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On the Characterization of 
Non-negative Volume-Matching Surface Splines 

NIRA DYN* 

AND 

WING HUNG wONG+ 

In this paper we study the surface splmc which minimizes the Dirichlet Integral 
over a two-dimensional bounded domain, among all non-negative functions 
satisfying a finite number of volume-matching constraints. Existence and uniqueness 
of this surface spline are proved. A characterization by a variational inequality is 
given, revealing local and boundary bchaviour of the surface spline. This charac- 
terization is of importance in the construction of numerical algorithms for the 
production of non-negative smooth surfaces from aggregated data. ( 19X7 ,Ac.dembc 

rk\\. Inc 

1. INTRODUCTION 

In this paper we study the surface spline defined as the solution of the 
variational problem: 

minimize J,(U) = i (~4’ + ~5) d.u d) (la) 
i,t f/‘(R) 52 
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subject to: 

I Uf,,=G i= 1 ) . . ) s, (lb) 
D 

u30 a.e. in Q, (lc)’ 

where D is a smooth bounded region in R2, ,f,e L*(Q), i= l,..., s, and 
H’(Q) is the (first Sobolev) space of functions, which together with their 
first-order distributional derivatives belong to L2(Q). 

This variational approach provides a method for the production of 
smooth non-negative surfaces fitting a set of aggregated data of the type 
(lb), and, in particular, for the estimation of a density from its given 
volumes 

! 
u = ct(,, i = 1 ,..., s, (lb)’ 

R. 

over a partition Q, ,..., Q,? of the domain Q (Tobler [lo]). 
The variational approach to the interpolation of function values given on 

a set of scattered points is well established for 52 = R* (See, e.g., Duchon 
[3] and Meinguet [9]). The required surface fits the data and minimizes a 
roughness criterion of the form 

which is rotation invariant. 
The same approach in case of aggregated data is studied in Dyn and 

Wahba [4] and Wahba [12]. For this type of data the roughness criterion 
J,(u) can also be considered and provides the surface spline of lowest 
order. In the present work we impose the additional constraint of the 
positivity of the surface and investigate the solution of the resulting 
variational problem (I), or (1) with J, replaced by J,, m 3 2. 

The surface spline solving (1) (denoted hereafter by SS( 1 )), generalizes 
the notion of the univariate shape preserving algebraic spline defined by an 
analogous variational problem (See, e.g., Laurent [8] and Utreras [ 11 I). 

It is worth noting that problem (1) without the linear constraints (1 b) 
(which provide the main information about the estimated function), and 
for H’(Q) replaced by HA(Q) is the well-known stationary obstacle problem 
in mechanics (Glowinski [6]). 

’ In case Q is a bounded domain, the non-negativity almost everywhere in (Ic) is equivalent 
to the non-negativity in Q in the sense of H’(Q) (~20 in .Q in the sense of H’(Q)), if 
3{4,} cc’(o), 4,>0 in 0, such that 4, + 4 in H’(Q). (See, e.g., Kinderlehrer and Stam- 
pacchia 171.) 
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In the following, we limit the discussion to sets of constraints (lb) 
satisfied by at least one smooth non-negative function. This is always the 
case for constraints of the form (1 b)’ with 3, > 0, i = l,..., s. 

In Section 2, we give a simple existence and uniqueness proof for the 
solution of (1). Using results from optimization theory in Banach spaces, 
we give in Section 3 a characterization of the SS( 1) in terms of a 
variational inequality. In Section 4, we combine the results of Section 2 and 
Section 3 with a theorem of Brezis [2] to study local properties of the 
SS( 1). In particular the SS( 1) is found to be continuous and therefore non- 
negative everywhere in L?, two properties which are essential for 
applications. 

These characterizations of the solution to (1) are of crucial importance in 
the construction of numerical procedures for the computation of the 
solution, and in establishing their convergence rates (Wong [ 131). The 
analogous characterizations of the solution to the obstacle problem 
(la) + (lc) are the basis to several numerical procedures for the com- 
putation of this solution (see Glowinski [6] for a review of these methods). 

We conclude by considering in Section 5 surface splines of higher order 
defined by similar minimization problems to (1) but with the functional in 
( la) replaced by J,,,(u). 

The results obtained are analogous to those for the case m = 1, with the 
exception of the local and boundary behaviour deduced from Brezis’s result 
for 1~7 = 1. 

This problem with m >, 2 is of interest in the production of highly smooth 
positive surfaces fitting given aggregated data. 

2. EXISTENCE AND UNIQUENESS 

THEOREM 1. There exists u unique solution to problem (1 ) \~~henrver 

c:= ,c(n L)’ > 0. 

ProoJ Without loss of generality assume jl>f, = G, #O, and let 
Li=u- l/G,cc,. Then (1) is equivalent to 

min J( ii) = 1 iit + 6’ (2a) 
R 

subject to ii E ii’(Q) = {u E H’(O) 1 jn uf, = 0 1 and 

where G, = 
j 

f,, i = 2 ,..., s (2b) 
a 

Xl ii> -- 
G’, 

a.e. in 52 
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Now functions satisfying (2b) and (2~) are easily seen to form a closed 
convex set in A’(Q). It is also easy to see that (J,(U))’ ’ is a norm in R’(Q). 
This norm is in fact equivalent to the Sobolev norm in H’(Q): ~~IIII’= 
J(u) + SC2 U’ restricted to n’(Q). To prove this. it is enough to show that if 
~r~i;r’(.Q). then (~,~u)“<c./,(u) for some c>O, since by the classical 
inequality of PoincarC1. there exists constants C, . (‘? > 0 such that for an) 
I’ E H’( 0 ). 

Now let L; = II ~ ( I;(;) JI, U. where (; = SC., I Then by the above inequality 

On the other hand, since UE A’(Q),, we must have 

Thus (2) is the problem of finding the minimum norm element of u 
(nonempty) closed convex set in a Hilbert space, which always has ;I 
unique solution. 

3. VARIATIONAL CHARACTERIZATION 

For finite dimensional optimization, the solution is usually characterized 
by the famous Karush Kuhn Tucker conditions. There are extensions of 
the Kuhn-Tucker theorem to Banach space setting. We will use the 
following extension (Girsanov [S]): If Q is a closed convex set in a Banach 
space H, and J. /I, . . . . . II, are Frkchet differentiable functions on H. then a 
necessary condition for II to minimize J(U) subjected to UE @z,(u) = x,, 
i= I ,.... .Y is that there exist multipliers L, ,..., i,. such that 

(VJ(u) + 1 i., Vl?,(U))( I’ ~ II) 3 0 VI. E Q 
/ I 
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Furthermore, if J is convex, h,, i= I,..., s are linear and there exists 24* in 
the interior of Q, satisfying /z,(u*) = CX,, i= I,..., .F, then the above condition 
is also sufficient for UE Q satisfying h,(u) = x,. i= I,..., s to be the extremal 
solution. 

To apply the above theorem to our problem, let J(U) = U(U, u) = 
S{) 11; + uf, h,(u) = SC> .f;u. p = (~EH’(R), ~30 a.c. in Q}, and H=H’(Q). 
The Frechet derivatives are given by (VJ(u))(r) = 2a(u, L.) = 
2.iC, (M,P, +u, r) and (VI~,(U))(I’)=S~~,~;~~, i= l,..., .s. 

By the above result, we obtain the following characterization of the 
solution to (1 ). for any set of constraints (1 b) satisfied by at least one 
smooth positive function: 

THEOREM 2. u is the solution to (I ) ~f’md only [f therr exist multipliers 
i, ,._.. 2, .swh thrrt 

(h. l--u)b j .f(r.-u) ,f;?r 1111 L’ > 0, 1’ E H’( Q ) (3a) 
” 0 

J,, f;u = x,, i = I ).... s. (3c) 

By well-known results (see, e.g., [6] p. 4) we obtain from Theorem 2: 

LEMMA 1. Girm 2, . . . . . E.,, tlwrr is a unique jimction srrtisfj~ing (3a) and 
(3b). 7’hi.v ,fimction minimixs a( u, u) - jc,(z; , L, ,f;)u mong LI~I non- 
rwgutivr ,functions in H’(Q). 

4. LOCAL BEHAVIOUR AND BOUNDARY CONDITIONS 

If in (1) we ignore the equality and inequality constraints, then the 
problem becomes a classical calculus of variations problem; the local 
behaviour of the solution will then be given by the Euler equation 
(vanishing of the first variation) and the natural boundary conditions. In 
our problem (1) which is constrained, we expect to get a characterization 
of local behaviour similar to the Euler equation in the unconstrained case. 
We show that, roughly speaking, when the constraints are not active in a 
certain neighbourhood, then the solution SS(I) satisfies a differential 
equation locally in the neighborhood. This kind of local results are in 
general very difficult to prove, but our task is simplified considerably by 
some existing theorems on variational inequalities. 
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LEMMA 2. Given f‘~ L’(Q), there exists a U E H’(Q), which is the unique 
solution of the ,following variational inequality: 

i‘ (-AU)(Ll-U)> ” ! n 
f(a-6) /iw u/i c 3 0 a.e. in Q, u E H’(Q), (4.a) 

0 

230 in Q (4b) 

i:u 
-zz 
an 

0 a.6’. on d.0 

brhere Au = u,, + u,, is the Laplacian of u and (au/&) is the normal 
deriaatiue at the boundary (7.Q. 

Proqf!f: This is a special case of Theorem 1.12 in Brezis [2, p. 551, where 
we take 

in applying that theorem. 
This result is related to the solution of (1) in the following: 

LEMMA 3. Let U E H2(52) satisjj (4). Then ii satisfies also (3a) 

Proof: Since U E H’(Q), we can use Green’s fomula to write 

The second integral in the right-hand side vanishes, because the function 
U satisfies the boundary conditions in (4). Therefore 

a(@ u - U) = J’ (-du)(l:-~)~~~,.f(~~u) 
I2 

for all L’ 3 0 a.e. in Q, o E H’(B), 

and U satisfies (3a). 
Combining the results of Theorem 2 and Lemmas l-3, we obtain a 

differential type necessary and sufficient condition for u to be a solution 
of (1). 

THEOREM 3. u is the solution to (1) !ff the .following conditions ure 
.ru tisfkd: 

u E H’(Q) (5a) 
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there exist i . , ,..., i, such that u sati.yfies 

.for all c’ >, 0 a.e. in 9, ~1 E H’(Q) (5b) 

U30 in Q (5c) 

i Kf!f; = g,, i= l,..., s. (5e) 
a 

Proof: The sufficiency follows from Lemma 3 and Theorem 2. To prove 
the necessity of these conditions assume u to be the solution of (1). Then by 
Theorem 2, there exist 3,, ,..., A, such that u satisfies (3a), and by Lemma 2, 
there exists U E H*(Q) satisfying (5b), (5c), (5d), with jk, ,..., /I, as in (3a). 
Hence by Lemma 3 U satisfies (3a) and (3b), which in view of Lemma 1 
implies that U coincides with U. This completes the proof of the theorem. 

Rrmurk. The boundary condition (5d) is the natural condition, as in 
the classical variational problems with “free boundary”. 

Property (5b) of the solution of (1) is equivalent to the following local 
behaviour in the distributional sense (Brezis [2]): 

(-Au)3 i fi,j; in 52, (-Au) = i j.,,f, in jsEQ:z1(.~)>0). 
,=I ,=I 

(5b)’ 

Moreover since UE H*(Q), Au E L’(Q), and (5b)’ holds almost 
everywhere in Q. Thus (5b) in view of (5a) is equivalent to: 

-Au- i i”,f;>/o a.e. in Sz, -Au- i i”,f, u=o a.e. in Q. 
,=I i ,= I 

(5b)* 

5. SURFACE SPLINES OF HIGHER-ORDER 

Similar analysis as done for the SS( 1) can be carried over to the surface 
spline of order m 3 2, SS(m), defined as the solution of the variational 
problem: 

(ha) 
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subject to 
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uf, = %/, i= I..... .s (6b) 

II 3 0 in Q. (6~) 

Here Q is a smooth bounded region in K’. f, E L’(R), i= I,.... .s. and If”‘(Q) 
is the m’th order Sobolcv space 

H"'(Q) = 11 ^ ,':': 
II '. 

/E L'(Q). i = 0 . . . . . h-, x = 0 . . . . . 111 
i.Y 11' i 

T-‘or III > 2 all functions in I/“‘(Q) are continuous on 0, and the non- 
negativity in (6~) is pointwise. 

For this problem we obtain analogous results to Theorems 1 and 2 for 
the case III = I. for sets of linear constraints (6b) satisfying the following 
two assumptions: 

(i) There exists a smooth positive function satisfying (6b). 

(ii) There does not exist a polynomial y of total degree h, X < ~1. 
satisfying S,) f;q = 0, i = I,.... .s. 

For the SS(nl), existence, uniqueness. and characterization in terms of a 
variational inequality are derived by the same arguments used in Sec- 
tions 2. 3. We formulate the results and omit the proofs. 

) ./;u = T, .  i = I ,.... .s. (7c) 
I Id 

In order to conclude local and boundary behaviour of the solution to 
(6). an extension of Brezis’s result (Lemma 2) to tn 3 2 is needed. At this 
stage the extension of Theorem 3 to tn > 2 is yet a conjecture: 
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C’otzjc~c~rlrrc. 24 is the solution to (6) if the following conditions arc 
satisfied: 

Ll E Ff2”yn) (921) 

there exist j-, . . . . . 2, such that II satisfies 

I 5 
3 16 2, ,/i)( 1’ - II) for all r 3 0, I’ E W’( Q ) (9b) 

” I2 ,=I 

Ll 3 0 in .Q (9c) 

6 7!>1 i 14 = 0 on ?!2, i = l,.... 02 (9d 1 

Lff, = r,, i = I,..., .v (9e) 
“61 

where ii?,,, ,, i= I ,..., nz are differential operators of order 2tn - i defined by 
the generalizd Green formula (Aubin [ I] ): 

-i 

N,,,(U, 21) = (~ I y j (A”‘u)c + “‘XI ?:., (62,), , ,Zl) ?I- I’. (IO) 
a / = 0 c’n’ 

The local behaviour of u in Q implied by (9a) and (9b) is: 

( - 1 )“I A a.e. in !2 (Ila) 

L ( ~ 1 )“’ n”‘u ~ i i, ,f; 1 14 = 0 a.e. in R. 
,=I 

(lib) 
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