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Abstract 

Mey, D., Finite games for a predicate logic without contractions, Theoretical Computer Science 123 

(1994) 341-349. 

A predicate calculus LS is obtained from a multiset calculus for classical logic by discarding the rule 
for contraction of formulas. Provability in LS is characterized by the existence of winning strategies 

of finite games between two players. As an application, results concerning provability and non- 

provability of complex formulas are established. 

1. Introduction 

In recent years, much work has been done in substructural logics (i.e. logics without 

rules for exchange, weakening or contraction of formulas) and their links to theoret- 

ical computer science. The most prominent representative, Girard’s linear logic [4], 

has two types of conjunction and disjunction: an additive type and a multiplicative 
type. Moreover, the modalities ! and ? permit recovery of the structural rules in 

a selective way. Whereas the syntax of substructural logics is given by appropriate 

restrictions of calculi for classical or intuition&tic logic, there are no obvious adapta- 

tions of the usual algebraic semantics based on Boolean or Heyting algebras. In the 
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absence of structural rules, the connectives for conjunction and disjunction need not 

be idempotent. This has to be reflected by semantics for these systems; see, e.g. the 

constructions in [4] or [a]. Alternatively, one may try to interpret formulas by 

mathematical games between two players. Provability can then be characterized by 

the existence of winning strategies for one of the players (for notions about games, see, 

e.g. [S]). In this manner, the dialogue games initiated by Lorenzen [6] characterize 

provability of intuitionistic logic. These games may be infinite, i.e. plays may not 

terminate within a finite number of moves of the players. Recently, Blass [3] suggested 

infinite games which reflect the behaviour of the connectives in linear logic plus 

weakening. Closely related games have been shown to characterize provability of the 

multiplicative fragment of linear logic [l]. 

In this note, the predicate calculus LS (German: log&her schwacher Kalkiil) will be 

characterized byfinite games, following a suggestion of Ernst Specker. The rules of LS 
incorporate exchange and weakening of formulas, but neither contraction nor cut. 

Conjunction A is additive and disjunction + is multiplicative. As will be seen later, 

this notation may be justified by the behaviour of the connectives in the calculus: 

whereas conjunction is idempotent, disjunction is not idempotent. In contrast to 

linear logic, negation (-I) relates these connectives via the de Morgan laws. The 

definition of the suggested games (see Definition 3.1) is quite simple and intuitive: the 

players P and Q gradually reduce the subformulas of a given formula until a disjunc- 

tion of literals B’ + ... + B” is reached. P wins the play if this disjunction contains 

complementary literals. It is shown that these games characterize LS-provability, i.e. 

a formula is LS-provable if and only if P has a winning strategy for the associated 

game (Theorem 4.2). This characterization can be concretely applied to demonstrate 

provability and nonprovability of complex formulas in LS. 

2. The calculus LS 

In the following, the calculus LC for classical first-order predicate logic is defined. 

The language of LC is an arbitrary but fixed language of first-order predicate calculus, 

containing symbols for arbitrary constants, functions and predicates. It is defined in 

the following version. Free variables u, v, w, . . . and bound variables x,y,z, . . . are 

distinguished. Formulas are built from unnegated and negated prime formulas (lit- 

erals, denoted by E, 1 E), using the connectives A , + and the quantifiers V, 3. 

Negation 1 of a formula is recursively defined by 

llE=E, 

1 (A A B)=lA+l B, 

l(A+B)=lAAlB, 

l(vxA(x))=3xlA(x), 

l(3xA(x))=v'xlA(x). 
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(No definition for prime formulas E since -I E is already in the language.) 

Implication may be defined by A-*B = 1 A + B. 

Multisets are finite unordered sequences of formulas, denoted by upper case greek 

letters. The multiset obtained by the concatenation of two multisets f and n is 

denoted by r, II. 

Definition 2.1. LC contains the following rules of inference: 

axiom r, E, 1 E (E prime formula) 

A-rule 
r, T l-, Z r, T, Z 

r,Tr\Z A 
+-rule ~ 

r, T+Z + 

V-rule 
l-3 F(u) v 

r, VxF(x) ... provided u is not in the lower multiset 

3rule 
r, F(t) 3 

I-, 3xF(x) 

contraction-rule 
r, T, T 
PC 

r, T 

Remark. It is easy to demonstrate that LC is indeed a sound and complete calculus 

for classical predicate logic, e.g. by showing that the system is equivalent to Gentzen’s 

sequent calculus LK. 

Definition 2.2. The calculus LS is obtained from LC by discarding the contraction 

rule. 

Example 2.3. Let R be a unary predicate symbol, f a unary function symbol and 

A= 3x(R(x)+l R(f(x))). Below, an LS-proof of A+ A is given: 

W(4),1W(f(u))), WWWW)+ 

WW)+~R(f(fW)), W&+WW)+ 

W”(4)+~W-(fW))> Wu)+lW-(a)) 3 

WW)+~Wf(x))), W)+lW(u)) 3 

WW)+lW-(4)) WVx)+~W(x))) + 

A+A 

Replacing the lowest inference of this proof by a contraction yields an LC-proof of 

A. Thus, the formula is classically provable. However, it is not LS-provable; this can 

be seen by an exhaustive bottom-up search for possible proofs. Assume A is provable. 

Then it is at the bottom of an LS-proof. The lowest inference must be an j-inference 

with upper multiset R(s)+lR(f(s)) for some term s. Now, if R(s)+lR(f(s)) is 

provable, it must be the lower multiset of a +-inference with upper multiset 
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R(s), 1 R(f(s)), which only consists of prime formulas. Hence R(s),1 R(f(s)) must be 

an axiom. This is a contradiction; therefore A is not LS-provable. 

Two important results about the calculus LS are reviewed in the following. For 

proofs, see [7]. 

Theorem 2.4 (Decidability). LS is decidable; it can be determined whether a given 

formula is provable or not. 

Essentially, this is done by an exhaustive bottom-up search for derivations of the 

formula, where its terms (which may contain function symbols) are computed using 

most general unifiers. 

Theorem 2.5 (Semi-translation of classical logic to LS). Given a formula A (without 

defined connectives) and a natural number n, A W) is obtained from A by replacing every 

subformula of theform 3x F(x) by its n-fold disjunction. A is classically provable if and 

only if A (‘) is LS-provable for some n. 

3. Definition of the games 

Definition 3.1. The game Q(A) associated to a formula A is played between two 

players, a proponent P and an opponent Q. A move replaces one formula by another. 

A play of B(A) starts with A and ends with a$nal formula In order to define final 

formulas and legal moves, formulas are read as complete disjunctions B’ + ... + B”, 

i.e. disjunctions where every component Bj is a literal or of one of the forms C AD, 

VxF(x), 3xF(x). 
(1) If every component in a complete disjunction B’ + ... + B” of B is a literal, then 

B is final. P wins a play ending with such a formula B if and only if B contains 

complementary literals Bh, B’ (i.e. Bh =i B’). 

(2) If not all components in a complete disjunction B’ + ... + B” of B are literals 

then a move replaces B by a formula Bk + ... + S$, where Bi = Bj for all j except one 

index k such that Bk is not a literal. This index k and Bt are determined as follows. 

(a) If some Bj (j= 1, . . . . m) is of the form C AD or Vx F(x) then Q chooses such 

a formula Bk. Furthermore, 

(al) if Bk is C AD then Q chooses Bk, to be C or to be D, 

(a2) if Bk is tfxF(x) then Q chooses a term t; Bk, is F(t). 
(b) If no Bj (j = 1, . . . , m) is of the form C A D or V x F (x) then P chooses a term t and 

a formula Bk of the form 3x F(x); BE is F(t). 

Remarks. (1) A play of B(A) is determined by a sequence of formulas Bi, . . . , where 

B1=Aandfori>O,Bi+, is obtained from Bi by a move of either P or Q according to 

the above definition. Observe that Bt+ 1 contains fewer logical symbols than Bi, SO the 
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length of the sequence B1, . . . is limited by the number of logical symbols in A. In 

particular, B(A) is finite. 

(2) Note that P and Q need not alternate after each move: For example, if 

a complete disjunction B’ + ... + B” contains several components of the form C AD 

then Q has to reduce one after the other according to rule 2(a), in an arbitrary 

sequence, prior to a possible next move of P. Whether a strategy is winning or not 

does not depend on the particular choice of this sequence, as will be seen in the proof 

of the equivalence theorem (Theorem 4.2). 

(3) If a complete disjunction B’ + ... +B” contains several components of the form 

3xF(x) and rule 2(b) applies, the property of a strategy to be winning does depend on 

the particular choice of P for the component Bk. This will be illustrated in Example 3.3 

below. 

Example 3.2. Let A = 3xV’y(l R(x) + R(y)). (Note that A is classically valid.) Player 

Q has a winning strategy for Q(A): According to rule 2(b), P chooses a term s for x, 

yielding the formula B2 =Vy(l R(s)+ R(y)). A ccording to rule 2(a2), Q replaces JI by 

a variable u # s, yielding B3 =i R(s) + R(u) and wins the game according to rule 1. 

Player P has a winning strategy for 8(A+A): P chooses a term s for the first 

existential quantifier, then Q chooses a term t for the first universal quantifier, yielding 

B3 =l R(s) + R( t) + A. Now, P chooses the same t for the second existential quanti- 

fier, yielding B,=l R(s)+ R(t)+Vy(lR(t)+ R(y)). Finally, Q chooses an arbitrary t’ 

for the second existential quantifier and loses the game. 

Example 3.3. Let II, b be constant symbols and A = 3x(R(a) A R(b)) + 3x 1 R(x). 

Player P has a winning strategy for (r,(A): At the beginning, P chooses a term s for 

the first existential quantifier, yielding B2 = (R(a) A R(b)) + 3x1 R(x). Then, Q has to 

choose one literal of the conjunction (R(u) A R(b)), thus replacing B2 by either 

B3 = R(a) + 3x 1 R(x) or by B3 = R(b) + 3x1 R(x). According to the choice of Q, P 

then chooses a or b for the remaining existential quantifier and wins the game. 

However, there does not exist a winning strategy of P for B(A) where P chooses 

a term s for the second existential quantifier at the beginning, yielding 

B2 = 3x(R(u) A R(b))+lR(s): Whatever term P chooses for the remaining existential 

quantifier, Q can win the game by choosing either the first part of the conjunction if 

s#u or the second part of the conjunction if sf b. 

4. Equivalence theorem 

Equivalence of LS-provability with the existence of winning strategies in the defined 

games essentially relies on the following characteristic property of LS: all inference 

rules except the j-rule are invertible: if the lower multiset of such an inference is 

provable then its upper multiset are also provable. This is made precise in the 

following lemma. 
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Lemma 4.1 (Inversion lemma). (1) Zf LS k r, T A Z, then LS t- r, T, and LS I- I’, 2. 

(2) IfLS Fr, T+Z, then LS k l-, T, 2. 
(3) IfLS k r, VxF(x), then LS I-- r, F(t)for any term t. 

Proof. Every implication is proved by induction on the depth of a proof P of its 

left-hand side. 

(1) Inspecting the last inference of P, the following cases are distinguished. 

If the last inference is an axiom r’, E, 1 E, then r, T and r, 2 are axioms, too, since 

it is impossible that T A 2 is either E or 1 E (recall that E is a prime formula). 

If the principal formula of the last inference (i.e. the formula introduced by it) is 

different from T A 2, then apply the induction hypothesis to the upper multisets of 

this inference and obtain proofs of r, T and of r, Z by modifying the last inference. 

For example, let the last inference of P be 

r’,T/\Z,T’ r’,TAZ,Z’ 

r’,TAZ,T’AZ’ A’ 

By the induction hypothesis, obtain proofs of r’, T, T’, of r’, T, Z’, of r, Z, T’ and 

of r, Z, Z’. Combine them by A -inferences to proofs of r’, T, T’ AZ’ and 

r’, Z, T’ A z’. 

If the principal formula of the last inference is T A Z, then the required proofs are 

obtained by discarding the inference. 

(2) The implication is proved in a similar way. 

(3) Special attention is required for the case where the last inference of P is of the 

form 

rf, VxF(x), F’(u) V. 

ryxqx), VXF’(~) 

By the substitution lemma for LS (which is proved as the substitution lemma for 

classical logic), first obtain a proof with the same depth of r’, VxF(x), F’(v) with u not 

in r’, F(t),VxF’(x). For r’, VxF(x), F’(v), the induction hypothesis then yields a proof 

of r’, F(t), F’(u), a V-inference finally gives a proof of r’, F(t), VlxF’(x). 

The remaining cases are treated in a similar way. 0 

Theorem 4.2 (Equivalence theorem). Let A be a,formula. LS t- A ifund only ifP has 
a winning strategy for 6 (A). 

Proof. The proof is by induction on the number d of logical symbols A, V and 3 in A. 

Let B’+ ... +B” be a complete disjunction of A and observe that the inversion 

lemma (Lemma 4.1) for + implies 

LS k B1+ ... +B” o LS I- Bl,...,B”‘. 

l d =O. A is a disjunction of literals B’ + ... +B”. P wins G(A) if and only if 

A contains complementary literals Bh, B’. This is the case if and only if LS FA. 
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l d >O. Let A be provable. If Q chooses a Bk of the form C A D, A is replaced by 

either. 

H1=B’+ . . . +Bk-‘+C+Bk+‘+ ... +B”, or by 

H*=Bl+ . . . +Bk-l+D+Bk+l+ . . . +Bm, 

By the inversion lemma for A, these formulas are provable. By the induction 

hypothesis, P has a winning strategy for the corresponding games and thus wins the 

game. The case where Q chooses a Bk of the form V’xF(x) is similar, using the 

inversion lemma for V. Finally, if no Bj is of the form C A D or VxF(x), every J3j is 

either a literal or of the form 3xF(x). Since there is a proof of the multiset B ‘, . . . , B”, 

its last inference must be an j-inference with principal formula Bk =3xF(x) and 

upper multiset B’, . . . . gk-‘, gk+l, . . . . B”, F(t). Now, P chooses the term t and the 

formula Bk, replacing A by the provable formula B1 + Bkp ’ + Bkf ’ + . . . + 

B”‘+F(t). By the induction hypothesis, P has a winning strategy for the corres- 

ponding game and thus wins the game. 

Conversely, let P have a winning strategy for B(A). If there is a Bk of the form 

C AD, Q may choose this formula and replace A by either H1 or H, as above. Since 

P has a winning strategy for 6(A), it has winning strategies for (%(H,) and 

for B(H,) as well. Applying the induction hypothesis to these formulas yields 

proofs of H1 and of HZ, from which a proof of A can be constructed. If there is 

a Bk of the form VxF (x), Q may choose this formula and replace A by 

B1+ “. +Wl+F(u)+P+l + ... + B” for a variable u not in A. Since P has 

a winning strategy for the associated game, the induction hypothesis yields a proof 

of this formula, from which a proof of A can be constructed. Finally, if no B’ is of the 

form C AD or VxF(x), P is able to choose a term t and a formula Bk of the form 

3xF(x) and to replace A by B’+ ... +Bk-l+F(t)+Bk+l+ ... +B”, such that 

P still has a winning strategy for the associated game. Applying the induction 

hypothesis yields a proof of this formula, from which a proof of A can be ob- 

tained. 0 

Remark. The above equivalence theorem states that provability in the calculus LS is 

equivalent to the existence of winning strategies for the defined games. The same 

characterization holds for classical provability provided the definition of the games 

(Definition 3.1) is slightly modified by reformulating rule 2(b) as follows: 

(b)’ If no Bj (j= 1, . . . . m) is of the form C A D or VxF(x) then P has two alterna- 

tives: 

(bl)’ either P chooses a term t and a formula Bk of the form 3xF(x) and B: is F(t); 

(b2)” or P chooses a formula Bk of the form 3xF(x) and Bk, is Bk+Bk. 

An equivalence theorem for these modified games can be proved using the approxima- 

tion theorem of classical logic (Theorem 2.5). Note that the plays of such a modified 

game may not be finite: whenever rule 2(b)’ applies to a formula, P may continue to 

duplicate existential subformulas forever (rule (b2)‘). 
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5. Applications 

In Example 3.2, a winning strategy of Q for B(A) and a winning strategy of P for 

@(A + A) was described, where A = 3xVy (1 R(x) + R(y)). By the equivalence theorem, 

LS ,F A and LS F A+ A. Looking at example 3.3, the theorem implies LS 

k 3x(R(a) A R(b)) + 3x 1 R(x). Describing winning strategies for the games, Q(A) can 

be used to establish results concerning provability or nonprovability of much more 

complex formulas A. This is illustrated by the following example and the following 

remark. 

Example 5.1. Let R,, . . . , Rk be unary predicate symbols and for j>O, 

Sj(X,Y)=Rl(X)+ “. +Rj(X)+lRj(y). 

For n > 0, define 

A, = 3xVy(S,(x, y) A ... A S”(X, y)). 

Claim. (i) LS f A,,+ ... + A,. 

n-times 

(ii) LS k A,+ ... +A,. 
L 

v 
, 

(n + 1 )-times 

Proof. The claim is proved by describing winning strategies of Q and of P, respect- 

ively. To simplify notation, let A$“= A,+ ... + A, for p>O. 

(i) A winning strategy of player Q for @(AT’) is described: 

B1 = A!:’ 

(P chooses s1 for existential quantifier of an A,,:) 

Bz=Vy(Sl(sl,y) A ... r\S,(s,,y))+A~-” 

(Q chooses variable u1 different from sl:) 

B,=(Sl(sl,ul) A ... AS,(Sl,U,))+/ij~-” 

(Q chooses last part of S1(s,,ul) A ... A S,(S,,U,):) 

B,=R,(s,)+ ... +R,(sl)+lR,(ul)+Aj;-‘) 

(P chooses s2 for existential quantifier of an A,:) 

B,=R,(sl)+ ... +R,(s,)+lR,(u,)+Vy(S,(s,,y) A ... ~&(s~,y))+A:-” 
(Q chooses variable u2 different from s,,s2:) 

Bg=R1(~1)+...+R,(s1)+lR,(~1)+(Sl(sz,~2) A ... ~&(s~,u~))+Ar-~) 

(Q chooses last but second part of S1(s2,m2) A ... A Sn(s2,u2):) 

B,=Rl(sJ+ ... +R,(s,)+lR,(ul)+ 

R,(s~)+...+R,-~(s~)+~R,-~(u~)+A!:-~). 
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(Note that Q may not have chosen the last part of S,(S~,U~) A ... A&(s~,u~): if 

P chose s2 = ul, B, would already contain the complementary literals lR,,(ul) 

and R,(u,) and P would win the game.) 

B 3n+l=Rl(sl)+...+R,(sl)+lR,(ul)+...+Rl(s,)+lRl(u,). 

Observe that B3,,+ I does not contain complementary literals, so Q wins the game. 

(ii) A winning strategy of player P for Br+ ‘) is described: 

At the beginning, P chooses an arbitrary s1 for the existential quantifier of the first A,. 

Q then chooses tI for the universal quantifier of this A, and a certain part of 

S, (sI, tI) A ... A S,(sl, tI). Now, P chooses s2 = tI for the existential quantifier of the 

second A,: Q chooses tz for the universal quantifier of this A, and a certain part of the 

conjunction. P then chooses sj = t2 etc. 

By writing down the sequence of formulas B1, B2, . . . as above, it is easy to see that if 

P applies this strategy, the last formula B3n+4 must contain complementary literals. 

Hence P wins the game. 0 

Remark. The following more involved nonprovability result can be established in 

a manner similar to the above example. Recall that the approximation theorem of 

classical logic (Theorem 2.5) states that a formula A is classically provable if and only 

if A(“) is provable for some n. Now, given a recursive function f, one can explicitly 

construct a sequence A 1, A,, . . . of classically valid formulas such that for every HEN, 

A, contains O(n) symbols and 

LS FAp’. 

The construction is based on a finite axiomatization of arithmetic where recursive 

functions can be formally represented. 
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