the same holds true forB, too.
It is well known and easy to verify that, for every groupG and every subsetSof G, all

of EndS(G), ColEndS(G), AutS(G), and R(G) are vertex-transitive on the Cayley graph
Cay(G, S). Moreover, in this case it is not difficult to show that R(G) = ColEndS(G) for
every setSgeneratingG.

2. Main theorems

Our first main theorem describes all semigroupsG and all subsetsS of G, satisfying a
certain finiteness condition, such that the Cayley graph Cay(G, S) is ColAutS(G)-vertex-
transitive. A semigroup is called aright zero bandif it satisfies the identityxy = y.

Theorem 2.1. Let G be a semigroup, and let S be a subset of G which generates a
subsemigroup〈S〉 such that all principal left ideals of〈S〉 are finite. Then, the Cayley
graph Cay(G, S) is ColAutS(G)-vertex-transitive if and only if the following conditions
hold:

(i) sG = G, for all s ∈ S;
(ii) 〈S〉 is isomorphic to a direct product of a right zero band and a group;
(iii) |〈S〉g| is independent of the choice of g∈ G.

Next, we reduce the problem of describing vertex-transitive Cayley graphs of finite
semigroups to the case of completely simple semigroups. Our result applies to all
semigroups satisfying the same finiteness condition as inTheorem 2.1. Recall that a
semigroup iscompletely simpleif it has no proper ideals and has an idempotent minimal
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with respect to the partial ordere ≤ f ⇔ e = ef = f e. Completely simple semigroups
can be represented as Rees matrix semigroups over groups (seeSection 3).

Theorem 2.2. Let G be a semigroup, and let S be a subset of G such that all principal left
ideals of the subsemigroup〈S〉 are finite. Then, the Cayley graphCay(G, S) is AutS(G)-
vertex-transitive if and only if the following conditions hold:

(i) SG= G;
(ii) 〈S〉 is a completely simple semigroup;
(iii) the Cayley graphCay(〈S〉, S) is AutS(〈S〉)-vertex-transitive;
(iv) |〈S〉g| is independent of the choice of g∈ G.

In the next section we summarize the background theory on semigroups needed to
prove these theorems. InSection 4we give a series of examples of Cayley graphs of
semigroups which demonstrate the necessity of the finiteness conditions, and the precision
of some of the conclusions, of these theorems. Some general results about Cayley graphs of
semigroups are proved inSections 5and6, and the main theorems are proved inSection 7.
Finally, Section 8contains some concluding comments on these results.

3. Preliminaries on semigroups

We use standard concepts and notation of semigroup theory following[3, 4] and[6],
and include concise background information in this section.

If S ⊆ G, then the subsemigroup generated byS in G is denoted by〈S〉. An element
s of a semigroupG is said to beperiodic if there exist positive integersm, n such that
sm+n = sm. A subsetS of G is periodic if every element ofS is periodic. In particular, if
all principal left ideals of a semigroup are finite, then the semigroup is periodic.

A bandis a semigroup entirely consisting of idempotents. A band is called aleft zero
(right zero, rectangular) band if it satisfies the identityxy = x (respectively,xy = y,
xyx = x). In fact, every rectangular band satisfies the identityxyz= xz, as well.

A semigroup is said to beright (left) simple if it has no properright (left) ideals. A
semigroup isleft (right) cancellativeif xy = xz (respectively,yx = zx) impliesy = z, for
all x, y, z ∈ S. A semigroup is called aright (left) group if it is right (left) simple and left
(right) cancellative.

We summarize these terms in the following table:

Concept Property

Band x2 = x
Left zero band x2 = x, xy = x
Right zero band x2 = x, xy = y
Rectangular band x2 = x, xyx = x
Semilattice x2 = x, xy = yx
Right simple semigroup No proper right ideals
Left cancellative semigroup xy = xz ⇒ y = z
Right group Right simple and left cancellative
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A few known facts required for our proofs are collected in the following lemma (see
[3], Theorem 1.27).

Lemma 3.1. For any periodic semigroup G, the following are equivalent:

(i) G is right (left) simple;

(ii) G is a right (left) group;

(iii) G is isomorphic to the direct product of a right (left) zero band and a group;

(iv) G is a union of several of its left (right) ideals and each of these ideals is a group.

If G is a semigroup, thenG1 (or G0) stands forG with identity (respectively, zero)
adjoined.

Suppose thatH is a group,I andΛ are nonempty sets, andP = [pλi ] is a(Λ× I )-matrix
with entriespλi ∈ H for all λ ∈ Λ, i ∈ I . TheRees matrix semigroup M(H ; I ,Λ; P) over
H with sandwich-matrix Pconsists of all triples(h; i , λ), wherei ∈ I , λ ∈ Λ, andh ∈ H ,
with multiplication defined by the rule

(h1; i1, λ1)(h2; i2, λ2) = (h1 pλ1i2h2; i1, λ2).

Now suppose thatQ = [qλi ] is a(Λ× I )-matrix with entriesqλi in the groupH 0 with zero
adjoined. Then theRees matrix semigroup M0(H ; I ,Λ; Q) overH 0 with sandwich-matrix
Q consists of zero 0 and all triples(h; i , λ), for i ∈ I , λ ∈ Λ, andh ∈ H 0, where all triples
(0, i , λ) are identified with 0, and multiplication is defined by the rule

(h1; i1, λ1)(h2; i2, λ2) = (h1qλ1i2h2; i1, λ2).

It is well known that every completely simple semigroup is isomorphic to a Rees
matrix semigroupM(H ; I ,Λ; P) over a groupH (see[6], Theorem 3.3.1). A semigroup
with zero is calledcompletely0-simple if it has no proper nonzero ideals and has a
minimal nonzero idempotent. Every completely 0-simple semigroup is isomorphic to a
Rees matrix semigroupM0(H ; I ,Λ; P) over a groupH with zero adjoined. Conversely,
every semigroupM(H ; I ,Λ; P) is completely simple, and a semigroupM0(H ; I ,Λ; P) is
completely 0-simple if and only if each row and column ofP contains at least one nonzero
entry (see[6], Theorem 3.2.3).

Let H be a group,G = M(H ; I ,Λ; P), and leti ∈ I , λ ∈ Λ. Then we put

G∗λ = {(h; i , λ) | h ∈ H, i ∈ I },
Gi∗ = {(h; i , λ) | h ∈ H, λ ∈ Λ},
Giλ = {(h; i , λ) | h ∈ H }.

In the case whereG = M0(H ; I ,Λ; P) we include zero in all of these sets, i.e. put

G∗λ = {0} ∪ {(h; i , λ) | h ∈ H, i ∈ I },
Gi∗ = {0} ∪ {(h; i , λ) | h ∈ H, λ ∈ Λ},
Giλ = {0} ∪ {(h; i , λ) | h ∈ H }.

We need a few basic facts which follow immediately. For convenience we collect them in
a separate lemma.
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Lemma 3.2. Let H be a group, and let G= M(H ; I ,Λ; P) be a completely simple
semigroup or let G= M0(H ; I ,Λ; P) be a completely0-simple semigroup. Then, for all
i , j ∈ I , λ,µ ∈ Λ, and s= (h; i , λ) ∈ G,

(i) the set G∗λ is a minimal nonzero left ideal of G;
(ii) the set Gi∗ is a minimal nonzero right ideal of G;
(iii) Gs = G∗µs = G∗λ;
(iv) sG = sGj ∗ = Gi∗;
(v) s ∈ Gs∩ sG = Giλ;
(vi) the set Giλ is a left ideal of Gi∗ and a right ideal of G∗λ;
(vii) if pλi = 0, then G2

iλ = 0;
(vii) if pλi �= 0, then Giλ is a maximal subgroup of G isomorphic to H ;
(vii) each maximal subgroup of G coincides with Gj µ, for some j∈ I , µ ∈ Λ;
(ix) M(H ; I ,Λ; P) is a right (left) group if and only if|I | = 1 (respectively,|Λ| = 1);
(x) if G = M(H ; I ,Λ; P), then each G∗λ is a left group, and each Gi∗ is a right group.

Let I andJ be ideals of a semigroupG such thatJ ⊆ I . The Rees quotient semigroup
I /J is the semigroup with zero obtained fromI by identifying with 0 all elements of the
ideal J. If I has zero andJ = {0}, then I /J = I . The Rees quotient semigroupI /J is
called afactorof G. In the case whereJ = ∅, we assume thatI /J = I . Take any element
g in G, put I = G1gG1 and denote byJ the set of all elements which generate principal
ideals properly contained inI . ThenJ is also an ideal ofG, and I /J is called aprincipal
factorof G.

Recall that anull semigroup or a semigroup withzero multiplicationis a semigroupG
with zero such thatG2 = 0. Each principal factor of a semigroupG is either simple, or
0-simple, or a semigroup with zero multiplication ([6], Proposition 3.1.5). In addition, all
periodic simple or 0-simple semigroups are completely simple or completely 0-simple,
respectively ([6], Theorem 3.2.11). Obviously, every factor of a periodic semigroup is
periodic too. For convenience of further reference we combine these facts in the following
lemma.

Lemma 3.3. Every principal factor of a periodic semigroup is completely simple or
completely0-simple, or a null semigroup.

Lemma 3.4. Let G be a periodic completely simple or completely0-simple semigroup,
and let L be a subsemigroup of G. If L does not contain0, then L is completely simple.

Proof. We consider only completely 0-simple semigroupsG, because the case of a
completely simple semigroup is similar and even easier. By the comment preceding
Lemma 3.2we may assume thatG = M0(H ; I ,Λ; P), whereH is a group andP is a
Λ × I -matrix over H 0. Take any elementx in L, and suppose thatx ∈ Giλ for some
i ∈ I , λ ∈ Λ. Since 0 �∈ L, we see thatx2 �= 0, and so it follows fromLemma 3.2that
pλi �= 0. The sameLemma 3.2tells us thatGiλ is a group. Thus each element ofL lies in
a subgroup ofG. SinceG is periodic, we see that every element ofL generates a subgroup
of L. ThereforeL is a union of groups. For anyx = (h; i , λ), y = (g; j , µ) ∈ L, we get
0 �= xyx ∈ L ∩ Giλ. HenceL ∩ Giλ is a subgroup ofL. Clearly,y belongs to the ideal
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Fig. 1. Cay(G, {(
1, r1), (
2, r2)}).

generated byx in L. This means thatL is simple. Clifford’s theorem shows that every
simple semigroup, which is a union of groups, is completely simple (see[6], Theorem
4.1.3). ThereforeL is completely simple. �

If G is a semigroup,S ⊆ G, andg ∈ G, thenSg is called aright cosetof S.

4. Examples

Theorem 2.2does not generalize to a semigroupG with a subsetS which generates a
subsemigroup〈S〉 with infinite principal left ideals, as the following example shows.

Example 1. Let G = {. . . , e−1, e0, e1, e2, . . .} be a semigroup with multiplication defined
by ei ej = emax{i, j }, and letS = G. Then the Cayley graph Cay(G, S) has edges(ei , ej )

for all i ≤ j , and therefore it is AutS(G)-vertex-transitive. However,〈S〉 = S = G is a
semilattice, and so it is not completely simple. In this case all principal left ideals of〈S〉
are infinite.

The next example of a vertex-transitive Cayley graph shows that condition (iv) in
Theorem 2.2cannot be replaced by

|〈S〉| = |〈S〉g| for all g ∈ G.

Example 2. Let L = {
1, 
2} be a left zero band,R = {r1, r2, r3} a right zero band, and
let G be the union ofL × R andL with multiplication defined by

(
, r )
′ = 
′(
, r ) = 
,

for any
, 
′ ∈ L andr ∈ R. Let S = {(
1, r1), (
2, r2)}. The Cayley graph Cay(G, S) is
shown inFig. 1. It is vertex-transitive. We see that|〈S〉| = 4, whereas|〈S〉
1| = 2.

Condition (iv) ofTheorem 2.2does not transfer to EndS(G)-vertex-transitive graphs, as
shown by the following example.
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Fig. 2. G = {0} ∪ {e, g}.

Example 3. Let G = {0, e, g} be the the group{e, g} with zero 0 adjoined. The only
EndS(G)-vertex-transitive Cayley graph ofG is Cay(G, {e}) (seeFig. 2). In this graph
|〈S〉g| = 2 and|〈S〉0| = 1.

The last two examples show that it is difficult to reduce further the question of AutS(G)-
vertex-transitivity to the right subgroups〈S〉∗λ of the completely simple semigroup〈S〉 in
Theorem 2.2.

Example 4. Let Gi = {ei , gi , g2
i , g3

i } be a cyclic group of order 4, fori ∈ {1, 2}, and let
G = G1 ∪ G2 be the union of these two groups with multiplication defined by

ga
i gb

j = ga+b
i ,

for all integersa, b and all i , j ∈ {1, 2}. ThusG1 and G2 are left ideals ofG, andG
is a completely simple semigroup. This semigroupG is isomorphic to the Rees matrix
semigroupM(Z4; I ,Λ; P), where|I | = 2, |Λ| = 1, Z4 is a cyclic group of order 4, and
P = [ e e]. Equivalently, it is isomorphic to the direct product of the cyclic group of
order 4 and the left zero band of order two. LetS = {g2

1, g2}. Then〈S〉 = G, and we see
that the Cayley graph Cay(G, S) is not vertex-transitive, becausee1 belongs to a cycle of
length 2, ande2 does not (seeFig. 3). However, Cay(G1, e1Se1) and Cay(G1, e2Se2) are
isomorphic.

Example 5. Let Z2 = {0, 1} be the group of order two. For simplicity, we denote
the elements ofZ2 × Z2 by pairs{00, 01, 10, 11}. Let G be the Rees matrix semigroup

M(Z2 × Z2; I ,Λ; P), where I = {1, 2}, Λ = {1, 2}, and P =
[

11 00
00 00

]
. Let

S = {(1; 1, 2), (1; 2, 1)}. Then 〈S〉 = G, and the left groupsG∗λ, whereλ ∈ {1, 2},
are the connected components of Cay(G, S) and the left ideals ofG. The left groupG∗2
induces a subgraphC which is a connected component of Cay(G, S). However,C is not
equal to any Cayley graph of the right groupG∗2. The whole Cayley graph Cay(G, S) is
vertex-transitive. However, its subgraph induced by the left groupG∗2 is not equal to any
Cayley graph of this right group (seeFig. 4).

5. General properties of Cayley graphs

Let D = (V, E) be a graph. The in-degree (out-degree) of a vertexv ∈ V is the number
of verticesu ∈ V such that(u, v) ∈ E (respectively,(v, u) ∈ E). If D is finite and vertex-
transitive, then the in-degree is the same for each vertex, and is equal to its out-degree; in
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Fig. 3. Cay(G, {g2
1, g2}).

Fig. 4. Cay(G, {(01; 1, 2), (01; 2, 1)}).

this case the common value is called thedegreeor valencyof D. Theunderlying undirected
graphof D has the same set of verticesV and it has an undirected edge{u, v} for each
directed edge(u, v) of D. The graphD is said to beconnectedif its underlying undirected
graph is connected. If, for each pair of verticesu, v of D, there exists a directed path from
u to v, thenD is said to bestrongly connected.

Lemma 5.1. Let G be a semigroup with a subset S, let g∈ G and let Cg be the set of all
verticesv of the Cayley graphCay(G, S) such that there exists a directed path from g to
v. Then Cg is equal to the right coset〈S〉g.
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Proof. Take anyv ∈ Cg. There exists a (directed) pathg = v1, v2, . . . , vn = v, where
n > 1. By the definition of Cay(G, S) we getvi+1 = si vi , for i = 1, . . . , n − 1 and some
si ∈ S. Hencev = sn−1 · · · s2s1g, and sov ∈ 〈S〉g.

Conversely, pick anyv ∈ 〈S〉g. Since〈S〉 is generated byS, there exists1, . . . , sn−1 ∈ S
such thatv = sn−1 · · · s2s1g, wheren > 1. Settingv1 = g and vi+1 = si vi for
i = 1, . . . , n − 1, we see thatvn = v and

(g, s1g), (s1g, s2s1g), . . . , (sn−2 · · · s1g, v)

are the edges of Cay(G, S). Thereforeg = v1, v2, . . . , vn = v is a directed path fromg to
v in Cay(G, S). ThusCg = 〈S〉g. �

Lemma 5.2. Let G be a semigroup with a subset S such that〈S〉 = M(H ; I ,Λ; P) is
completely simple, SG= G, and let T = 〈S〉∗λ for someλ ∈ Λ. Then every connected
component of the Cayley graphCay(G, S) is strongly connected and, for eachv ∈ G, the
component containingv is equal to Tv = 〈S〉v.

Proof. Consider any edge(u, v) of Cay(G, S). There existsr ∈ Ssuch thatv = ru. Since
SG= G, we can find elementss′ ∈ S, u′ ∈ G such thatu = s′u′. Hencev = rs′u′. Now
s′ ∈ B = 〈S〉∗µ for someµ ∈ Λ, and byLemma 3.2, B is a left ideal of〈S〉 and is left
simple. Thereforers′ ∈ B and B = Brs′. Hences′ ∈ Brs′, and sos′ = r ′rs′ for some
r ′ ∈ B. Sincev = ru = rs′u′, we getr ′v = r ′rs′u′ = s′u′ = u. Thusu ∈ 〈S〉v. By
Lemma 5.1there exists a directed path fromv to u. Since(u, v) was chosen arbitrarily, it
follows that every connected component of Cay(G, S) is strongly connected.

Let C be the set of vertices of a connected component of Cay(G, S), and letv ∈ C.
Given thatSG = G, there exists ∈ S, g ∈ G such thatsg = v. Let ν ∈ Λ be such that
s ∈ 〈S〉∗ν . AgainLemma 3.2tells us that〈S〉∗ν is left simple, and sos ∈ 〈S〉∗νs ⊆ 〈S〉s;
whencev = sg ∈ 〈S〉v. SinceC is strongly connected, it follows fromLemma 5.1that
C = 〈S〉v. By Lemma 3.2, 〈S〉s = T s. Therefore〈S〉v = Tv, which completes the
proof. �

Corollary 5.3. Let G be a semigroup with subset S such that SG= G, let 〈S〉 be
isomorphic to a direct product of a right zero band Z and a group K , and let H be a
maximal subgroup of〈S〉. Then

(i) each right coset Hg coincides with the right coset〈S〉g;

(ii) the right〈S〉-cosets are the connected components ofCay(G, S).

Proof. Denote bye the identity ofK and letP be the(|Z| × 1)-matrix with all entries
equal toe. Then it is easily seen that〈S〉 = M(K ; {1}, Z; P). It follows from Lemma 3.2
that H = 〈S〉∗z0 andH = {(k, z0) | k ∈ K } for somez0 ∈ Z. Hence the assertion follows
from Lemma 5.2. �

Lemma 5.4. Let G be a semigroup with a periodic element s such that sG= G, and let
I be a subset of G such that s I⊆ I . Then x �∈ I implies sx �∈ I .
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Proof. SinceS is periodic,sm+n = sm, for some positive integersm, n. Take any element
x �∈ I and suppose in contrast thatsx ∈ I . SincesG = G, for each positive integer
i there existsxi ∈ I such thatx = si xi . Every xi is in G\I , becauses I ⊆ I . If
n = 1, then we havex = smxm = sm+1xm = s(smxm) = sx ∈ I . If n > 1, we get
x = sm+n−1xm+n−1 = sn−1(smxm+n−1) = sn−1(sm+nxm+n−1) = sn−1(sx) ∈ I . These
contradictions prove thatsx �∈ I . �

Lemma 5.5. Let G be a semigroup with a periodic subset S such that sG= G for all
s ∈ S, and let I be a subset of G such that SI⊆ I . Then I is a union of connected
components ofCay(G, S). In particular, the subsemigroup〈S〉 generated by S in G is a
union of connected components ofCay(G, S).

Proof. Let x ∈ I . Take any edge(x, y) in Cay(G, S). Then y = sx, for somes ∈ S.
Sinces I ⊆ I , we gety ∈ I by Lemma 5.4. Similarly, suppose that(y, x) is an edge of
Cay(G, S). Thenx = sy for somes ∈ S. If y was not inI , then byLemma 5.4, x = sy
would not be inI either, which would be a contradiction. Hencey ∈ I . Thus all vertices
of I are adjacent to vertices ofI only. HenceI is a union of connected components of
Cay(G, S). The final assertion follows, becauses〈S〉 ⊆ 〈S〉, for eachs ∈ S. �

6. Transitivity properties of Cayley graphs

In this section we prove several preparatory lemmas for the proof of the main theorems.

Lemma 6.1. Let G be a semigroup, and let S be a subset of G.

(i) If EndS(G) is vertex-transitive onCay(G, S), then SG= G.
(ii) If ColEndS(G) is vertex-transitive onCay(G, S), then sG= G for each s∈ S.

Proof. Pick anyg ∈ G ands ∈ S. There existsφ in EndS(G) such that(sg)φ = g. Since
(g, sg) is an edge, also(gφ, (sg)φ) is an edge. Hence(sg)φ = s′(g)φ for somes′ ∈ S.
Thusg = s′(g)φ ∈ SG, and soSG= G, i.e. (i) holds.

Furthermore, if ColEndS(G) is vertex-transitive on Cay(G, S), then we may assume
thatφ ∈ ColEndS(G), whences′ = s, and sosG = G, i.e. (ii) holds. �

Lemma 6.2. Let G be a semigroup with a periodic subset S such thatColEndS(G) is
vertex-transitive onCay(G, S). Then〈S〉 is right simple.

Proof. For eachs ∈ S, sG = G by Lemma 6.1. Take anyg ∈ 〈S〉 ands ∈ S. Since
sG = G, there existsg′ ∈ G such thatg = sg′. By transitivity, g′ = (g)φ for some
φ ∈ ColEndS(G). Henceg = s(g)φ, and it follows fromLemma 5.4(with I = 〈S〉) that
(g)φ lies in〈S〉. This means thatg ∈ s〈S〉. Therefores〈S〉 = 〈S〉 for all s ∈ S. By induction
we deduce thatt〈S〉 = 〈S〉 for all t ∈ 〈S〉. Thus〈S〉 has no proper right ideals, i.e. it is
right simple. �

Lemma 6.3. Let G be a semigroup, and let S be a subset of G such that all principal left
ideals of the subsemigroup〈S〉 are finite, and suppose that the Cayley graphCay(G, S) is
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AutS(G)-vertex-transitive. Then〈S〉 is a completely simple semigroup, and each element
of S generates G as an ideal.

Proof. Let T = 〈S〉. Clearly, the condition that all the principal left ideals ofT are finite
implies thatT is periodic. Take any elementg ∈ G. By Lemma 5.1, T g is equal to the
setCg of all verticesv of Cay(G, S) such that there exists a directed path fromg to v.
By Lemma 6.1, SG = G, and so there existss ∈ S, h ∈ G, such thatsh = g. Since the
principal left idealT s is finite, we see that the setCg = (T s)h is finite. Since Cay(G, S)

is AutS(G)-vertex-transitive, we get|Cg| = |Cv | for all v ∈ G. If v ∈ Cg, then evidently
Cv ⊆ Cg. It follows thatCv = Cg, sov ∈ Cv , so alsog ∈ Cg. ThereforeCg is strongly
connected. Further, ifCg andCv have a common vertex for somev ∈ G, then it is clear
that the unionCg ∪ Cv is also strongly connected. ThusCg is a connected component of
Cay(G, S).

Pick anys, t ∈ T . We have proved thats ∈ Cs = T s. Sincets belongs to the connected
componentT s = Cs = Cts = T ts, we gets ∈ T ts. Hences ∈ T1tT1, and soT = T1tT1

(where, recall,T1 denotesT with identity adjoined). ThereforeT is simple, and it follows
from Lemma 3.3thatT is completely simple, because it is periodic.

For anys ∈ S, we getT = T1sT1. Let g ∈ G. SinceSG = G, we haveg = tg′ for
somet ∈ S, g′ ∈ G. Then sinceT = T1sT1, we havet = s1ss2, wheres1, s2 ∈ T , so
g = s1ss2g′ ∈ G1sG1. HenceG = G1sG1. �

Corollary 6.4. Let G be a semigroup, and let S be a periodic subset of G. If the Cayley
graph Cay(G, S) is ColEndS(G)-vertex-transitive, then the following conditions hold:

(i) sG = G for all s ∈ S,
(ii) 〈S〉 is a direct product of a right zero band and a group,
(iii) the right cosets〈S〉g are precisely the connected components ofCay(G, S).

Proof. By Lemma 6.1, (i) holds. By Lemma 6.2, 〈S〉 is right simple, andLemma 3.1
yields (ii). Then byCorollary 5.3the connected components of Cay(G, S) are the right
cosets〈S〉g, for all g ∈ G. �

7. Proofs of the main theorems

Proof of Theorem 2.1. The ‘only if’ part. Suppose that ColAutS(G) is vertex-transitive.
Since ColAut(G, S) ⊆ ColEnd(G, S), Corollary 6.4applies, whence (i) and (ii) follow.
Clearly, the connected components of Cay(G, S) have the same cardinality because of
vertex-transitivity, and so (iii) follows fromCorollary 6.4(iii).

The ‘if’ part. Suppose that conditions (i), (ii) and (iii) ofTheorem 2.1hold, and in
particular that〈S〉 is isomorphic to the direct productK × Z of a groupK and a right zero
bandZ. Note that thenK × Z is isomorphic to the Rees matrix semigroupM(K ; I ,Λ; P),
whereI = {i }, |Λ| = |Z|, and all entries of the(λ× I )-matrix P are equal to the identity of
K . Therefore we can applyLemma 3.2taking into account that, fori ∈ I and anyλ ∈ Λ,
k ∈ K ,

〈S〉i∗ = 〈S〉 and 〈S〉∗λ = 〈S〉iλ.
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Denote byH a maximal subgroup of〈S〉. By Lemma 3.2, there existi ∈ I andµ ∈ Λ
(and the corresponding elementz ∈ Z) such that

H = 〈S〉iµ = {(k, z) | k ∈ K }. (7.1)

Each principal left ideal of〈S〉 is equal to the minimal ideal〈S〉∗λ = 〈S〉iλ , for some
λ ∈ Λ. Hence all these principal left ideals are isomorphic toK by Lemma 3.2. By
assumption, therefore,K andH are finite.

By Corollary 5.3, each coset〈S〉g coincides withHg, and the connected components
of Cay(G, S) are the rightH -cosets. Note thatH is one of these cosets, since it is a
group. Therefore by (iii) all these cosets have the same cardinality asH . In particular,
for h, h′ ∈ H andg ∈ G, hg = h′g impliesh = h′.

Choose elementsg, g′ ∈ G. We shall define a mappingϕ : G → G such that
gϕ = g′, and show thatϕ is a colour preserving automorphism of Cay(G, S). It follows
from Lemma 5.2that g belongs to the connected componentHg. Therefore there exists
h ∈ H such thathg = g. Similarly, h′g′ = g′ for someh′ ∈ H . Denote bye the identity
of H . Thenhg = (eh)g = e(hg) = eg, and by our observation in the previous paragraph,
h = e. Similarly,h′ = e. Consider two cases.

Case 1. Hg �= Hg′. Then, forx ∈ G, we define

xϕ =



tg′ if x = tg for somet ∈ H ;
tg if x = tg′ for somet ∈ H ;
x if x /∈ Hg ∪ Hg′.

Thenϕ is well defined and is a bijection, because|Hg| = |Hg′| = |H |. Clearly,gϕ = g′.
Take anyx ∈ G, s ∈ S. If x = tg ∈ Hg, thensx ∈ Hg, sinceH is a left ideal of〈S〉 by

(1). Therefore the edge(x, sx) in mapped byϕ to the edge(tg′, stg′) = (xϕ, s(xϕ)). An
analogous property holds ifx ∈ Hg′. Also,ϕ leaves invariant all edges involving vertices
of G\(Hg ∪ Hg′). Thus(sx)φ = s(xφ), i.e. ϕ is a colour-preserving automorphism of
Cay(G, S).

Case 2. Hg = Hg′. Forx ∈ G, we define

xϕ =
{

hg′ if x = hg ∈ Hg;
x if x /∈ Hg.

Since|H | is finite and|Hg′| = |Hg| = |H |, it follows thatϕ is a bijection (in particular,
it is onto). Take anys ∈ S, x ∈ G. If x = hg ∈ Hg, thensh ∈ H andsx ∈ Hg, because
H is a left ideal of〈S〉 by (1). Therefore(sx)φ = shg′, and so(sx)φ = s(xφ). On the
other hand, ifx /∈ Hg, thens(Hg) = (sH)g ⊆ Hg, sinceH is a left ideal of〈S〉, and it
follows from Lemma 5.4thatsx /∈ Hg. Therefore(sx)φ = sx = s(xφ). This means that
ϕ ∈ ColAutS(G).

Thus we have verified that Cay(G, S) is ColAutS(G)-vertex-transitive. �

If H ⊆ G and SH ⊆ H , then by Cay(H, S) we denote the subgraph of Cay(G, S)

induced by H, i.e. the graph with vertex setH and edges(h, sh) for all h ∈ H , s ∈ S.
Note that ifS ⊆ H , then Cay(H, S) is a Cayley graph ofH .
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Proof of Theorem 2.2. The ‘only if’ part. Suppose that Cay(G, S) is AutS(G)-vertex-
transitive. ThenSG= G by Lemma 6.1, and〈S〉 = M(H ; I ,Λ; P) is a completely simple
semigroup byLemma 6.3. Thus conditions (i) and (ii) hold.

Take anyλ ∈ Λ and putT = 〈S〉∗λ. By Lemma 5.2, for eachg in G, the connected
component of Cay(G, S) containingG is equal toT g = 〈S〉g.

Now T is a left ideal of〈S〉 by Lemma 3.2, and so, fors ∈ S, we see thatST s⊆ T s, and
the subgraph induced onT s is Cay(T s, S). Since Cay(T s, S) is a connected component of
Cay(G, S), its automorphism group is vertex-transitive. The Cayley graph Cay(〈S〉, S) is
a union of the connected components Cay(T s, S) of Cay(G, S), for s ∈ S, and so it is also
AutS(〈S〉)-vertex-transitive. Thus (iii) holds.

Since all connected components of an AutS(G)-vertex-transitive graph are isomorphic,
we see that|T g| = |〈S〉g| is independent ofg, i.e. condition (iv) holds.

The ‘if’ part. Condition (ii) says that〈S〉 is completely simple, and so by the remark
precedingLemma 3.2it is isomorphic to a Rees matrix semigroupM = M(H ; I ,Λ; P)

over a groupH . Take anyλ ∈ Λ and putT = M∗λ. Lemma 5.2tells us that each connected
component of Cay(G, S) is equal toT g, for someg ∈ G, and thatT g = 〈S〉g and contains
g. Note thatt1g = t2g impliest1 = t2 by condition (iv) and sinceT is finite.

Let T s andT h be distinct connected components of Cay(G, S). Forx ∈ G, define

xϕ =



th if x = tg for somet ∈ T
tg if x = th for somet ∈ T
x if x �∈ T g ∪ T h.

Thenϕ is well-defined, and is a bijection by Condition (iv). As in the proof of ‘Case 1’ in
the proof ofTheorem 2.1, we see thatϕ ∈ AutS(G).

Since, fors ∈ S, the graph Cay(T s, S) is a connected component of Cay(〈S〉, S), we
see that the automorphism group of Cay(T s, S) is vertex-transitive by condition (iii). It
follows that Cay(G, S) is AutS(G)-vertex-transitive. This completes the proof.�

8. Final comments

We prove here a corollary toTheorem 2.2where conditions (i) to (iv) ofTheorem 2.2
collapse to a single simple condition for a certain class of finite simple semigroups.

Corollary 8.1. Let G be a finite rectangular band, and let S be a subset of G. Then the
Cayley graphCay(G, S) is AutS(G)-vertex-transitive if and only if S∩ gG �= ∅ for all
g ∈ G.

Proof. It is well known that every rectangular bandG is isomorphic to a direct product
G = L × R of a left zero bandL and a right zero bandR.

The ‘if’ part. Suppose thatS∩ gG �= ∅ for all g ∈ G. Then, for each
 ∈ L, there exists
r
 ∈ R such that(
, r
) ∈ S. It follows thatSG= G, and thatS generates the rectangular
bandL × {r
 | 
 ∈ L}. Thus conditions (i) and (ii) ofTheorem 2.2hold (note that all
rectangular bands are completely simple).
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Since〈S〉s is a left zero band, Cay(〈S〉s, S) is a complete graph, and so (iii) holds. If
g = (
, r ) ∈ G, then〈S〉g = L × {r }, whence|〈S〉g| = |L|, and so (iv) is satisfied. It
follows that Cay(G, S) is AutS(G)-vertex-transitive.

The ‘only if’ part. Suppose that Cay(G, S) is AutS(G)-vertex-transitive. SinceG =
R × L, it follows that for everyg ∈ G

G\gG = (G\gG)G

is a right ideal ofG. Hence condition (i) ofTheorem 2.2implies thatS∩ gG �= gG = ∅
for all g ∈ G, which completes the proof.�

Remark 8.2. In fact we can remove the word ‘finite’ from the hypothesis ofCorollary 8.1,
and the assertion remains valid, but it no longer follows fromTheorem 2.2.

Given a family of graphsDi = (Vi , Ei ), where i ∈ I , their union is the graph
D = ∪i∈I Di defined by

D = (∪i∈I Vi ,∪i∈I Ei ).

Note that in this definition we do not assume that theVi are pairwise disjoint. In fact in the
next lemma they will be all equal.

Lemma 8.3. Let G be a semigroup, and let S be a subset of G. Then

Cay(G, S) = ∪s∈SCay(G, {s}).
If Cay(G, S) is ColAutS(G)-vertex-transitive then, for each s∈ S, the Cayley graph
Cay(G, {s}) is ColAut{s}(G)-vertex-transitive, too.

Proof. It is easily verified that ColAutS(G) = ∩s∈SColAut{s}(G), and hence these
assertions follow. �

Question 1. Is it true that ifG is a semigroup with a subsetS such that Cay(G, {s}) is
Aut{s}(G)-vertex-transitive, for everys ∈ S, then the whole Cayley graph Cay(G, S) is
ColAutS(G)-vertex-transitive, too?
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