
Mathew Stracy a, Stephan Uphoff b,c, Federico Garza de Leon a, Achillefs N. Kapanidis a,⇑

a Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
b Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
c Department of Systems Biology, Harvard Medical School, Boston, MA 02138, USA

Corrigendum to the second paragraph in Section 5.3 – the amended paragraph should read as follows:

To address the extent to which translation and transcription are coupled in E. coli, PALM images were taken of RNAP and the ribosomal protein S2 [79]. The spatial distributions showed clear segregation between ribosomes and RNAP, with only 15% of ribosomes found within the nucleoid (Fig. 4C). Both RNAP and ribosome distributions extended to the cell membrane indicating that transertion could be taking place; however, there appeared to be no enrichment of RNAP at the nucleoid periphery, suggesting that most translation is not coupled with transcription. In rich media conditions, conventional microscopy images suggested that the densest areas of RNAP are located in relatively low density areas of the nucleoid, leading to the hypothesis that transcription frequently happens on loops of DNA projecting out from the dense centre of the nucleoid [76].