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Abstract
Background: Parametric-colored digital subtraction angiography using Tmax is almost a routine angiographic imaging procedure, currently. The
current feasibility study is aimed to using the imaging to monitor treatment effects while embolizing indirect carotid-cavernous fistulas (CCF).
Methods: Ten patients with CCFs receiving embolization and 40 patients with normal circulation time were recruited. Their color-coded DSAs
were used to define the Tmax of selected intravascular ROIs. A total of 19 ROIs in the internal carotid artery (ICA) (cervical segment of ICA in
AP view (I0), cavernous segment of ICA in AP view (I1), supraclinoid segment of ICA in AP view (I2) and cervical segment of ICA in lateral
view (I00), cavernous portion of ICA in lateral view (IA), supraclinoid portion of ICA in lateral view (IB)), ACA (first segment of anterior
cerebral artery, second segment of anterior cerebral artery (A1, A2)), middle cerebral vein (MCA) first segment of MCA ((M1), second segment
of MCA (M2)), frontal vein (FV), parietal vein (PV), superior sagittal sinus (SSS), sigmoid sinus (SS), internal jugular vein (JV), fistula, superior
ophthalmic vein (SOV), inferior petrosal vein (IPS), and MCV were selected. Relative Tmax was defined as the Tmax at selected ROIs minus
Tmax at I0 or I00. An intergroup comparison between the normal and treatment groups and pre- and post-treatment comparison of the
peri-therapeutic rTmax for the treatment group were performed.
Results: rTmax’s for the normal group were as follows: Anterior-posterior view: I1: 0.16, I2: 0.32, A1: 0.31, M1: 0.35, SSS: 6.16, SS: 6.56, and
MCV: 3.86 seconds. Lateral view: IA: 0.05, IB: 0.20, A2: 0.53, M2: 0.95, FV: 4.84, PV: 5.12, IPS: 4.62, JV: 6.81, and MCV: 3.86 seconds.
Before embolization, rTmax of the IPS, SS, and JV for the treatment group were shortened ( p < 0.05). No rTmaxs for any arterial ROIs in the
fistula group were significantly different. After embolization, the rTmaxs for all venous ROIs returned to normal except for two which were
partially obliterated.
Conclusion: This postprocessing method does not require extra radiation exposure and contrast media. It facilitates real-time hemodyamic
monitoring and may help determining the endpoint of embolization, which increases patient safety.
Copyright � 2013 Elsevier Taiwan LLC and the Chinese Medical Association. All rights reserved.
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1. Introduction

Indirect carotid-cavernous fistulas (CCF) are abnormal
connections between arteries and the cavernous sinus that lead
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to an altered venous drainage pathway.1,2 Patients’ symptoms
are usually attributed to abnormal venous drainage.3 The most
common pathways are via the superior ophthalmic vein
(SOV), inferior petrosal sinus (IPS), and infratemporal venous
plexus, followed by the middle cerebral vein (MCV) and
perimesencephalic veins.4 The latter two are unusual, how-
ever, and can cause venous hypertension, subsequent venous
edema, and venous infarction; they carry a higher risk of
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ruptures with hemorrhage. Some cases involving larger shunts
are more predisposed to ischemic insults because blood flow is
diverted to the alternative venous channels instead of the
normal distal arterial tributary.5 One of the treatments of
choice for indirect CCF is embolization, which can be per-
formed intra-arterially, intravenously, or through direct punc-
ture of the SOV.6,7 Several embolizing agents are currently in
use including coils, NBCA, onyx, or a combination of these.8,9

For pretreatment evaluation, transorbital ultrasound pro-
vides reasonable spatial and temporal resolutions of flow in the
superior ophthalmic vein.10,11 However, it cannot be used to
observe the flow of the MCV, IPS, intercavernous sinus, and
the venous network surrounding the brain. Phase contrast
magnetic resonance angiography (MRA) can estimate blood
flow but is vulnerable to sampling variation in tortuous vas-
culature.12,13 It is time-consuming, and it cannot be performed
within a traditional angiosuite. Modern multidetector CT
angiography provides reasonable spatial resolution of vascu-
lature, but does not provide hemodynamic information.14e16

Although digital subtraction angiography (DSA) is invasive,
it has remained the gold standard for studying complicated
neurovascular disorders for the past 80 years.17,18 In-room
assessment of treatment effects within the angiosuite
improves the quality of care and has become a mainstream
neuro-interventional procedure.19e21 The ideal endpoint of
embolization is the complete obliteration of the shunt. In some
complex CCF, complete obliteration was not feasible; how-
ever, embolized fistula showed decreased flow in the end of the
secession, and developed subsequent obliteration. Recent
studies have analyzed time-density curves and use time-to-
maximum opacification (Tmax) to illustrate hemodynamic
changes among intracranial arteriovenous malformations.22,23

Other experimental methods utilize computerized fluid
models to more accurately represent blood flows. However,
these methods are computer intensive and thus not ideal for
real-time monitoring.24

Accordingly, using parametric color-coded DSA, we hy-
pothesized that Tmax can serve as a useful indicator to
determine the endpoint of embolization for CCF patients. We
conducted the current study to: (1) evaluate the diagnostic
accuracy of relative Tmax (rTmax) as an indicator of intra-
cranial circulation time with DSA; (2) compare the rTmax of
patients with CCF with that of normal subjects; and (3) to
monitor the effect of embolization on changes in rTmax.

2. Methods
2.1. Patient selection
From January 2011 to August 2011, patients with imaging-
confirmed indirect carotid cavernous fistulas (according to the
Barrow classification) referred for embolizations were retro-
spectively enrolled in this study. Exclusion criteria included
the presence of congestive heart disease, arrhythmia, and other
comorbid intracranial pathology such as carotid stenosis or
intracranial aneurysms. Ten patients were available for anal-
ysis. Their clinical symptoms included red eye (70%), blurred
vision (50%), diplopia (40%), and bruit (20%). No hemor-
rhage or other neurologic deficits were observed. There were
seven males and three females; their ages ranged from 34 to
72 years old (mean ¼ 51). All cases were treated in one
session transvenously. A coil was the primary embolizing
agent for all the patients; adjunctive NBCAs were used in two
cases. During the same period, we enrolled another 40 patients
(30 males and 10 females; mean age 54 years) with no
observable intracranial circulatory disturbances as the control
group. These patients were referred for DSA due to follow-up
for postembolization of aneurysms, perioperative evaluation
for brain tumor surgeries, and clinical suspicion of vasculitis
or ischemic stroke with normal angiography findings. The
institutional review board approved this study. Informed
consent was obtained prior to DSA.
2.2. Imaging protocol and data analysis
A 4-French angio-catheter JB2 (Cook Inc., Bloomington,
IN, USA) was placed at the level of the C4 vertebral body for
common carotid angiogram both pre- and postembolization.
The frame rates of anterioreposterior and lateral views were
set for 6 frames/second for 12 seconds. A total volume of
12 mL bolus of a 60% diluted contrast medium (340 mg/mL)
was administered for 1.67 seconds using a power injector
(Liebel-Flarsheim Angiomat, Illumena, Missouri, United
States). All acquisitions were acquired in the same biplane
angiosuite (AXIOM-Artis, Siemens Healthcare, Forchheim,
Germany). Postprocessing software (syngo iFlow, Siemens
Healthcare, Forchheim, Germany) was used to color-code the
DSA, according to the time to Tmax in seconds for each ROI.
The Tmax for any selected ROI on the DSAwas defined as the
time point when the attenuation of the X-ray reached its
maximum along the angiographic series. The diameter of
a ROI was at least half of the diameter of a selected vessel.
The reference time point, t ¼ 0, was defined as the imaging
time of the selected mask of the angiographic frames. Eight
ROIs on the anterior-posterior AP view (Fig. 1AeD) and 11
ROIs on the lateral view (Fig. 2AeD) of the DSAs were
defined. When an intended ROI happened to be at a vessel
segment that harbored a mixture of iodinated and noniodinated
blood due to confluent flows from multiple vessels or an
overlapping vasculature, we repositioned the ROI to a suitable
upstream or downstream location for optimal sampling. The
placement of ROIs for measuring the Tmax for the 50 patients
was conducted independently by two neuroradiologists. To
facilitate individual comparison, we adopted the method pro-
posed by Greitz et al and defined rTmax as Tmax at any
selected ROI minus the Tmax of I0 on the AP view or the
Tmax of I00 on the lateral view of the DSA.25
2.3. Statistical analysis
All statistical analyses were performed using SAS 9.2 (SAS
Institute Inc., Cary, NC, USA). The intraclass correlation
coefficient (ICC) with a 95% confidence interval (CI) was
calculated to assess the interobserver reliability of the rTmax



Fig. 1. (A) AP view of color-coded right carotid artery DSA of a case of carotid-cavernous fistula. (B) Time-density curves of the above-mentioned 8 ROI on AP

view (horizontal axis: imaging timeline of DSA in seconds, vertical axis: contrast medium opacification). The time point of maximum contrast medium opaci-

fication of each curve is defined as the Tmax of each ROI. (C) AP view of color-coded right carotid artery DSA of a case referred for follow-up at 1 year after

embolization of left posterior communicating aneurysm. The angiography showed negative findings in right CCA. (D) Time-density curve of normal AP

angiogram. A1 ¼ the midpoint of the first portion of ACA; Arterial ROI-I0 ¼ cervical portion of ICA; I1 ¼ cavernous portion of ICA; I2 ¼ supraclinoid portion of

ICA; M1 ¼ the midpoint of the first segment of MCA; MCV ¼ the midpoint of the ascending limb of MCV; SS ¼ the midpoint of sigmoid sinus; venous ROI-

SSS ¼ a point located 2 cm above the torcular herophili.
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measurements. ICC values were interpreted using the fol-
lowing scale: almost perfect (1.00e0.8), substantial (0.8e0.6),
moderate (0.6e0.4), fair (0.4e0.2), and slight (<0.2, with no
significant correlation in rTmax measurements between the
two observers if the 95% CI covers zero). The rTmax differ-
ence between the fistula and control groups and longitudinal
changes of rTmax during the embolization were examined
using the Wilcoxon rank sum test. Significance was set at
p ¼ 0.05.

3. Results

There were seven cases of Barrow type C CCF, and three
cases of Barrow type D CCF. The rTmax measurements at the
arterial ROIs showed substantial agreement (0.61e0.76)
between the two neuroradiologists except for A2 (ICC¼ 0.530,
CI: 0.186e0.639) and M2 (ICC ¼ 0.560, CI: 0.101, 0.713),
which showed moderate agreement. Among the venous ROIs,
MCV, SSS, fistula and IPS showed substantial agreement (ICCs
ranged from0.61 to 0.63); whereas SS, FV, PV, and SOV showed
moderate agreement (ICC ranged from 0.45 to 0.57) (Table 1).
Themean rTmax of all ROIs in the control and pre-embolization
patient groups are listed in Table 2. Before embolization, all
rTmax of the ROIs located in the ICA on AP and lateral views
were shortened but this effect did not reach significance. Among
the venous ROIs, only IPS, SS, and JV were significantly
shortened, indicating increased blood flow due to shunts.

The rTmaxs of all ROIs before and after embolization are
listed in Table 3. After embolization, the rTmax of the
venous ROIs in IPS, SS, and JV were normalized, but this
effect only achieved significance for the SS and JV ROIs.
The rTmax was not available for the eight completely
embolized fistulas (as the embolizing agent made imaging
impossible). Disappearance of the SOV was observed in all
eight cases due to closure of shunts. The rTmax of the SOV
and IPS for the two partially embolized fistulas were pro-
longed. Both still demonstrated faint visible arterial feeders
and drainage veins (Fig. 3AeD). However, the obliteration of
both fistulas was confirmed during control angiography at 4
and 6 months, respectively. As a group, postembolization



Fig. 2. (A) Lateral view of a color-coded right carotid artery DSA of a case of carotid-cavernous fistula. The venous ROI of FV, PV, SOV, and IPS are designated at

the biggest diameter within the visible field; the fistula is located at the uncovered cavernous sinus, and JV is located at a point 2 cm below its junction with SS. (B)

Time-density curves of the above-mentioned 11 ROI on lateral view. These arterial ROIs showed widened waves and two peaks due to turbulence and diversions of

blood flow toward the shunt as compared with the control group (see Fig. 2D). (C) Lateral view of color-coded right carotid artery DSA of a case referred for

follow-up at 1 year after embolization of the left posterior communicating aneurysm. The angiography showed negative findings in the right CCA. (D) Time-

edensity curve of normal lateral angiogram. IA ¼ cavernous portion of ICA; IB ¼ supraclinoid portion of ICA; A2 ¼ the midpoint of the second portion of ACA;

Arterial ROI-I00 ¼ cervical portion of ICA; M2 ¼ a point in the proximal temporal branch of MCA before its bifurcation.

Table 1

Interobserver reliability of rTmax measurements at different ROI.

ROI ICC (95% CI)

AP view

Arterial ROI I1 0.760 (0.508, 0.941)

I2 0.750 (0.424,0.933)

A1 0.610 (0.169, 0.856)

M1 0.540 (0.232, 0.773)

Venous ROI MCV 0.630 (0.086, 0.742)

SSS 0.680 (0.393, 0.846)

SS 0.545 (�0.255, 0.857)

Lateral view

Arterial ROI Ia 0.730 (0.488, 0.926)

Ib 0.710 (0.395, 0.805)

A2 0.530 (0.186, 0.639

M2 0.560 (0.101, 0.713)

Venous ROI FV 0.450 (�0.195, 0.566)

PV 0.480 (�0.192, 0.846)

SOV 0.570 (�0.068, 0.699)

IPS 0.610 (�0.164, 0.832)

JV 0.560 (�0.084, 0.620)

Fistula 0.650 (�0.08, 0.868)

ICC ¼ intraclass correlation coefficients; CI ¼ confidence interval.
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rTmax of sigmoid sinus was normalized and did not differ
from the normal group. There was no correlation between the
rTmaxs and the feeding artery, drainage vein, or number of
coils used.

4. Discussion

The weaker correlation of rTmax in venous ROIs as com-
pared with those in arterial ROIs between two observations
was likely caused by the more heterogenous dilution of con-
trast in the veins than in the arteries. This phenomena will be
more evident in the major sinuses. Another possible explan-
ation is that the change of the time-density curve in the veins is
less prominent compared with that in the arteries, thus making
identification of Tmax more challenging. The wide variation
of Tmax in the ICA in those patients with CCF may be
attributed to the turbulent flow in the vicinity of the shunts. In
reality, the flows within the vessels are not spatially or tem-
porally homogenous due to their laminated nature and their
turbulent properties during propagation. These flow patterns



Table 2

Comparison of the average rTmax of each ROI in indirect patients with carotid

cavernous fistulas versus the control group.

Patient group

(pre-embolization,

n ¼ 10)

Control group

(n ¼ 40)

p (Wilcoxon

rank sum test)

AP view

I1 0.23 � 0.50 0.16 � 0.25 0.42

I2 0.32 � 0.67 0.32 � 0.27 0.96

A1 0.31 � 0.53

(n ¼ 8)

0.31 � 0.28

(n ¼ 18)

0.70

M1 0.30 � 0.54 0.35 � 0.37 0.75

SSS 5.66 � 1.57 6.16 � 1.14 0.37

SS 4.99 � 2.36 6.56 � 2.54 0.03*

MCV 3.49 � 1.82 3.86 � 1.70 0.23

Lateral view

IA 0.06 � 0.47 0.05 � 0.23 0.87

IB 0.28 � 0.61 0.20 � 0.22 0.5

A2 0.44 � 0.76

(n ¼ 8)

0.53 � 0.34

(n ¼ 18)

0.10

M2 1.20 � 0.77 0.95 � 0.35 0.07

FV 6.16 � 2.56 4.84 � 1.11 0.45

PV 5.14 � 1.68 5.12 � 1.18 0.35

SOV 2.20 � 0.92 N/A N/A

IPS 2.36 � 2.28

(n ¼ 9)

4.62 � 1.53

(n ¼ 31)

0.02*

JV 5.10 � 2.57 6.81 � 1.25 0.048*

Fistula 0.26 � 1.42 N/A N/A

*Statistically significant ( p < 0.05) by Wilcoxon rank sum test.

FV ¼ frontal vein; I0 ¼ cervical segment of ICA in AP view; I00 ¼ cervical

segment of ICA in lateral view; I1 ¼ cavernous segment of ICA in AP view;

I2¼ supraclinoid segment of ICA in AP view; IA¼ cavernous portion of ICA in

lateral view; IB ¼ supraclinoid portion of ICA in lateral view; ICA ¼ internal

carotid artery; IPS ¼ inferior petrosal vein; JV ¼ internal jugular vein;

MCV ¼ middle cerebral vein; PV ¼ parietal vein; SOV ¼ superior ophthalmic

vein; SS ¼ sigmoid sinus; SSS ¼ superior sagittal sinus.

Table 3

Comparison of the average rTmax of each ROI in patients with indirect

carotid-cavernous fistulas before and after embolization.

Before

embolization

(n ¼ 10)

After embolization

(n ¼ 10)

p (Wilcoxon

rank sum test)

AP view

I1 0.23 � 0.50 0.23 � 0.42 1.0

I2 0.32 � 0.67 0.28 � 0.58 0.92

A1 0.31 � 0.53

(n ¼ 8)

0.58 � 0.31 0.45

M1 0.30 � 0.54 0.63 � 0.52 0.10

SSS 5.66 � 1.57 6.94 � 2.06 0.11

SS 4.99 � 2.36 7.31 � 1.62 0.028*

MCV 3.49 � 1.82 3.49 � 3.23 0.86

Lateral view

IA 0.06 � 0.47 0.05 � 0.41 0.66

IB 0.28 � 0.61 0.28 � 0.58 0.66

A2 0.44 � 0.76

(n ¼ 8)

0.23 � 0.86

(n ¼ 8)

0.13

M2 1.20 � 0.77 1.05 � 0.74 0.06

FV 6.16 � 2.56 6.43 � 1.25 0.89

PV 5.14 � 1.68 5.36 � 1.50 0.62

SOV 2.20 � 0.92 3.01 � 0.65

(n ¼ 2)

0.18

IPS 2.36 � 2.28

(n ¼ 9)

4.62 � 2.16

(n ¼ 6)

0.753

JV 5.10 � 2.57 7.08 � 2.00 0.02*

Fistula 0.26 � 1.42 1.34 � 1.48

(n ¼ 2)

0.47

*Statistically significant ( p < 0.05) by Wilcoxon rank sum test.

FV ¼ frontal vein; I0 ¼ cervical segment of ICA in AP view; I00 ¼ cervical

segment of ICA in lateral view; I1 ¼ cavernous segment of ICA in AP view;

I2¼ supraclinoid segment of ICA in AP view; IA¼ cavernous portion of ICA in

lateral view; IB ¼ supraclinoid portion of ICA in lateral view; ICA ¼ internal

carotid artery; IPS ¼ inferior petrosal vein; JV ¼ internal jugular vein;

MCV ¼ middle cerebral vein; PV ¼ parietal vein; SOV ¼ superior ophthalmic

vein; SS ¼ sigmoid sinus; SSS ¼ superior sagittal sinus.
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may explain the variances in the measurement of rTmax. To
overcome this disadvantage, we used the ROIs of selected
vessels to minimize the inhomogeneity.

Previous literature has proposed prolonged circulation time
for the affected hemisphere due to arterial "stealing," which
occurs when the larger shunt diverts inflow contrast and thus
diminishes the accumulation of contrast distally.26 We observed
this phenomenon in only one case. Our explanation is that all of
our cases were indirect type CCFs, which caused less prominent
shunting and thus had less impact on intracranial circulation.
There were two cases with residual shunt and stagnant flow
immediate postembolization, but in both cases, complete
obliteration of the fistula was confirmed during follow-up. Due
to limited number, rTmax in fistula, SOV, and IPS were pro-
longed, but failed to achieve statistical significance. However, it
seems that prolonged rTmax real-time can quantitatively reflect
the decreased flow as we approach the endpoint of the emboli-
zation. This is extremely important during the treatment of in-
direct CCFs to avoid unnecessarily aggressive embolization.
Most of the time, indirect CCFs receive numerous fine arterial
feeders, and thus complete obliteration is not always possible in
immediate control angiography.

The polymorphic waveforms of arterial ROIs was caused
by the flow diversion of the fistula, which hindered the
summation effect of the contrast in the arterial downstream
flow and thus prolonged the transit time. This phenomenon
became less evident during the embolization process.

The major advantage of using time-density curves to analyze
the flow is that this method is less time consuming than
computed fluid dynamic simulation. Immediate flow analysis is
mandatory during peritherapeutic application in order to min-
imize operation time and the associated risk of thromboemb-
olism events. A second advantage is that no extra radiation and
contrast medium need be given because the data were all
processed after the completion of routine DSA acquisition.
However, the major drawback of this algorithm is that it
provides less accurate 2D information. To minimize the effect
of individual cardiac output while evaluating the time-density
curve, we adopted rTmax standardized by the circulation time
of the brain, as proposed by Greitz et al,25 to eliminate the time
variances that may stem from the contrast medium travelling
between the heart and cervical ICA.25,26 It is highly reprodu-
cible and contains the lowest systemic error between different
observers and patient populations. The other advantage is that
rTmax is correlated linearly to CBF in the corresponding area.
Recent correlation of CT perfusion and DSA also confirmed



Fig. 3. (A) Lateral view of color-coded left carotid artery DSA of a 30-year-old male with indirect CCF at the left proximal ICA. Before embolization, five selected

ROIs in the following order: cervical portion of ICA (I0), cavernous portion of ICA (IA), the temporal branch of MCA (M2), IPS, and JV. (B) Time-density curves

of the selected ROI in (A). The waveform of IA is relatively wider and showed two peaks as compared with that of M2. (C) Lateral view of the color-coded left

carotid artery DSA of the same patient after partial embolization. The same 5 selected ROI as in (A). (D) After embolization, the timeedensity curves of the

arterial ROIs became narrower. Their Tmax of IPS and SSS were also prolonged and returned to normal.
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these findings.27 Both studies demonstrated that rTmax is
a reliable hemodynamic marker of the brain.

There are some limitations to the present study. First, the
size of the treatment group is small. Although elongation of
the venous rTmax implies future closure of shunts, a larger
number of cases is needed to validate the optimal cut-off
values between shunts and normal groups. Second, the
turbulence and diversions of flow caused by the fistula produce
multiple fluctuating ascending and declining contrast medium
peaks along the time-density curves, and complicate the Tmax
determination. First arrival time of the contrast can serve as an
alternative reference in this condition; unfortunately, our cur-
rent version does not provide this information on the color-
coding map. Third, due to the high flow nature of a CCF,
intravascular flow measurement of the arterial ROI is beyond
the scope of our current frame rate (6 frames/second). A
higher frame rate with appropriate radiation reduction tech-
niques are needed for further investigation. Fourth, DSA is
basically two-dimensional imaging. Overlapping and collaps-
ing all vasculatures on a two-dimensional projection, e.g.,
cavernous portion of the ICA on an AP view and the proximal
MCA on a lateral view, can accentuate the contrast medium
density and mistakenly shift the Tmax. The exact registration
of flow changes of each voxel in the 3D anatomic positions
would be the ultimate means of overcoming the constraints of
two-dimensionality.28e31 However, this is beyond the power of
the current mechanics and would result in too much radiation
exposure.32,33

In conclusion, this study confirmed the feasibility of using
rTmax to quantify the altered venous flow in patients with
indirect CCFs. It can serve as a good hemodynamic marker to
monitor therapeutic effects of embolization while treating
patients with indirect CCFs. Color-coded DSA provided
improved visualized differences and quantitative changes in
blood flow in-room and real-time, on a single image, without
requiring additional contrast medium and radiation exposure.
It is proposed that this may help in the management of
intracranial vascular diseases.
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