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Abstract

This paper describes two di,erent embeddings of the manifolds corresponding to many elliptical probability
distributions with the informative geometry into the manifold of positive-de/nite matrices with the Siegel
metric, generalizing a result published previously elsewhere. These new general embeddings are applicable
to a wide class of elliptical probability distributions, in which the normal, t-Student and Cauchy are speci/c
examples. A lower bound for the Rao distance is obtained, which is itself a distance, and, through these
embeddings, a number of statistical tests of hypothesis are derived. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The study of the family of elliptical distributions forms the basis of a generalized multivariate
analysis, see for instance [9] or [15]. This family includes most importantly the multivariate normal
distribution, all the Pearson-type VII distributions including the multivariate Student-t and Cauchy,
among many other interesting distributions.

For purposes of statistical and data analysis, the distance concept has been proved to be a very
useful tool, see for instance [18,5,10]. Related to a convenient introduction of a distance, several
authors have described di,erential geometric methods and, in particular, have studied the information

∗ Corresponding author. Tel.: +34-93-402-15-90; fax: +34-93-411-17-33.
E-mail addresses: calvo@bio.ub.es (M. Calvo), oller@bio.ub.es (J.M. Oller).

1 This work is supported by DGICYT grant (Spain), PB96-1004-C02-01 and 1997SGR00188.

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(01)00584-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82687052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


320 M. Calvo, J.M. Oller / Journal of Computational and Applied Mathematics 145 (2002) 319–334

metric for parametric families of probability distributions. The Riemannian distance corresponding
to this metric is known as the Rao distance, which possesses interesting properties. One of the most
remarkable of these is its invariance under admissible transformations of the parameters. Several
relevant contributions in this /eld include Amari [1], Atkinson and Mitchell [2], Burbea [4], Burbea
and Rao [5], Burbea and Oller [6], Oller [16] and Oller and Corcuera [17] among many others.
Unfortunately, a general closed form of the Rao distance for the elliptical family has not as yet been
obtained, except for a number of speci/c con/gurations on the parameters of the implied densities,
see [13,14,3].

In a previous paper, Calvo and Oller [7] introduced an embedding of the manifold of the multi-
variate normal densities with informative geometry into the manifold of the positive-de/nite matrices.
Besides the geometrical interest of the embedding, perhaps the main obtained result, from applied
point of view, was the closed form of the induced Riemannian distance. The distance in the Siegel
group gives a close lower bound of the Rao distance. We proposed using this so-called Siegel
distance as a substitute in applied data analysis for the unknown expression of the Rao distance,
see [8]. In Calvo and Oller [7] general statistical tests were also derived starting from purely ge-
ometrical considerations, and were compared with classical results obtained using likelihood ratio
criteria.

The need for a general distance for the family of elliptical distributions is reGected in several
recent papers, see for instance [3], or, for the normal case, see [12]. In this paper we propose
an extension of our earlier result for the multivariate normal case to a wide class of elliptical
probability distributions, which includes those cases mentioned at the beginning of this introduction.
Some statistical tests are also derived.

2. Preliminary considerations

In this section we summarize some known results of the information metric for the elliptical
distributions. We begin by introducing some notation. Let Mn×m(R) be the space of all n× m real
matrices, Sn(R) stands for the subspace of symmetric matrices of Mn×n(R), GLn(R) denotes the
group of regular matrices of Mn×n(R) and Pn(R) the sub-set of positive-de/nite matrices in Sn(R).
If an n-dimensional random vector X has a density, with respect to the Lebesgue measure, given by

f(x; 
; �) =

(n=2)
�n=2

|�|−1=2F((x − 
)′�−1(x − 
)); x∈Rn;

where 
=(
i)∈Mn×1(R) and �=(�ij)∈Pn(R) are the parameters, and F is a function F :R+ → R+

satisfying∫ ∞

0
tn=2−1F(t) dt = 1;

it is said to have an elliptical distribution with parameters 
 and �. If the random vector X has
expectation, we have E(X )=
, as in the multivariate normal model. The covariance of X is cov(X )=
cF�, provided its existence, where

cF =
1
n

∫ ∞

0
tn=2F(t) dt:
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The sub-family of n-dimensional elliptical distributions de/ned by the function F can be noted as
EF;n(
; �). Let us assume two additional conditions:

a =
4
n

∫ ∞

0
tn=2
(

d logF(t)
dt

)2

F(t) dt ¡∞;

b =
4

n(n + 2)

∫ ∞

0
tn=2+1

(
d logF(t)

dt

)2

F(t) dt ¡∞: (1)

For example, choosing F as

F(t) =

(m)


(n=2)
(m− n=2)
s−n=2

(1 + t=s)m
with m¿

n
2
; s¿ 0; (2)

we have the Pearson-type VII class of distributions, see [9]. For any member of the class in (2) of
elliptical distributions, the values for a and b in (1) are

a =
(2m− n)m
(m + 1)s

; b =
m

m + 1
: (3)

In the particular case of the multivariate Student-t distribution, we have m = (n + �)=2 and s = �,
where � are the degrees of freedom of the t-distribution. The values of a and b simplify now to

a = b =
n + �

n + � + 2
: (4)

To obtain the multivariate Cauchy distribution, take � = 1. In this case, the values are a = b =
(n + 1)=(n + 3).

Another interesting family can be obtained when F has the following form:

F(t) =
sr(2m+n−2)=2s


((2m + n− 2)=2s)
tm−1 exp(−rts) with r; s¿ 0; m¿ 1 − n

2 (5)

For the members of this family (5), the values for a and b in (1) are:

a =
r1=s

n

((2m + n− 4)=2s)

((2m + n− 2)=2s)

{(n− 2)2 + 2s(2m + n− 4)};

b =
n2 + 2ns + 4s(m− 1)

n2 + 2n
:

In the particular case of m = 1, s = 1 and r = 1=2, that is,

F(t) =
1

2n=2
(n=2)
e−t=2 t¿ 0;

we have the non-singular multivariate normal distribution and the constants are a = b = cF = 1.
To close this section, let us brieGy review a number of results of the information metric for the

elliptical distributions. We note with �=Mn×1(R)×Pn(R) the parametric space corresponding to the



322 M. Calvo, J.M. Oller / Journal of Computational and Applied Mathematics 145 (2002) 319–334

family of elliptical distributions parameterized by 
=(
i)∈Mn×1(R) and �=(�ij)∈Pn(R). Note that
� is the common parameter space of any sub-family EF;n(
; �). The introduction of the information
metric in � (see [14,16]) equips � with a Riemannian manifold structure. The expression of the
line element, at any point � = (
; �) is

ds2 = ad
′�−1 d
 +
b
2

tr{(�−1d�)2} +
(b− 1)

4
tr2(�−1d�); (6)

where a and b, de/ned in (1), can be shown to satisfy

a¿ 0 and b¿
n

n + 2
:

Moreover, the geodesic equations are given by

K
 − �̇�−1
̇ = 0;

K� +
a
b

̇
̇′ − a(b− 1)

2b2 + nb(b− 1)

̇′�−1
̇ �− �̇�−1�̇ = 0:

A /rst integration of the above system can be achieved, giving


̇ = �v;

�̇ = �
(
W − a

b
v
′ +

a(b− 1)
2b2 + nb(b− 1)


′vI
)
; (7)

where v∈Mn×1(R) and W ∈ Sn(R) are integration constants. Although a general solution of (7) has
not yet been obtained, it is possible to solve these equations when v=0, obtaining the geodesics easily
and also the Riemannian distance induced on the sub-manifold �
0 ≡ {(
; �)∈� :
=
0 constant},
see for instance [3,16].

3. The embedding of �

With the introduction of the di,erential metric in Pn+1(R):

ds2 = 1
2 tr{(%−1d%)2};

where %∈Pn+1(R); Pn+1(R) has a Riemannian manifold structure. This metric de/nes a well-known
geometry, originally studied by Siegel [19] in the Hermitian matrix set. In the context of the in-
formative geometry, it was studied by James [11], Burbea [4] and in a paper directly related to
the present one by Calvo and Oller [7]. In fact, for our purposes we need to slightly modify the
above-related metric to

ds2 =
b
2

tr{(%−1 d%)2}; b∈R+; (8)

where b is the constant introduced in (1). The reason for its choice will be clari/ed later. This metric
has the same geodesic equations as the original metric de/ned by Siegel. The geodesic equations
and its solution for a geodesic starting at %(0) = %1 are, respectively,

%̇(s) = %(s)H; %(s) = %1 exp(Hs); (9)
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where H is a constant matrix such that %H =H ′%. Let us de/ne the norm for any A∈Mn×n(R) as

‖A‖ =
√

tr (AA′):

Then, the Riemannian distance between two points %1 and %2 ∈Pn+1(R) is

d(%1;%2) =

√
b
2
‖ln(%−1=2

1 %2%
−1=2
1 )‖ =

(
b
2

n+1∑
i=1

ln2(i

)1=2

; (10)

where the ln in the /rst part of the expression stands for the matrix natural logarithm. In the second,
(i are the eigenvalues of %−1

1 %2 or %−1=2
1 %2%

−1=2
1 . The metric (8) is invariant under the action of

GLn(R) given by

% �→ P′%P; P ∈GLn(R):

The following lemma prepares the embedding of � in Pn+1(R).

Lemma 3.1. For a 5xed ); *∈R; *¿ 0; any %∈Pn+1(R) can be written as

% = |�|)
(
� + +*2

′ +*


+*
′ +

)
; +∈R+; 
∈Mn×1(R); �∈Pn(R):

Conversely; any matrix of the above-stated form is symmetric and positive de5nite. For any
%∈Pn+1(R) it can be veri5ed that

ds2 =
b
2

[
((n + 1))2 + 2)) tr2(�−1d�) + tr{(�−1d�)2}

+ 2+ *2 d
′ �−1 d
 + 2) tr(�−1d�)
d+
+

+
(
d+
+

)2
]
:

Proof. Any

% =

(
%11 %12

%′
12 %22

)

can be written as the above-stated form taking

*
 = %−1
22 %12;

+ = |%11 −%−1
22 %12%′

12|−)=(n)+1)%22;

� = |%11 −%−1
22 %12%′

12|−)=(n)+1)(%11 −%−1
22 %12%′

12):

To prove the converse, decompose % as

% = |�|)
(
� 0

0′ 0

)
+ |�|)+

(
*


1

)
(*
′ 1)



324 M. Calvo, J.M. Oller / Journal of Computational and Applied Mathematics 145 (2002) 319–334

and note that �∈Pn(R). To prove the third part, observe that

d|�| = |�| tr(�−1d�)

and therefore computing

%−1 = |�|−)

(
�−1 −*�−1


−*
′�−1 +−1 + *2
′�−1


)
; (11)

%−1d%= ) tr(�−1d�)In+1

+

(
�−1(d� + +*2d
 
′) +*�−1d


−*
′�−1(d� + +*2d
 
′) + *d
′ + *
+


′d+ 1
+ d+ − +*2
′�−1d


)
(12)

apply the metric (8) and note that tr (Axy′) = y′Ax for ∀ x; y∈Mn×1(R) and ∀A∈Mn×n(R).

Let us now de/ne the following class of maps from � to Pn+1(R):

f);* :� → Pn+1(R);

(
; �) �→ |�|)
(
� + *2

′ *


*
′ 1

)
(13)

for )∈R; *∈R−{0}. As is shown in the following theorem, these maps permit the embedding of the
parameter space of many sub-families EF;n(
; �) into a hyper-surface of Pn+1(R). This sub-manifold
has one dimension less than the full manifold Pn+1(R).

Theorem 3.2. Let f);* be a map as de5ned in (13). The following results hold:

1. f);* is a di9eomorphism of � onto f);*(�).
f);*(�) is a ((n + 1) (n + 2)=2 − 1)-dimensional sub-manifold of Pn+1(R).

2. For the elliptical distributions such that b in (1) satis5es

b¿
n + 1
n + 3

de5ning the constants

- =

√
a
b
; )j =

−1 + (−1) j
√

1 + (n + 1) (b− 1)=2b
n + 1

; j = 1; 2;

we have that
3. The Riemannian metric de5ned in (8) induced on the sub-manifolds f)j;-(�); with j= 1; 2; can

be expressed as

ds2 = ad
′ �−1d
 +
b
2

tr{(�−1d�)2} +
b− 1

4
tr2(�−1d�):
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4. � is isometric to every f)j;-(�); with j = 1; 2.
5. f)j;-(�); j = 1; 2; are non-geodesic sub-manifolds of Pn+1(R).
6. f)j;-(�
0); with j = 1; 2; are n(n + 1)=2-dimensional geodesic sub-manifolds of Pn+1(R).

Proof. Prove (1) noting that f);* is a one to one mapping to f);*(�) and it is C∞. (2) is trivially
checked. For (3) observe that at f);*(
; �) expression (8) becomes

ds2 =
b
2

tr{(f−1
);*(
; �)df);*(
; �))2};

then apply Lemma 3.1; taking into account that + = 1 and d+ = 0; and replace * and ) by their
values stated before in the theorem to identify the ds2 element to expression (6). With this result
every f)j;- is an isometry and � is isometric to f)j;-(�).

For (5), combine the expression of the geodesics in � expressed in (7) with the isometry now
established in expression (13). The resulting expression will correspond to the embedding of the
geodesic curve in � into f)j;-(�). This results in

%−1%̇= )(trW − 2a/
′v)In+1

+

(
W + a(b− 1)b−1/
′vIn -v

−-
′W + a(b− 1)b−1/-
′v
′ + -v′� −-2
′v

)
;

where / = (2b + n(b − 1))−1. Observe that %−1%̇ is not constant, and by expression (9) of the
geodesics in Pn+1(R), it can be concluded that the geodesic equations are not equivalent.

Finally, for (6), follow the same steps as in (5), but now with 
= 
0, v= 0 and thus 
̇= 0. The
expression simpli/es to

%−1%̇ = () trW ) In+1 +

(
W 0

−-
′0W 0

)
:

Now %−1%̇ is also constant and the geodesic equations are the same.

Let us consider the particular case of the Pearson-type VII class of distributions de/ned in (2).
From (3), the distributions which verify the required condition b¿ (n+ 1)=(n+ 3) are the densities
such that

m¿ (n + 1)=2:

Some examples of such densities are the multivariate-t (m = (n + �)=2; s = �) and the Cauchy
distributions. In the latter case, where m= (n+ 1)=2; s= 1, and b= a= (n+ 1)=(n+ 3) there is only
one possible embedding: )1 = )2 = −(n + 1)−1.

For the family de/ned in (5), the required condition for embedding the density is restricted to the
members such that

m¿
n

2s(n + 3)
− n

2
+ 1:



326 M. Calvo, J.M. Oller / Journal of Computational and Applied Mathematics 145 (2002) 319–334

As a speci/c case, the multivariate normal (m = s = 1; r = 1=2) can be embedded in Pn+1(R) with
- = 1 and

)1 =
−2
n + 1

or )2 = 0: (14)

The embedding corresponding to the second root, with )= 0 and -= 1, was proposed in Calvo and
Oller [7].

Corollary 3.3. Let �1 and �2 be two points of �. If 0 is the Rao distance between them and dj
is the Riemannian distance between f)j;-(�1) and f)j;-(�2) in Pn+1(R); then 0¿dj for j = 1; 2. If
�1; �2 ∈�
0 then dj = 0.

Proof. By Theorem 3.2(4); � is isometric to f)j;-(�). Then; 0 is also the Riemannian distance;
induced by the Siegel metric (8); between f)j;-(�1) and f)j;-(�2) on f)j;-(�). By (5); the geodesic
distance restricted there is greater than or equal to the geodesic distance on the complete mani-
fold Pn+1(R). For the second part; note that by Theorem 3.2(6) �
0 and f)j;-(�
0) are geodesic
sub-manifolds on � and Pn+1(R); respectively; therefore; dj = 0.

Observe that the above-stated corollary, in particular, allows us to aNrm that the distance obtained
in [3] or [16] is the Rao distance for the full sub-family EF;n(
; �), which coincides with the Rao
distance restricted to the sub-model corresponding to �
0 .

Corollary 3.4. Let �1; �2 ∈�. If dm =max(d1(�1; �2);d2(�1; �2)); then dm is a distance and 0¿dm.

Notice that with the aid of (14) and Corollary 3.4 the lower bound for the Rao distance introduced
in [7] is improved.

Let us now consider the following transformation in the parameter space �:

� = (
; �) �→ O� = ( O
; O�) = (Q
 + c; Q�Q′); c∈Rn; Q∈GLn(R);

which corresponds to an aNne transformation on the random variables of the form OX = Q′X + c.
The expression for f)j;-( O�) = O% is

O% = | O�|)j
(

O� + -2 O
 O
′ - O


- O
′ 1

)
;

which also can be written as

O% = |Q|2)j |�|)j
(
Q′ -c

0 1

)(
� + -2

′ -


-
′ 1

)(
Q 0

-c′ 1

)
:

With the latter expression it can be easily proved that for any �1 = (
1; �1) and �2 = (
2; �2), the
distances dj are invariant for aNne transformations on the random variables:

dj(�1; �2) = dj( O�1; O�2); j = 1; 2:

Obviously, the same property is also applicable to the distance dm.
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4. Some applications to hypothesis testing

As in [7], we describe the possibility of constructing statistical tests of hypothesis based on the
parameters of elliptical distributions, by only taking into consideration geometrical questions. For a
hypothesis testing problem such that

H0 : g(�) = 0; H1 : g(�) �= 0; (15)

where g is a smooth function and �∈�, the null hypothesis H0 de/nes a sub-manifold �H0 ⊂ �.
If �∗N = (
∗; �∗) denotes the likelihood estimation of �, based on a sample x∈Rn×N of size N ¿ 1,
the distance from �∗N and �H0 is de/ned as

dj(�∗N ;�H0) ≡ inf{d(f)j;-(�); f)j;-(�
∗
N )): �∈�H0};

where d is the distance on Pn+1(R) de/ned in (10) and )j is any of the two constants in Theorem
3.2. The critical region corresponding to the previous hypothesis testing problem is

W4 ≡ {x∈Rn×N : dj(�∗N ;�H0)¿A4};
where 4 is the signi/cance level of the test and the constant A4 is chosen in such a way that

Prob(x∈W4 |H0)6 4:

Note that, a priori, each of the two possible embeddings of � (corresponding to )1 or )2) give rise
to possible di,erent statistical tests.

4.1. Testing equality to a 5xed covariance matrix

Let us consider the following hypothesis testing problem:

H0 :� = �0; H1 :� �=�0:

As in [7], the problem of minimizing d is more easily solved by considering that Pn+1(R) is a
complete manifold. Then, there exist �0 = (
0; �0) such that d(f)j;-(�0); f)j;-(�

∗
N )) is minimum.

By the Gauss Lemma the geodesic curve between the two points is orthogonal to �H0 ≡ ��0 ≡
{(
; �)∈� :� = �0} at f)j;-(�0). Taking the boundary conditions %(0) = f)j;-(�0) and %(0) =
f)j;-(�

∗
N ), where 0 = d(f)j;-(�0); f)j;-(�

∗
N )) the expression of the orthogonal geodesic in Lemma 5:3

simpli/es to

%(s) = |�0(�−1
0 �∗)s=0|)j

(
�0(�−1

0 �∗)s=0 + -2

′ -


-
′ 1

)
:

Notice that along this geodesic -
 is constant, and �0 = (
∗; �0). The element (n + 1) × (n + 1) is
1, and therefore the geodesic in Pn+1(R) and the geodesic in f)j;-(��0) are both the same. Because
the Rao distance and the Siegel distance coincide in this case, a test based on the Rao distance may
produce the same test as that of the Siegel. The distance between f)j;-(�0) and f)j;-(�

∗
N ) can be
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expressed as

dj(�∗N ;��0) =
{
b− 1

4
ln2|�−1

0 �∗| +
b
2
‖ln(�−1

0 �∗)‖2

}1=2

: (16)

Observe that this expression is identical for both )j. Because of the invariance of the Siegel distance
on Pn+1(R) under the action of GLn(R), the critical region obtained, which may be expressed as

W4 ≡
{
x∈Rn×N :

b− 1
4

ln2|�−1
0 �∗| +

b
2
‖ln(�−1

0 �∗)‖2 ¿A2
4

}
;

is also invariant from the same transformations. The study of the distribution of the statistic is
beyond the scope of this paper. We only refer the particular case of the multivariate normal family,
see [7] for more details. De/ning the statistic:

U =
1√
2
‖ln(�−1

0 �∗)‖;

the asymptotic distribution of NU2 is a 52 with n(n + 1)=2 degrees of freedom. It was also noted
in [7] that the test based on the Siegel distance di,ers from that of the likelihood ratio.

4.2. Sphericity test

Let us now consider the hypothesis testing problem:

H0 :� = (I; (¿ 0; H1 :� �= (I:

The parametric space restricted under the null hypothesis will be expressed as �H0 ≡ {(
; �)∈� :∃(
¿ 0 with �= (I}. For a /xed ( the minimization problem is a particular case of (15). The nearest
point to �∗N is �0 = (
∗; (I). Expression (16) simpli/es to

dj(�∗N ;�(I) =
{

(b− 1)n + 2b
4

ln ( (n ln (− 2 ln |�∗|) +
b− 1

4
ln2 |�∗| +

b
2
‖ln�∗‖2

}1=2

:

The minimum of the latter expression is obtained when ( = |�∗|1=n, and the expression becomes

dj(�∗N ;�H0) =

√
b
2
‖ln |�∗|−1=n�∗‖

and is also di,erent, for the multivariate normal case, from the likelihood ratio test, the statistic test
of which is

( =
|�∗|N=2

(n−1 tr�∗)Nn=2
;

see [9] for more details.

4.3. Testing equality to a 5xed mean vector

We can reduce the problem of testing equality with a /xed mean vector 
0 to the following test:

H0 :
 = 0; H1 :
 �= 0:
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Then, because of the invariance properties of the Siegel distance, the problem can be formulated
in terms of minimizing the distance of f)j;-(�

∗
N ) = f)j;-(y; I) to �H0 ≡ �0 ≡ {(
; �)∈�: 
 = 0}},

where y=(�∗)−1=2
∗. The shortest geodesic is orthogonal to �0 and, by Lemma 5:4, takes the form

%(s) = +0(s)

(
� + +1(s)vv′ +2(s)v

+2(s)v′ 1 + +3(s)

)
;

where +i(s) for i = 0; : : : ; 3 are convenient scalar functions and where v is an arbitrary vector, and
the closest point in �0 to f)j;-(y; I) is

f)j;-(0; �) = |�|)j
(
� 0

0′ 1

)
:

Renaming z = -y, and taking into account the boundary conditions, i.e., %(0) = f)j;-(0; �) and
%(0) = f)j;-(y; I); v and � must be

v = 7z; � = 8(I + 9zz′) with 7∈R; 8∈R+; and 9¿− 1
‖z‖2 :

Therefore,

dj(f)j;-(�
∗
N ); �0) = inf

{
:j(�∗N ; 8; 9) :8∈R+; and 9¿− 1

‖z‖2

}
;

where :j(�∗N ; 8; 9) ≡ d(f)j;-(�
∗
N ); f)j;-(0; 8(I + 9zz′)) and is equal to

:j(�∗N ; 8; 9) =

√
b
2

∥∥∥∥∥ln|8(I + 9zz′)|)j
(
8(I + 9zz′) + zz′ −z

−z′ 1

)∥∥∥∥∥ :
Computing the eigenvalues of both matrices, and taking into account the de/nition of )j in Theorem
3.2, the above expression of :j(�∗N ; 8; 9) can be simpli/ed to

:j(�∗N ; 8; 9)2 =
b(n− 1)

2
ln28 +

b− 1
4

ln2(8n(1 + 9‖z‖2))

+
b
2

2∑
k=1

ln2


1 +

8− 1 + ‖z‖2(1 + 89)
2

+ (−1)k+1

√(
8− 1 + ‖z‖2(1 + 89)

2

)2

+ ‖z‖2




and therefore this expression is independent of any of the two )j chosen to imbed the elliptical
family. Moreover, if we let ! = 1 + 9‖z‖2, since ! is an arbitrary positive real number, de/ning

:̃j(�∗N ; 8; !)2 =
b(n− 1)

2
ln2 8 +

b− 1
4

ln2(8n!) +
b
4

ln2 ! + b arg cosh2

(
1 + ‖z‖2 + !

2
√
!

)
;
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we have that

dj(f)j;-(�
∗
N ); �0) = inf{:̃j(�∗N ; 8; !): 8;!∈R+};

which clearly is a strictly increasing function on ‖z‖2, and so on in (
∗)′(�∗)−1
∗. Therefore, the
test based on the Siegel distance is equivalent to considering a critical region as

W4 ≡ {x∈Rn×N : t2 = (
∗)′(�∗)−1
∗¿A4};
which, in the multivariate normal case, is the T 2-Hotelling test, equivalent to likelihood ratio criteria,
see [9].

Appendix A.

Here, we will establish some other di,erential geometric properties of f)j;-(�), needed to prove
earlier results. Hereafter, )j will be either )1 or )2.

Lemma A.1. Let N�0 be a unitary normal 5eld of f)j;-(��0) at the point %�0 =f)j;-(
; �0); where
��0 = {(
; �)∈� :� = �0 constant}. Then; N�0 has the following form:

N�0 = wj

(
U -


-
′ 1

)
;

where U ∈ Sn(R) is arbitrary; and wj is

wj =
±√

2|�0|)j√
b (tr{(�−1

0 (U − -2

′))2} + 1)
:

Proof. If N denotes the unitary; up to sign; normal /eld of the full manifold at % = f)j;-(
; �); it
has to verify:

〈d%;N 〉 =
b
2

tr{%−1d%%−1N} = 0; (17)

〈N; N 〉 =
b
2

tr{(%−1N )2} = 1: (18)

Writing

N =

(
W t

t′ wj

)

and applying (11) and (13)–(17); we obtain

〈d%;N 〉=
b
2
|�|−)j{tr(�−1d��−1W ) + -(-wj
 − 2t)′�−1d��−1


+ 2-(t − -wj
)′�−1d


+ )j tr(�−1d�) (tr(�−1W ) + -(-wj
 − 2t)′�−1
 + wj)}: (19)
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Considering now the particular case of N�0 at %�0 = f)j;-(
; �0); substituting d� by 0 in (19); it
simpli/es to

0 = 〈d%;N�0〉 = -b |�|−)j(t − -wj
)′�−1
0 d
:

Therefore; W ∈ Sn(R) is arbitrary and can be written as W = wjU with U ∈ Sn(R) also an arbitrary
symmetric matrix; while t must be t = wj-
. The unitary norm condition (18) implies

b
2
|�0|−2)jw2

j (tr{(�−1
0 (U − -2

′))2} + 1) = 1

equality which determines; up to sign; the value of wj.

Lemma A.2. Let N0 be a unitary normal vector 5eld of f)j;-(�0) at the point %0 = f)j;-(0; �)
where �0 ≡ {(
; �)∈� :
 = 0}. Then; N0 has the following form:

N0 = cj

(−)j� v

v′ 1 + n)j

)
;

where v∈Mn×1(R) is arbitrary; and cj; a normalizing constant; is given by

cj =
±2|�|)j√

(n + 2)b− n + 4 b v′�−1v
:

Proof. Compute N0 with 
 = d
 = 0 and wj = cj(1 + n)j) in (19). Then; simplify the expression
to

0 = 〈d%;N0〉=
b
2
|�|−)j{tr(�−1d��−1W )

+ )j tr(�−1d�) (tr(�−1W ) + cj(1 + n)j))}:

We have no restrictions on t ∈Mn×1 which can be written as t = cjv with v∈Mn×1 and since d� is
an arbitrary symmetric matrix; W must be

W = −cj )j �:

By the unitary norm condition (18); we obtain

b|�|−2)j

2
c2
j (n)

2
j + (1 + n)j)2 + 2v′�−1v) = 1

and cj is obtained observing that

n)2
j + (1 + n)j)2 =

(n + 2)b− n
2b

:
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Lemma A.3. Let %�0 =f)j;-(
; �0). Any orthogonal geodesic of f)j;-(��0) at %�0 has the following
form:

%(s) = |�0|)jewjs|�0|−)j

(
�0 exp(wjs|�0|−)jM) + -2

′ -


-
′ 1

)
;

M = �−1
0 (U − -2

′) − I; wj =

±√
2|�0|)j√

b (tr{(�−1
0 (U − -2

′))2} + 1)

;

where U ∈ Sn(R) is an arbitrary symmetric matrix.

Proof. Combining Lemma 5:1 and expression (9) we obtain

H = %−1%̇=wj|�0|−)j

(
�−1

0 −-�−1
0 


−-
′�−1
0 1 + -2
′�−1

0 


)(
U -


-
′ 1

)

=wj|�0|−)j

(
�−1

0 (U − -2

′) 0

-
′(I − �−1
0 (U − -2

′)) 1

)
:

By induction it follows that

Hp = wp
j |�0|−p )j

(
(�−1

0 (U − -2

′))p 0

-
′(I − (�−1
0 (U − -2

′))p) 1

)

for any p∈N; and the geodesic is therefore obtained by computing

%(s) = %�0 exp(Hs):

Lemma A.4. Let %0 = f)j;-(0; �). Any orthogonal geodesic of f)j;-(�0) at %0 has the following
form:

%(s) = |�|)je−scj)j|�|−)j

{(
� 0

0′ 1

)
+

2∑
k=1

escj(kj|�|
−)j − 1

v′�−1v + (2
kj

(
vv′ (kjv

(kjv′ (2
kj

)}

with j = 1 or 2 and where

cj =
±2|�|)j√

(n + 2)b− n + 4bv′�−1v
; A =

√
1 + (n + 1) (b− 1)=2b;

v∈Mn×1(R) is arbitrary and

(kj =
(−1) jA + (−1)k

√
A2 + 4v′�−1v

2

with k = 1; 2.
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Proof. Let us de/ne

P =

(
�1=2 0

0′ 1

)
∈M(n+1)×(n+1)(R):

Combining Lemma 5:2 and expression (9) we obtain

H = %−1%̇ = cj|�|−)jP−1

( −)jI �−1=2v

v′�−1=2 1 + n)j

)
P:

Therefore; since

exp(Hs) = exp

(
scj|�|−)jP−1

( −)jI �−1=2v

v′�−1=2 1 + n)j

)
P

)

=P−1exp

(
scj|�|−)j

( −)jI �−1=2v

v′�−1=2 1 + n)j

))
P

with P ∈GLn(R) and taking into account that the eigenvalues of matrix( −)jI �−1=2v

v′�−1=2 1 + (n + 1))j

)

are (1j−)j; (2j−)j and −)j while their corresponding non-normalized eigenvectors are (v′�−1=2; (kj)′;
k = 1; 2 and n − 1 mutually ortogonal vectors of the form (p′; 0)′ with p such that p′�−1=2v = 0;
respectively; we have

exp

(
scj|�|−)j

( −)jI �−1=2v

v′�−1=2 1 + n)j

))

=e−scj)j|�|−)j

{
In+1 +

2∑
k=1

escj(kj|�|
−)j − 1

v′�−1v + (2
kj

(
�−1=2vv′�−1=2 (kj�−1=2v

(kjv′�−1=2 (2
kj

)}

and /nally; since %(s) = %0 exp(H); we obtain the previously stated formulas.
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