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Abstract

We investigate Cayley graphs of semigroups and show that they sometimes enjoy properties
analogous to those of the Cayley graphs of groups.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let G be a semigroup, and lés be a nonempty subset @. The Cayley graph
Cay(G, S) of G relative toS is defined as the graph with vertex €&tand edge seE (S)
consisting of those ordered paips y) such thasx = y for somes € S (se€[7]).

The aim of this paper is to describe all semigroups with Cayley graphs satisfying certain
transitivity properties similar to those possessed by all Cayley graphs of groups. Let us first
define a few properties which hold true for the Cayley graphs of groups.

Let D(V, E) be a graph with vertex s&f and edge seE C V x V. A mapping
¢ : V — V is called arendomorphisnof the graphD if (u?, v?) € E forall (u, v) € E.

An automorphisnis an endomorphism that is one-to-one and onto.

A graphD(V, E) is said to bevertex-transitivef, for any two verticex, y € V, there
exists an automorphisgh € Aut(D) such thax? = y (see[1]). More generally, a subset
A of End(D) is said to bevertex-transitiveon D, and D is said to beA-vertex-transitive
if, for any two verticesx, y € V, there exists an endomorphigime A such thatx? =y
(see[3, Section 11.).

All Cayley graphs of groups are vertex-transitive, since the group on which the Cayley
graph is defined acts by right multiplication as a vertex-transitive group of automorphisms.
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Cayley graphs of groups have received much attention in the literature and many interesting
results have been obtained ($&ge2, 5, 8).

Now let G be a semigroup and lef < G. Denote the automorphism group
(endomorphism monoid) of C&§, S) by Auts(G) (respectively, Eng(G)). Thus

Auts(G) = Aut(Cay(G, 9)) and Eng(G) = EndCay(G, 9)).

It is easily seen that each element Gf acting by right multiplication, defines
an endomorphism of the Cayley graph @ayS). Denote by RG) the set of all
endomorphisms of Ca, S) defined by the right multiplications by elements®f

An elementp € Ends(G) will be called acolour-preserving endomorphisifisx = y
impliess(x?) = y?, for everyx, y € G ands € S. If we regard an edgex, sx), fors € S,
as having ‘colours, so that the elements &are thought of as colours associated with the
edges of the Cayley graph, then every colour-preserving endomorphism maps each edge
to an edge of the same colour. Denote by Coli®) (and ColAug(G)) the sets of all
colour-preserving endomorphisms (respectively, automorphisms) @3C&y. Evidently,

ColAuts(G) € Auts(G),
R(G) <€ ColEnds(G) < Ends(G),

and ColAug(G), R(G), ColEnds(G) are submonoids of Er@G).

Let G be a semigroupS a subset ofc and letA € B C Ends(G). If A is vertex-
transitive on CayG, S), then the same holds true f8r, too.

It is well known and easy to verify that, for every groGpand every subse of G, all
of Ends(G), ColEnds(G), Auts(G), and RG) are vertex-transitive on the Cayley graph
Cay(G, S). Moreover, in this case it is not difficult to show that@® = ColEnds(G) for
every setS generatings.

2. Main theorems

Our first main theorem describes all semigro@and all subsetS of G, satisfying a
certain finiteness condition, such that the Cayley graph(Ga$) is ColAuts(G)-vertex-
transitive. A semigroup is calledraght zero bandf it satisfies the identitky = .

Theorem 2.1. Let G be a semigroup, and let S be a subset of G which generates a
subsemigrougS) such that all principal left ideals ofS) are finite. Then, the Cayley
graph Cay(G, S) is ColAuts(G)-vertex-transitive if and only if the following conditions
hold:

(i) sG=G,forallse S;
(i) (S) is isomorphic to a direct product of a right zero band and a group;
(i) |({S)g| is independent of the choice ofgyG.

Next, we reduce the problem of describing vertex-transitive Cayley graphs of finite
semigroups to the case of completely simple semigroups. Our result applies to all
semigroups satisfying the same finiteness condition ashieorem 2.1 Recall that a
semigroup icompletely simplé it has no proper ideals and has an idempotent minimal
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with respect to the partial order< f < e = ef = fe. Completely simple semigroups
can be represented as Rees matrix semigroups over grou3scaen 3.

Theorem 2.2. Let G be a semigroup, and let S be a subset of G such that all principal left
ideals of the subsemigroy®) are finite. Then, the Cayley grapbay(G, S) is Auts(G)-
vertex-transitive if and only if the following conditions hold:

(i) SG=G;

(i) (S) is a completely simple semigroup;
(i) the Cayley graphiCay((S), S) is Auts(({S))-vertex-transitive;
(iv) |{S)g| is independent of the choice ofgG.

In the next section we summarize the background theory on semigroups needed to
prove these theorems. [Bection 4we give a series of examples of Cayley graphs of
semigroups which demonstrate the necessity of the finiteness conditions, and the precision
of some of the conclusions, of these theorems. Some general results about Cayley graphs of
semigroups are proved Bections 5and6, and the main theorems are provediection 7
Finally, Section 8contains some concluding comments on these results.

3. Preliminarieson semigroups

We use standard concepts and notation of semigroup theory folld®jdg and[6],
and include concise background information in this section.

If S C G, then the subsemigroup generated$®in G is denoted by S). An element
s of a semigroupG is said to beperiodicif there exist positive integens, n such that
s™N = sM, A subsetS of G is periodicif every element ofSis periodic. In particular, if
all principal left ideals of a semigroup are finite, then the semigroup is periodic.

A bandis a semigroup entirely consisting of idempotents. A band is calledt aero
(right zerg rectangula) bandif it satisfies the identityxy = x (respectivelyxy = v,
xyx = X). In fact, every rectangular band satisfies the identitg = xz, as well.

A semigroup is said to baght (left) simpleif it has no properight (left) ideals A
semigroup igeft (right) cancellativaf xy = xz(respectivelyyx = zx) impliesy = z, for
all x,y,z € S. A semigroup is called aght (left) groupif it is right (left) simple and left
(right) cancellative.

We summarize these terms in the following table:

Concept Property

Band x2 =X

Left zero band X2 =X,Xy=X

Right zero band X2 =X,Xy=y
Rectangular band X2 =X, XyXx= X
Semilattice X2 = X, Xy = yX

Right simple semigroup No proper right ideals

Left cancellative semigroup Xy =Xxz=y =12
Right group Right simple and left cancellative
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A few known facts required for our proofs are collected in the following lemma (see
[3], Theorem 1.27).

Lemma 3.1. For any periodic semigroup G, the following are equivalent:

(i) G isright (left) simple;
(i) G is aright (left) group;
(iif) G is isomorphic to the direct product of a right (left) zero band and a group;
(iv) G is a union of several of its left (right) ideals and each of these ideals is a group.

If G is a semigroup, the®! (or G°) stands forG with identity (respectively, zero)
adjoined.

Suppose that is a group)] andA are nonempty sets, ail= [p,;] is a(4 x | )-matrix
with entriesp,; € H forall » € 4,1 € |. TheRees matrix semigroup (i ; I, A; P) over
H with sandwich-matrix Reonsists of all triplegh; i, 1), wherei € 1, A € 4, andh € H,
with multiplication defined by the rule

(hy; i1, 20)(hos iz, A2) = (hapaihosie, A2).

Now suppose tha® = [g;i]is a(4 x | )-matrix with entriesy; in the groupH © with zero
adjoined. Then thRees matrix semigroup MH ; I, 4; Q) overH ° with sandwich-matrix
Q consists of zero 0 and all triplgh; i, 1), fori € 1, A € A, andh € HO, where all triples
(0,1, 1) are identified with 0, and multiplication is defined by the rule

(hy; i1, ) (hos iz, A2) = (haQasihos i, 12).

It is well known that every completely simple semigroup is isomorphic to a Rees
matrix semigrougM (H; 1, 4; P) over a groupH (see[6], Theorem 3.3.1). A semigroup
with zero is calledcompletelyO-simpleif it has no proper nonzero ideals and has a
minimal nonzero idempotent. Every completely 0-simple semigroup is isomorphic to a
Rees matrix semigrouM®(H; I, 4; P) over a groupH with zero adjoined. Conversely,
every semigroupd (H; I, A; P) is completely simple, and a semigrod@(H; |, A; P)is
completely O-simple if and only if each row and columnPEontains at least one nonzero
entry (seq6], Theorem 3.2.3).

Let H be agroupG = M(H; I, 4; P),andleti € I, 2 € A. Then we put

Gu={h;i,»)|heHiel}
Gix={(i,») |heH, Ae A}
Gix ={(h;i,2) | he H}.

In the case wher& = MO(H; I, 4; P) we include zero in all of these sets, i.e. put

G ={0}U{(h;i,») |heH,iel}
Gix ={0}U{(h;i,2) |he H,A e 4},
Gi, ={0}U{(h;i,2) | he H}.

We need a few basic facts which follow immediately. For convenience we collect them in
a separate lemma.
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Lemma 3.2. Let H be a group, and let G M(H; I, 4; P) be a completely simple
semigroup or let G= MO(H; I, 4; P) be a completel@-simple semigroup. Then, for all
i,jel,A,ue A ands= (h;i,1) € G,

(i) the set G, is a minimal nonzero left ideal of G;
(i) the set Gy is a minimal nonzero right ideal of G;
(i) Gs= Gyus= Gys;
(iv) sG=5Gj, = Gj4;
(V) se GsNsG=G;j;;
(vi) the set G, is a leftideal of G, and a rightideal of G, ;
(vii) if psi =0, then G, = 0;
(vii) if pai # 0, then G, is a maximal subgroup of G isomorphic to H;
(vii) each maximal subgroup of G coincides with Gfor some je I, u € 4;
(ixX) M(H; 1, A; P) is aright (left) group if and only ifl | = 1 (respectively|A| = 1);
(x) if G = M(H; I, 4; P), then each G, is a left group, and each G is a right group.

Let | andJ be ideals of a semigroup such that] C |I. The Rees quotient semigroup
I /J is the semigroup with zero obtained frdnby identifying with O all elements of the
ideal J. If |1 has zero and = {0}, thenl/J = |. The Rees quotient semigrolipJ is
called afactorof G. In the case wherd = ¢, we assume thdt/J = | . Take any element
gin G, putl = GlgG! and denote byl the set of all elements which generate principal
ideals properly contained ih ThenJ is also an ideal 06, andl /J is called aprincipal
factor of G.

Recall that anull semigroup or a semigroup wittero multiplicationis a semigrouis
with zero such thaG2 = 0. Each principal factor of a semigro@is either simple, or
0-simple, or a semigroup with zero multiplicatidie}, Proposition 3.1.5). In addition, all
periodic simple or 0-simple semigroups are completely simple or completely 0-simple,
respectively [6], Theorem 3.2.11). Obviously, every factor of a periodic semigroup is
periodic too. For convenience of further reference we combine these facts in the following
lemma.

Lemma 3.3. Every principal factor of a periodic semigroup is completely simple or
completely0-simple, or a null semigroup.

Lemma 3.4. Let G be a periodic completely simple or complet@lsimple semigroup,
and let L be a subsemigroup of G. If L does not con@itinen L is completely simple.

Proof. We consider only completely O-simple semigroups because the case of a
completely simple semigroup is similar and even easier. By the comment preceding
Lemma 3.2we may assume tha& = MO(H; I, A; P), whereH is a group andP is a

A x |-matrix overH?. Take any element in L, and suppose that € G;j; for some

i € 1,1 e A Since 0¢ L, we see thak? # 0, and so it follows from_emma 3.2that

p.i # 0. The saméemma 3.2ells us thalG;, is a group. Thus each elementlofies in

a subgroup 06. SinceG is periodic, we see that every elementofenerates a subgroup

of L. ThereforeL is a union of groups. For any = (h;i,1),y = (g; j, u) € L, we get

0 # xyx € L N Gj,. HenceL N G;j,, is a subgroup otf_. Clearly,y belongs to the ideal
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Fig. 1. CayG, {(¢1,r1), (€2, 12)}).

generated by in L. This means that is simple. Clifford’s theorem shows that every
simple semigroup, which is a union of groups, is completely simple [Beélheorem
4.1.3). Thereforéd is completely simple. [

If Gis asemigroupS C G, andg € G, thenSgis called aright cosetof S.

4. Examples

Theorem 2.2loes not generalize to a semigro@pwith a subset which generates a
subsemigroupS) with infinite principal left ideals, as the following example shows.

Examplel. LetG ={...,e_1, €p, €1, &, ...} be a semigroup with multiplication defined
by e ej = emaxi,j}, and letS = G. Then the Cayley graph Cé3, S) has edgese , €))
foralli < j, and therefore it is Ag(G)-vertex-transitive. HowevefS) = S= Gis a
semilattice, and so it is not completely simple. In this case all principal left ided|S)of
are infinite.

The next example of a vertex-transitive Cayley graph shows that condition (iv) in
Theorem 2.Zannot be replaced by

S| = 1(S0] forallg € G.

Example2. LetL = {¢1, £2} be a left zero bandR = {r1, r2, r3} a right zero band, and
let G be the union oL x RandL with multiplication defined by

@, =0e,r) =¢,

forany?, ¢ € L andr € R. Let S = {(£1,r1), (£2,12)}. The Cayley graph C&®, S) is
shown inFig. L It is vertex-transitive. We see thd)| = 4, wherea$(S)¢1| = 2.

Condition (iv) of Theorem 2.2loes not transfer to ERAG)-vertex-transitive graphs, as
shown by the following example.
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eQ CDg eQ—Qg c @ >0 e g
0 0 0 0

Cay(G,{e})  Cay(G,{e.g}) Cay(G.{g})  Cay(G,G)

transitive not transitive not transitive not transitive

Fig. 2. G = {0} U {e, g}.

Example 3. Let G = {0, e, g} be the the grouge, g} with zero 0 adjoined. The only
Ends(G)-vertex-transitive Cayley graph @ is Cay(G, {e}) (seeFig. 2). In this graph
[{S)g| = 2 and|(S)0| = 1.

The last two examples show that it is difficult to reduce further the question @Gt
vertex-transitivity to the right subgrougs).; of the completely simple semigroyf) in
Theorem 2.2

Example4. LetG; = {g, g, giz, gi3} be a cyclic group of order 4, fare {1, 2}, and let
G = G1 U G2 be the union of these two groups with multiplication defined by

grod = g**",
for all integersa, b and alli, j € {1, 2}. ThusG1 and G2 are left ideals ofG, andG
is a completely simple semigroup. This semigrdaps isomorphic to the Rees matrix
semigroupM (Z4; 1, 4; P), where|l | = 2,|A| = 1, Z4 is a cyclic group of order 4, and
P = [e e]. Equivalently, it is isomorphic to the direct product of the cyclic group of
order 4 and the left zero band of order two. 1S {gf, g2}. Then(S) = G, and we see
that the Cayley graph C&, S) is not vertex-transitive, because belongs to a cycle of
length 2, ande, does not (se€ig. 3). However, CayGi, e1Sq) and CayGi, e2Se) are
isomorphic.

Example 5. Let Z, = {0, 1} be the group of order two. For simplicity, we denote
the elements oZy x Z by pairs{00, 01, 10, 11}. Let G be the Rees matrix semigroup
M(Z2 x Zo;1,A; P), wherel = {1,2}, 4 = {1,2}, and P = éé 88 . Let

S =1{11,2),(;2 1} Then(S) = G, and the left group&,,, wherer € {1, 2},
are the connected components of GayS) and the left ideals of5. The left groupG..
induces a subgrap@ which is a connected component of €&y S). However,C is not
equal to any Cayley graph of the right groGpz. The whole Cayley graph Cé§, S) is
vertex-transitive. However, its subgraph induced by the left g®upis not equal to any

Cayley graph of this right group (séég. 4).

5. General propertiesof Cayley graphs

LetD = (V, E) be a graph. The in-degree (out-degree) of a varteXV is the number
of verticesu € V such thatlu, v) € E (respectively(v, u) € E). If D is finite and vertex-
transitive, then the in-degree is the same for each vertex, and is equal to its out-degree; in
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Fig. 3. CayG. {g2. g2)).

Fig. 4. CayG, {(0L 1, 2), (0L 2, 1)}).

this case the common value is called tiegreeor valencyof D. Theunderlying undirected
graphof D has the same set of verticesand it has an undirected ed@e v} for each
directed edgéu, v) of D. The graptD is said to beconnectedf its underlying undirected
graph is connected. If, for each pair of vertices of D, there exists a directed path from
u to v, thenD is said to bestrongly connected

Lemmab5.1. Let G be a semigroup with a subset S, let @ and let G be the set of alll
verticesv of the Cayley grapiCay(G, S) such that there exists a directed path from g to
v. Then G is equal to the right cos€S)g.
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Proof. Take anyv € Cq. There exists a (directed) pagh= vq, vz, ..., vn = v, Where
n > 1. By the definition of Ca§G, S) we getvj11 = svj, fori =1,...,n—1and some
s € S. Hencev = s1-1-- - $519, and sov € (S)g.

Conversely, pick any € (S)g. Since(S) is generated b, there existy, ..., s1-1 € S
such thatv = s,-1---$s0, wheren > 1. Settingvy = g andviy1 = S for
i=1...,n—1, we see that, = v and

(gv Slg)s (Slgv SQSlg)a RN (Snfz oo Slgs U)

are the edges of Cé§, S). Thereforeg = v1, vo, ..., vy = v is a directed path frorg to
vin CayG, S). ThusCy = (S)g. O

Lemma 5.2. Let G be a semigroup with a subset S such {f@t= M(H; |, 4; P) is
completely simple, S& G, and let T= (S),, for somex € A. Then every connected
component of the Cayley grapgbay(G, S) is strongly connected and, for eaehe G, the
component containing is equal to Tv = (S)v.

Proof. Consider any edgel, v) of Cay(G, S). There exists € Ssuch thab = ru. Since
SG= G, we can find elements € S,u’ € G such thau = s'u’. Hencev = rs’'u’. Now
s € B = (S, for somen € A, and byLemma 3.2 B is a left ideal of(S) and is left
simple. Therefores’ € B andB = Brs'. Hences' € Brs/, and sos’ = r'rs’ for some
r' € B. Sincev = ru = rs'v/, we getr'v = r'rs'u’ = U = u. Thusu € (Sjv. By
Lemma 5.1there exists a directed path framto u. Since(u, v) was chosen arbitrarily, it
follows that every connected component of QayS) is strongly connected.

Let C be the set of vertices of a connected component oflGa$), and letv € C.
Given thatSG = G, there exiss € S, g € G such thaisg = v. Letv € A be such that
S € (S)4. AgainLemma 3.2ells us that(S),,, is left simple, and se € (S)4,s C (S)s;
whencev = sg € (S)v. SinceC is strongly connected, it follows frothemma 5.1that
C = (Sw. By Lemma 3.2 (S)s = Ts. Therefore(Sjv = Tv, which completes the
proof. O

Corollary 5.3. Let G be a semigroup with subset S such that SGG, let (S) be
isomorphic to a direct product of a right zero band Z and a group K, and let H be a
maximal subgroup ofS). Then

(i) each right coset Hg coincides with the right coésig;

(ii) the right(S)-cosets are the connected component€ay(G, S).

Proof. Denote bye the identity ofK and letP be the(]Z] x 1)-matrix with all entries
equal toe. Then it is easily seen thag) = M(K; {1}, Z; P). It follows from Lemma 3.2
thatH = (S).z, andH = {(k, zp) | k € K} for somezg € Z. Hence the assertion follows
fromLemma5.2 O

Lemmab5.4. Let G be a semigroup with a periodic element s such thatsG, and let
| be a subset of G such that &l |. Then x¢ | implies sx¢ I.
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Proof. SinceSis periodic,s™™" = s™, for some positive integers, n. Take any element
x ¢ | and suppose in contrast thex € |. SincesG = G, for each positive integer
i there existsx; € | such thatx = s'x;. Every x; is in G\I, becausesl C |I. If
n = 1, then we havex = s™xy, = s™xy, = s(s™xm) = sx € I.1f n > 1, we get
X = ™M Iy in1 = " NS Xmyen—1) = " HE™ M Xmyn—1) = s"1(sx) € |. These
contradictions prove thatx ¢ |. O

Lemma 5.5. Let G be a semigroup with a periodic subset S such thats@ for all

s € S, and let | be a subset of G such that €I |. Then | is a union of connected
components ofcay(G, S). In particular, the subsemigrou{fs) generated by S in G is a
union of connected components@ay(G, S).

Proof. Letx € |. Take any edgéx, y) in CayG, S). Theny = sx, for somes € S.
Sinces| C |, we gety € | by Lemma 5.4 Similarly, suppose thaty, x) is an edge of
Cay(G, S). Thenx = syfor somes € S. If y was notinl, then byLemma 5.4x = sy
would not be inl either, which would be a contradiction. Henge= 1. Thus all vertices
of | are adjacent to vertices afonly. Hencel is a union of connected components of
Cay(G, S). The final assertion follows, becauss) C (S), foreachs € S. O

6. Transitivity propertiesof Cayley graphs

In this section we prove several preparatory lemmas for the proof of the main theorems.

Lemma6.1. Let G be a semigroup, and let S be a subset of G.

() If Ends(G) is vertex-transitive orCay(G, S), then SG= G.
(ii) If ColEnds(G) is vertex-transitive orCay(G, S), then sG= G for each se S.

Proof. Pick anyg € G ands € S. There exist® in Ends(G) such thaisg)? = g. Since
(g, sg) is an edge, alsog?, (sg)?) is an edge. Hencesg)? = s'(g)? for somes’ € S.
Thusg = s'(9)? € SG, and soSG = G, i.e. (i) holds.

Furthermore, if ColEng(G) is vertex-transitive on Ca, S), then we may assume
that¢ € ColEnds(G), whences’ = s, and sasG = G, i.e. (ii) holds. O

Lemma 6.2. Let G be a semigroup with a periodic subset S such thalEnds(G) is
vertex-transitive orCay(G, S). Then(S) is right simple.

Proof. For eachs € S, sG = G by Lemma 6.1 Take anyg € (S) ands € S. Since
sG = G, there existyy € G such thatg = sg. By transitivity, g = (g)? for some
¢ € ColEnds(G). Henceg = s(g)?, and it follows fromLemma 5.4with | = (S)) that
(9)? liesin(S). This means thag € s(S). Therefores(S) = (S) forall s € S. By induction
we deduce that(S) = (S) forallt € (S). Thus(S) has no proper right ideals, i.e. it is
right simple. O

Lemma6.3. Let G be a semigroup, and let S be a subset of G such that all principal left
ideals of the subsemigroyf®) are finite, and suppose that the Cayley grapay(G, S) is
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Auts(G)-vertex-transitive. TheKS) is a completely simple semigroup, and each element
of S generates G as an ideal.

Proof. LetT = (S). Clearly, the condition that all the principal left idealsfare finite
implies thatT is periodic. Take any elemegt € G. By Lemma 5.1 Tg is equal to the
setCy of all verticesv of Cay(G, S) such that there exists a directed path frgro v.
By Lemma 6.1 SG = G, and so there existse S, h € G, such thash = g. Since the
principal left idealT siis finite, we see that the s€y = (T s)h is finite. Since Ca§G, S

is Auts(G)-vertex-transitive, we gdCqy| = |C,| forall v € G. If v € Cg, then evidently
C, < Cg. It follows thatC, = Cy, sov € C,, so alsog € Cy. ThereforeCy is strongly
connected. Further, i£5 andC, have a common vertex for somee G, then it is clear
that the uniorCqy U C, is also strongly connected. Th@g is a connected component of
CayG, S).

Pick anys,t € T. We have proved thate Cs = Ts. Sincets belongs to the connected
componenfs = Cs = Cis = Tts, we gets € Tts. Hences € T T?, and soT = T4T?
(where, recallT! denotesT with identity adjoined). Therefor€ is simple, and it follows
fromLemma 3.3hatT is completely simple, because it is periodic.

For anys € S, we getT = T1sT!. Letg € G. SinceSG = G, we haveg = tg’ for
somet € S, g € G. Then sinceT = T1sT!, we havet = s;59, wheres;, s, € T, so
g = 51599 € GIsGl. HenceG = G1sGl. O

Corollary 6.4. Let G be a semigroup, and let S be a periodic subset of G. If the Cayley
graph Cay(G, S) is ColEnds(G)-vertex-transitive, then the following conditions hold:

(i) sG=Gforallse S,
(i) (S is adirect product of a right zero band and a group,
(i) the right cosetgS)g are precisely the connected component€af(G, S).

Proof. By Lemma 6.1 (i) holds. By Lemma 6.2 (S) is right simple, and.emma 3.1
yields (ii). Then byCorollary 5.3the connected components of @&y S) are the right
cosetgS)g, forallge G. O

7. Proofsof the main theorems

Proof of Theorem 2.1. The ‘only if’ part. Suppose that ColAgtG) is vertex-transitive.
Since ColAutG, S) € ColEndG, S), Corollary 6.4applies, whence (i) and (ii) follow.
Clearly, the connected components of QayS) have the same cardinality because of
vertex-transitivity, and so (iii) follows fronCorollary 6.4iii).

The ‘if’ part. Suppose that conditions (i), (i) and (iii) atheorem 2.1hold, and in
particular that'S) is isomorphic to the direct produkt x Z of a groupK and a right zero
bandZ. Note that therK x Z is isomorphic to the Rees matrix semigrodgK; I, 4; P),
wherel = {i}, |4]| = |Z|, and all entries of théx x | )-matrix P are equal to the identity of
K. Therefore we can applyemma 3.2taking into account that, fare | and anyi € 4,
keK,

(Six=(§ and (S =(Sixr.
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Denote byH a maximal subgroup ofS). By Lemma 3.2there exist € | andu € 4
(and the corresponding elemen¢& Z) such that

H = (i, =1{(k 2| keK). (7.1)

Each principal left ideal ofS) is equal to the minimal idedlS),, = (S)ix, for some
A € A. Hence all these principal left ideals are isomorphicktoby Lemma 3.2 By
assumption, therefor& andH are finite.

By Corollary 5.3 each cosetS)g coincides withHg, and the connected components
of Cay(G, S) are the rightH-cosets. Note thaH is one of these cosets, since it is a
group. Therefore by (iii) all these cosets have the same cardinality.ds particular,
forh,h’ € H andg € G, hg= h'gimpliesh = h'.

Choose elementg, g’ € G. We shall define a mapping : G — G such that
g = ¢/, and show thap is a colour preserving automorphism of &y S). It follows
from Lemma 5.2that g belongs to the connected componéhy. Therefore there exists
h € H such thahg = g. Similarly,h’'g’ = g’ for someh’ € H. Denote bye the identity
of H. Thenhg = (eh)g = e(hg) = eg, and by our observation in the previous paragraph,
h = e. Similarly,h’ = e. Consider two cases.

Casel. Hg# Hg'. Then, forx € G, we define

tg if x =tg forsomet € H;

tg’ if x =tgfor somet € H;
x¥ =
x ifx¢ HQUHJ.

Theng is well defined and is a bijection, becaustg| = |Hg'| = |H|. Clearly,g¥ = ¢'.

Take anyx € G,s e S. If x =tg € Hg, thensx € Hg, sinceH is a leftideal of(S) by
(1). Therefore the edgex, sx) in mapped byp to the edgetg’, stg) = (x%, s(x¥)). An
analogous property holdsxf € Hg'. Also, ¢ leaves invariant all edges involving vertices
of G\(Hg U Hg'). Thus(sx)? = s(x?), i.e. ¢ is a colour-preserving automorphism of
Cay(G, 9.

Case2. Hg= Hd'. Forx € G, we define

<0 — hg if x=hge Hg;
T x if x¢ Hg.

Since|H | is finite and|Hg'| = |[Hg| = |H|, it follows thatg is a bijection (in particular,
it is onto). Take ang € S, x € G. If x = hg € Hg, thensh € H andsx € Hg, because
H is a left ideal of(S) by (1). Therefore(sx)? = shd, and so(sx)? = s(x?). On the
other hand, ifx ¢ Hg, thens(Hg) = (sH)g C Hg, sinceH is a left ideal of(S), and it
follows from Lemma 5.4thatsx ¢ Hg. Therefore(sx)? = sx = s(x?). This means that
¢ € ColAuts(G).

Thus we have verified that C&g, S) is ColAuts(G)-vertex-transitive. [J

If H € GandSH C H, then by CayH, S) we denote the subgraph of G&;, S
induced by H i.e. the graph with vertex séd and edgesh, sh) forallh € H,s € S.
Note that ifSC H, then CayH, S) is a Cayley graph oH.
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Proof of Theorem 2.2. The ‘only if’ part. Suppose that Ca@, S) is Auts(G)-vertex-
transitive. TherSG= G byLemma 6.1and(S) = M(H; I, 4; P) is a completely simple
semigroup byremma 6.3 Thus conditions (i) and (ii) hold.

Take anyr € A and putT = (S),x. By Lemma 5.2 for eachg in G, the connected
component of Ca§G, S) containingG is equal toT g = (S)g.

Now T is a left ideal of(S) by Lemma 3.2and so, fos € S, we seethaBTsC Ts, and
the subgraph induced dnsis CayTs, S). Since CayT s, S) is a connected component of
Cay(G, S), its automorphism group is vertex-transitive. The Cayley graph (GayS) is
a union of the connected components Cag S) of Cay(G, S), fors € S, and so itis also
Auts((S))-vertex-transitive. Thus (iii) holds.

Since all connected components of an 4@)-vertex-transitive graph are isomorphic,
we see thalT g| = |(S)g| is independent of, i.e. condition (iv) holds.

The ‘if’ part. Condition (ii) says thatS) is completely simple, and so by the remark
preceding.emma 3.2t is isomorphic to a Rees matrix semigrolp = M(H; I, 4; P)
overa groufH. Take anyh € A and putT = M,,.Lemma 5.2ells us that each connected
component of Ca§G, S) is equal toT g, for someg € G, and thafl g = (S)g and contains
g. Note thati;g = tog impliest; = to by condition (iv) and sincé is finite.

Let TsandT h be distinct connected components of QayS). Forx € G, define

th if x=tgforsomet € T
x¢¥=1tg ifx=thforsometeT
X ifxgTguTh.

Theng is well-defined, and is a bijection by Condition (iv). As in the proof @&5e 1in
the proof ofTheorem 2.1we see thap € Auts(G).

Since, fors € S, the graph CayT s, S) is a connected component of G&$), S), we
see that the automorphism group of Cag, S) is vertex-transitive by condition (iii). It
follows that CayG, S) is Auts(G)-vertex-transitive. This completes the proof.]

8. Final comments

We prove here a corollary tbheorem 2.2vhere conditions (i) to (iv) ofheorem 2.2
collapse to a single simple condition for a certain class of finite simple semigroups.

Corollary 8.1. Let G be a finite rectangular band, and let S be a subset of G. Then the
Cayley graphCay(G, S) is Auts(G)-vertex-transitive if and only if & gG # ¢ for all
geG.

Proof. It is well known that every rectangular ba@lis isomorphic to a direct product
G =L x Rofaleft zero band. and a right zero banB.

The ‘if’ part. Suppose tha®NgG # ¢ forall g € G. Then, for eacli € L, there exists
re € Rsuchthate,ry) € S. It follows thatSG = G, and thatS generates the rectangular
bandL x {r, | £ € L}. Thus conditions (i) and (ii) oTheorem 2.2hold (note that all
rectangular bands are completely simple).
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Since(S)s is a left zero band, CayS)s, S) is a complete graph, and so (iii) holds. If
g= (,r) e G, then(S)g = L x {r}, whence|(S)g| = |L|, and so (iv) is satisfied. It
follows that CayG, S) is Auts(G)-vertex-transitive.

The ‘only if’ part. Suppose that C&, S) is Auts(G)-vertex-transitive. Sinc& =
R x L, it follows that for everyg € G

G\gG = (G\gG)G

is a right ideal ofG. Hence condition (i) offheorem 2.2mplies thatSN gG # gG = ¢
for all g € G, which completes the proof.c]

Remark 8.2. Infactwe can remove the word ‘finite’ from the hypothesi€afollary 8.1
and the assertion remains valid, but it no longer follows fiimeorem 2.2

Given a family of graphD; = (V;, E;), wherei € 1, their unionis the graph
D = Uj¢| Dj defined by

D = (Uil Vi, Uiel Ei).

Note that in this definition we do not assume thatthare pairwise disjoint. In fact in the
next lemma they will be all equal.

Lemma8.3. Let G be a semigroup, and let S be a subset of G. Then
Cay(G, S) = UsesCay(G, {s}).

If Cay(G, S) is ColAuts(G)-vertex-transitive then, for each & S, the Cayley graph
Cay(G, {s}) is ColAuts;(G)-vertex-transitive, too.

Proof. It is easily verified that ColA@(G) = NsesColAuts(G), and hence these
assertions follow. (]

Question 1. Is it true that ifG is a semigroup with a subs&such that Ca§G, {s}) is
Auts) (G)-vertex-transitive, for everg € S, then the whole Cayley graph C&y, S) is
ColAuts(G)-vertex-transitive, too?
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