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A unified approach o a variety of graph-thecretic problems is introduced. The k-closure
CgtG) of a simple graph G of order n is the grapa obtained from G by recursively joining
pairs oof nonadjacent ~ertices with degree-sum at least k. It is shown that, for many proper-
ties P. one can find a suitabiz value of k (depending on P and n) such that if C3(G) has P,
then so does G. For instance, it P is the hamiltonian property, ~ne may take k = n. Thus
if C,(G) is hamiltonian, then so is G: in particular, if n > 3 and ", (G) is complete, then G
is hamiltonian. This condition for a graphi to be hamiltonian is s own to imply the well-
known conditions of Chvital and Las Vergnas. The same method, applied to other proper-
ties, yields many new theorems of a similar nature.,

{. Introduction

In this paper, we present a unified approach to a variety of graph-
theoretical problems. It has been inspired by the following theorem of
Ore [14]): Let G be a graph of order n. n 2 3. If

(1.1 duwy+dvy=zn

for each pair of nonadjacent vertices, then G has a hasmilronian cycle.
Actually, Ore proved a little more. Indeed, if ¥ and v are nonadjacent
vertices satisfying (1.1) and G + uv has a hamiltonian cycle, then G, too,
has one. This simple idea has surprisingly far-reaching implications.
First of all, one can iterate the operation of replacing G by G + uv as
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long as possible: if the resulting graph G, is hamiltonian then G itseif is
hamiltonian. In particular. if G, is complete then G is hamiltonian. This
condition compares favourably with a number of exist:ng sufficient con-
ditions for a graph to be hamiltonian. Indeed, it can be shown that all the

hn‘ A s 'Y s Vel ‘
descendants of Dirac’s condition {71, including those of Chvatal {5] and

Las Vergnas |12}, guarantee that G, is complete. Moreover, we have an
efficient way of finding the hamiltonian cycle (whereas the original proofs
in {5} and [12] do not provide any). In fact, one can {ind &y within
O(n?) steps and, given a hamiltonian cycle in G, find one in G within an
additional O(n3) steps.

Secondly, this technique applies also in many other settings. In each
of these, we obtain a sufficient condition accompanied by an efficient
algorithm to check it. A routine application of our Theorems 3.1 and
3.2 then ~ields tne appropriate sufficiency theorems of Chvétal and
Las Vergnas wype. Some of these are already known and others are new.
We present them to illustrate the versatility of our approach rather than
for their own sake.

Our notation and terminology foliows Berge [1] nd Harary {91
The independence (stability) number a(G) is as in { 1}; (o avoid confu-
sion. we use “independent sets” rather than “'stable sets”. The graphs
C.. P.sK, K; + (K, U K,_,;)etc. are as in [9]. As in 8], the smallest
number of pairwise disjoint paths covering all the vertices of & is denoted
by (). (This invariant has also been studied by Boesch et al. [2].)

2. Stability and closure

Let P be a property defined on all graphs of order n; let k& be a non-
negative integer. Then P is said to be k-stable if whenever G + uv has
preperty Pand d(u) + d;(v) > k then G itselt has property P. Ore [ 14]
proved that

(2.0 the property of containing a hamiltonian cycle is n-stabie .

The proof is simple: If ¢ + uv is hamiltonian but G is not, then G has a
hamiltonian pathw = u, u,, ... u, =v. If di;(u) + dg(v) = n, there must
he some / suck that u is adjacent to w;,, and v is adjacent to ;. But then
(s has the hamiltonian cycle wyu; Uy, 5 .. uut; ... uy.

ni
Along similur lines. one can verify the foilowmg (for detailed proofs,
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see A ppendix 1.)

(2.2 "G containsa C (5 <s<n)” ... (2n — s)-stable .
(2.3) “G containsa C (4<s<n, seven)” .. (2n—s— 1)stable,
(2.4) “G containsa P (4<s< n)” ... (m — 1)-stable,
(2.5) “Geontainsa K, ((2<ss<n—-2)" .. (n+s - 2)stable,
(2.6) "G contains an sK, (25 < n)” ... (25 ~ 1)-stabie,
2.7 “G contains an s-factor (2 < s<m)" ... (>~ + 25 — 4)stable,
(2.3) “G is s-connected” ... (n +s - 2)stable,
(2.9) "G s s-edge-connected” .. (n +s - 2)-stable,
(210 alG)< 5™ ... (2n — 2s — I)-stable .

The concept of stability is also relevant to the plethora of variations
on the hamiltonian theme: “s-hamiltonian” [4], “‘c edge-hamiltonian”

[11], “*s-Hamiltonian-connected™ [ 1], etc.

(2.11)y  “s-hamiltonian™ .. (1. + s)-stable ,
(2.12)  “s-edge-hamiltonian™ ... (n + s)-stable ,
(2.13)  “s-Hamilton-connected” ... (m +5 + 1)-stable .
(2.14) G < s” ... (n - s)-stable.

Now, let G be a graph of order n and let & be a nonnegative integer.
Among ali the graphs H of order n such that ¢ C H and

(2.15)  dy ) +d, )<k

for all uv € E(H), there is a unique smallest one (for, if H| and H, have
the above properties then so. too, does H, N I{,). We shall call this graph
the A-closure of G and denote it by C (G).

Obviously, Cp(G) can be obtained from G by a recursive procecure
which consists of joining nonadjacen? vertices with degree-sum o, least A.
Thus we have the following.

Proposition 2.1. If P is k-stable and ', (C) has property P then G iself
has property P.



114 J.A. Bondy, V. Chvatal | A method in graph theory
3. Two sufficiency theorems

We note that, for n 2 n(s), the complete graph of order n has all of the
properties { 2.1) -(2.14) mentioned above (with the exception of having
an s-factor whea ns is odd). Hence. in the light of Proposition 2.1, it is
of interest to know when C,(G) is complete. More generally, if a graph G
has ¢ verticas of degree n — 1, then ¢ is t-connected, «(G) < max(l.n - 0,
and sc on. Therefore it is also desirable to know when C..(G) has at least
t vertices of degree w — 1. (If £ =n - 1, this question reduces to the
previous one.) In this section, we present two related sufficiency theo-
rems. They are motivated by results of Bondy [3], Chvatal {5]) and Las
Vergnas [ 1 2], on connectivity and hamiltonian cycles.

Theorem 3.1, Let k, n, t be positive integers with k < 2n -~ 4 and t < n.
Let G be a graph with degrve sequence d) < d, < ... < d,. Lot there be
i nonnegative integer i with

k-n<i<lk,

d . <
(3.1) n-kei
d, ,<k-i-1,
d, jqsk-i-1.

Then ©,(G) has at least t vertices of degree n — 1.

Preof. We may assume d,,_,,, < n -- 2 (otherwise G has ¢ vertices of de-
grez n — | and we are done). Next we may assume that

(3.2 (i; >k—n.

Indeed, this is trivial as long as K — n < 0. On the other ho"d, ifk—n>=0
and dy < k — n then G has at most k& — n vertices of degree n — 1, so that
dy, gy <n- 2and (3.1)issatisfied byi=k —n + i.

Now. let H denote C,(G). We may assume that H is not complete
{otherwise we are done). Among all the vertices of /7 that have degree
smaller than n — I, choose one with largest degree and denote it by v.
Among all the vertices noynadjacent to v, choose one with largest degree
and dznote it by u. Then «2.15) implies

3.3y dywyrd k-1,
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Let i = dy (u). By the choice of « and v, we have d;;/1) < dy(v) and so.
by (3.3).i < Lk

Since d| < d(w) < dy(u), (3.2) yields i > k -- n. Besides, (3.3) im-
plics that v is nonadjacent to at least n - kK +ivertices in H. By the
choice of u, each of these has degree (in i) at most /. Since d;(w) < dy(w)
for every w, we conclude thatd, _.,; < i Moreover, u is nonadjacent to
exactly n - | - i vertices in H. By (3.3) and the choice of v, e:ach of these
has degree at most K — 1 - i. Asdy(u)=i< k — | - i, there are at least
n — i vertices of H that have degree at most & - 1 - i. Thus we have
d, ;<k-1-1i

Now, to keep the hypothesis of our theorem satisfied, we must have
d,_ 44 2 k = i. By (3.3), the last inequality implies d,, _,,, >ay(v).
Hence there are at least ¢ vertices of H that have degrece greater than
dy (v). By the choice of v, each of them has degree # -~ 1 and the proof
is finished.

Remark. f A< 2t —~ lork=n+t - 2, then Theorem 3.1 gives the
weakest monotone condition in terms of d;'s which ensures that C,(G)
has at least ¢ vertices of degree n - 1. More precisely, if (3.1) is satisfied
for some / then there is a graph G~ with degree sequence d} <d; < ... < d,
such that d; > d; for each j, but C,(G*) has fewer tha 1 ¢ vertices of de-
green - L. Indeed.if i < | then we canset &7 =i\, + (K, 5;U
(n - k+0)K)) so that
"i. l<j<n- k+i,
d; =tk—-i-1, n-k+i<j<n-i,
lnm I, n—-i<<j<mHn,
and C,(G") = G". On the other hand, ifr<i<lkand k=n+¢ - 2 then
weset GT =K, | +(K, ;Y K, ;1) s0 that

i, 1<j<n-—-k+1,
di={k-—i-1, n-k+i<j<n-—-t+1,
n-1, n-t+l1<j<n.

end again C,(G™) = G*. Outside this range of k, Theorem 3.1 ceases to

be best possibic in the above sense. For irstance, one can easily verify

that the 9-closure of a grapi with a degre: sequence (d,, d,, .... dg) such
that d; > 4 (1 <i< 7), dg > 6 must contain at least two vertices of degree
seven. Moreover, this does not follow from Theorem 3.1.
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Theorem 3.2. Let &, n, t be positive integers with k < In - dand 1 <n.
Let G be a graph with vertices uy, u,, ..., u,. Let there be no i, j with

i<j], u; not adjacent to u,
du)<i+k-n, d(uf.)éj+k-n——ﬁ,
d(u,.)+d~|fzcj‘;£;k~—l, i+j 22n-k,
jzn—t+1.

Then Ci(G) has at least t vertices of degree n — 1.

Proof. Let £ denote C;(G). Suppoce H contains at most £ ~ 1 vertices of
degree n - 1;as ¢t < n, i is certainly not complete. Choose nonadjacent
u;, u; with

(i) j as large as possible, and

(it} § as large as possible subject to (i).
By (2.15), we have

34 dyu)+du)<k-1.

By (i), u; must be adjacent (in H) to all the u; withi <s < nands #
therefore

(3.5) d”{ul.) zn—i-1.
By (i), u; must be adjacent (in H) to all the u; withj < s < n and so
(1.6) dyuyz>n—j.
Now (3.4), (3.5) and (3.6) imply
dotuy<dyu)<(k-1) -n—-i-)=i+k-n,
d(;(ui}é ti”.(uj')@ (k-D-n-))=j+k—-—n--1,
itjzn—-dyu) - D+(n—dyu)=>Q2n -~ (k -)=2n-k.
Finally, (i) implies d(u;) = n - 1 for each s greater than j.

Therefore n — j <t - | contradicting the hypothesis.

Remark. if G satisfies the hypothesis of Theorem 3.1 and if its vertices
are inbeled so that d(u;) = d; for each i, then G satisfies the hypothesis of
Theorem 3.2, This has been proved, in a more specialized setting, by Las
Vergnas [13]. We presert the complete proof in Appendix 2.
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4. Applications to hamiltonian cycles
Cembining Proposition 2.1 with (2.1) we obtain the following.

Theorem 4.1. If G is a graph of order n such that n > 3 and C,(G) is
complete, then G is hamiltonian.

We now describe an algorithm which finds C,(G) for any given value
of k in O(n*) steps. The input of the algorithm is the adjacency matrix

Byt wwriv Yy saslavi iy

At ) of G its output is the adjacency matrix of Cy(G).

Siep |. For each i, set D(i) = X A, j).
Set M= 2.
Step 2. Find a pair (i, j) withi # j, A, j) =0 and D(i) + D(j)> k.
If there is none, stop.
Step 3. Replace A(, j) and A(j, i) by M.
Replace D(i) by D(i) + 1 and D(j) by D(j) + 1.
Replace M by M + 1.
Go to Step 2.

Upon termination of this algorithm, we have a matrix A(i, j) where
AG, P =1iffij € E(G) and A, /) = 0ift ij ¢ E(C,(G)). Next, suppose
we have a hamiltonian cycle C: uyu, ... u,u, in C,(G). (Finding such
a cycle is a tr:vial matter if C,(G) happens to be complete and n > 3.)
Let m be the maximum of A(J, j) taken over all n edges of . Suppose
m > 1; then there is a uniyue edge of C with A(j, j) = m. Without loss of
generality, let this edge be u, u,,. We shall describe a way of finding a
hamiltonian cycle C' in G such that the maximum of 4(J, j) over the
edges of C' is less than m. The number of those u; for which 0 < A(u, ;)
< m and the number of those u; with 0 < A(u,,, u;) < m sum to at least
n. Hence there must be some u; with 0 < A(uy, ug,;) < mand
0 < A{u,,, uy) < m. Such an s can be found by inspection within O(n)
steps; the desired hamiltonian cycle C' is

Uyt Mgy oo U UMy Uy

This procedure may be repeated until a hamiltonian cycle in G is
found. Since 4, j) < () for every i and j, the initial hamiltonian cycle
Cin C,(G) will be transformed into a hamiltonian cycle in G within
O(n?) steps.

Therefore our Theorem 4.1 is quite useful from the operational point
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of view. Indeed, the first of the zbove algorithms decicies within omn*)
steps whether the hypothesis of Theorem 4.1 is satistied and, if this is
the case, then the second procedure can be used to exhibit, within an ad-
ditional O(n?) steps, a hamiltonian cycle in G.

Next, we shall compare our sufficiency condition (that is, C,(¢) = X))
with various other sufficiency conditions for a graph to be hamiltonian.
In particular, Theorem 4.1 compares rather favourably with a line of
descendants of Dirac’s theorem [7]. These include, in ascending order of
strength, thcorems of Ore [ 14}, Posa [ 15}, Bondy [3], Chvital [5] and
Las Vergnas [12]. The last two theoremis on this list are immediate corol-
laries of Theorem 4.1. Indeed, they can be deduced by combining Theo-
rem 4.1 with Theorems .1 and 3.2.

Corollary 4.2 (Chvatal [5]). Ler G be a graph with degree sequence
dy<dy<..<d, suchthatn > 3and

d;i<zn=d, _,>n-i.

Then G is hamiltonian.

Corollary 4.3 (Las Vergnas [12]). Let G bc a graph with vertices
ty, Uy, ... 4, where n 2 3. Let there be no i, j with

i<j, uiul.é E(G),
d(u,.)si, d(u,-)si— i,
d{u,.)+d(ui)€n~ I, i+j=>n.

Then G is hamiltonian.

Hence our Theorem 4.1 applies whenever any of th: descendants of
Dirac’s theorem does. Moreover, Theorem 4.1 is strictly stronger than
all of these. Consider, for example, the graph G in Fig. 1.

We have C¢(G) = n', and so Theorem 4.1 guarantees that G is hamil-
tonian. However, the ¢ exists no labeling u}, u,, ..., ug of the vertices of
G that satisfies the hyputnesis of Las Vergnas’ theorem:.

At this point, one might be tempted to seirch for explicit conditions
that are weaker than those of Las Vergnas but still imgly that C,(G) is
complete. We wish to stress the futility of such an uadertaking. First of
all, no such condition could possible cover a wider class of graphs than
Theorem 4.1. Secondly, as shown above, it is easy (Q(1:*) steps) to decide
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Fig. 1.

whether C, (¢) is complete, whereas this may not be the case with a new
“explicit” condition. The doubting reader is invited to try and apply Las
Vergnas® theorem to an unlabeled graph of moderate size.

5. Other applications

It should be clear from the previous section that we have at our dis-
posal the machinery to handle a wide variety of graph-theoretic problems.
Given a k-stable property f, let n(P) be an integer such that each K,
with n 2 n(P) has pivperty P, and let 7 = t(P, n) be a function of n such
that every gre ph of order n (where n 2 n(P)) with at least ¢(P, n) vertices
of degree n — 1 { as property F.

Now, let & be a graph of order n where n > n(P). The algorithm de-
scribed in the previous section enables us to find, in O(n?) steps, the
graph Cp(G). If C,(G) happens to have at least 7 vertices ol degree n -- |
then Proposition 2.1 guarantees that G has property P. In addition, Theo-
rems 3.1 and 3.2 yield sufficiency conditions for a graph to have property
P. Table 1 displays some of the products of this methodology. Its rows
correspond to the properties introduced in Section | and its columns to
Theorems 3.1 and 3.2. In all places we give the appropriate reference.

For instance, in the row corresponding to “u(¢) < s and the column
corresponding to Theorem 3.1 we obtain the following.

Theorem 5.1. Let n, s be positive integers: let G be a graph with degree
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sequence dy < dy < ... < d,, such that

(5.D diy<i<zn-sy=d, _ >2n—-s-i.

Then w(G) <s.

This theorem (as well as many others in our table) is best possible in
the following sense. If (5.1) fails, then there is a graph G* with degree
sequence dy < d; < ... <dj, such that d] > d; for all j, but u(G*) >s.
Indeed, if (5.1) fails for some i then we may take G* = K, +(K
(i+s5)K)).

It may be heipful to note that, as long as 2¢ > k, the situation is some-
what simplified. Indeed, C,(G) has at least ¢ vertices of degree n — 1 if
and only if it is complete. Besides, sufficient conditions for C;(G) to be
complete may be obtained from those of Theorem 3.1 (respectively
Theorem 3.2) by deleting the inequality d,,_,,; < k — i — 1 (respectively
jzn-—t+1)

It is sometimes of interest to know C(G) for every value of k in the
range 0 < k < 2n — 3. For instance, if kK > n — 2 and C,(G) has at least
k + 2 - n vertices of degree n — | then G is (k + 2 — n)-connected. The
following modification of our algorithm from Section 3 evaiuates all the
closure: Cpf G) simultaneously in O/ n*) steps.

Step 1. Foreachi, set D(i) =X A(, j).

Setk=2n-—-3and M=2.
Set C(i, j} = A(, /) foralli and j.
Replace each A(i, j) by (2n -- 3) A(, j).
Step 2. If k = 0, stop.
Otherwise replace k by k — 1.
Step 3. Find a pair (i, j) withi # j, A(i, ))=0and D)+ D(j) > k. If
there is none, go to Step 2.

St:p 4. Replace A(, j) and A(j, i) by k.

Replace D(i) by D(i) + 1 and D(j) by D(j) + 1.
Replace C(, j) and C(j, i) by M.

Replace M by M + 1.

Go to Step 3.

Upon termination of this algorithm, the matrix 4(i, j) determines all
the closures of G, since #j is an edge of C, (G) if and only if A1, j) > k.
in zddition, the matrix C(i, ) indicates the order in which the edges if
were taken into each Ci(G), and we have seen (in the case of hamiltonian
cycles) how this information can be utilized.

n-2i-s v
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6. Relative closure and bipartite graphs

Let G° be a grapa, let G be a subgraph of G* and let £ be a nonnega-

tive integer. A property P will be satid to be k-stable relative to G* if
whenever G + nu is a subgraph of & * and has property P and (I, (u) +

d;(v) > k then G has property P. Among all the graphs H sunh that

G C HC G and dyfu) +dy(w) < k for all uwv € E(G™) — E(H), there is
a smallest one. We shall call this graph the k-closure of G relative to G*
and denote it by C.(G; G*). Thus Ci(G; K,)), where n is the order of G,
is exactly the C, /(7) defined in Section .

Pmpusititm 6.1. If P is k-stable relative to G™ and if C,(G; G*) has proper-

'v P then G itself has properiy P.

We have shown in Section 2 that the property of being hamiltonian
is n-stable (relative to X,,). In the context of bipartite graphs, this can
be strengthened as follows.

Theorem 6.2. The property of being hamiltonian is (m + )-stable relu-

tive to K, ..

Proof. Suppose that G + wv is a hamiltonian subgraph of K but ¢ is

aot. Then G has a hamiltonian path

m,m

u - tli, llz. sery uZm = U -

Sirce G +uv C K, .. u =u can be adjacent only te u;’s with even i
while v =u,,, can be adjacent only to u,’s with odd i. it d () +d,(v) >
m + 1 then there must be some (odd) k such that u is adjacent to u;,,
and v is adjacent to u;. But then G has the hamiltonian cycle

Upbly Uy o Uy W U Uy

A theory of closure relative to K, ,, can be developed along lines
parailel to our tr=atment of clcsure relative to K,,. Among the by-products
of this approach one obtains theorems of Chvata! {51 and Las Vergnas
{131 on hamiltonian cycles in bipartite graphs. Instead of going into the
details, we only quote from [10}; “This here ... may lead to 1 fine old
I
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Let P, Py, ..., P, be properties defined on graphs of order n; let G bz
a graph of order n. Then G will be said to have property P, X P, X ... X P,

if for g any nnlnrmo G = (‘ UG, U ofthe sdeec nf' 7 hy s onl
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ors, there is always ani such that the graph G; defined by the ith color
has property P;. In particular, if the property P, is *““to contain a subgraph
isomorphic to F;” then

denotes the fact that G has property Py X Py X ... X P,,. The smallest n
such that K, ~ (F,, F,, ..., F,,,) is usually denoted by

(7.2) AV F, ).

its existence is guaranteed by Ramsey's theorem [16]). If I; = F for all i
then we write G =+ (F),, and r(F),, rather than (7.1) and (7.2).

Theorem 7.1. If P; is ki=stable fori= 1,2, ....m, then P=P; X P, X ...
X P, is k-stable where k=1+Zk - 1)

Proof. Assume the theorem false. Then there is a graph G with nonadja-
cent vertices u, v such that dg;(u) + d;(v) = k, G + uv has property P but
G does not. Thus there is a coloring ¢ = G| U G, U ... U G, where no
G; has property P;. Writing d;(w) for the degree of w in (; we have

S(du) +dw) > k >k, - |

and so d,(u) + d;(v) = k; for some i. Without loss of generality we may
assume i = 1. Since P, is k-stable, G + uv does not have property P,.
But then G + v = (G, +uv) U G, U ... U G, and so G + uv does not
have propeity P, a contradiction.

Corolary 7.2. The property G ~ (5K,),, is k-stable where k =1+ 2m(s - 1).
This follows directly from (2.6) and Theorem 7.1.
Cockayne and Lorimer [6] proved that
r(s, Ky, 5, K5, ..., s, K,)= 1+ maxs,+ E G, - 1.
Burr and Graham coriectured that

Cs*] =G Kl )m

(m31)s
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and proved this with m = 2. Our next result settles their conjecture for
M = S.

Cercllary 7.3. Let G be a graph of order at least m(s — 1) +s + L. If
every vertex of G has degree at least m(s - 1) + | then

G- (us)m .

Proof. By Corollary 7.2, the property G ~ (sK,),, is k-stable where
k=14 2m(s — 1). Thus C,(G) is complete of orcer at least r(sK,),,
and we have C,(G) - {sK,),,. By Proposition 2.1, we conclude that
G - (SKZ )m.

Clearly, Corollary 7.3 can be strengtkened: If C,(G) = K, where
k=1+2mls ~ 1)and n > r(sK,),,. then G » (sK,),,. Therefore Theo-
rems 3.1 and 3.2 provide weaker conditions under which G > (sK5),,.
We leave the gory dv tails to the interested rader.

8. Stable graphs

Let us note that every k-stable property is (k + 1)-stable and every
property is (2n - 3)-stable. In this section, we shall investigate the prop-
erty of containing a subgraph isomorphic to a given graph F. If, forn
farge enough, this property is (2r — 4)-stable, then F wiil be called
stable. By (2.2) - (2.6), each of the graphs C;, P, K, ; and 5K, is stable.
Similarly, one can show that C[" is stable whenevers > Zm + 2. It is not
difficult to show that the disjoint union of stable graphs is stable. How-
ever, K, is not stable whens > 3.

Theorem 8.1. If ' 3 K5 and each edge of F has an end of :legree at most
two, thes Fis stable.

Proof. Suppose F'C G +uv, where d; () + J (v)=2n - 4and n > 1F.
WG +uv =G, then F C G and we are donc. Otherwise, we may assume
without loss of generality that d(v) = 1 or 2.

layd (vy=1.Sincen >IFl, thereisaw e V(G - V(I). Since
1w € Etis), v can be replaced by w to obtain a subgraph of ¢ isomorphic
to F
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(b) dp(v) = . Let x be the otlier neighbour of v in F. As before, there
is a vertex w € V(G) - V(F), and uw, vw € E(%). Since F p K5, xu € E(F),
Therefore the neighbours of v in F include those of x in F (except for v).
One can now replace v by w and x by v to obtain a subgraph of ¢ isomor-
phic to F.

Theorem 8.2. Let F be a graph s'«ch that every vertex of F has degree at
least three. Then the following conditions are equivalent:

(1) F is stable,

(ii) given any edge ww, of F there are nonadjacent vertices wy, wy
with

Fe{wy wi} CF - {w), wy}.

Proof. (i) = (ii). Given an edge w w, of F, set
H=(n-1F)K, v (F- {“’1' ""’2})-

Add two more vertices i, v and join each of thera to 1l the vertizes of K.
Call the resulting graph G. Thend;(w) +d;(v)=2n - 4 and /- C {7 + uv.
As [ is stable, we have F C . Besides, all but 1FI vertices of G have de-
gree two. Therefore F C K, + (F — {w}, w3 }) and (ii) follows.

(ii) = {i). Let ¢ be a graph suck that F C G + wv and d;(w) +d; (v)
=2n - 4. If G +uv = (¢ then F C & and we are done. Otherwise
G=K,+(F~ {u, v} As FC G +uv, there are distinct vertices w,, w,
of Fwith F - {w,, w;} C G ~ {u, v}. If w;w, is not an edge of . we
have F C G and so we are done. Otherwise, by (ii), there are nonadja-
cent vertices wy, wy of F with FF— {w,, w4} C F— {w,, w,}. But then

FCKy+(F—{wyw,NC Ky +(F - {w, w,NC Ky +(G — {.vD=G

and we are done.

For example, Theorem &.. shows that the Petersen graph is not siable.
Problem. Characterize stable graphs.

Dr. L. Lesniak has obtained some nice refinements of Theorems 8.1
and &8.2.
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9. Appendix |

Here we present proofs of results on the stability (relative to K,,) of
various properties.

Theorem 9.1. Lei n, s be positive integers with 4 < s < n. Then the prop-
erty of containing C, is (2n — s)-stable,

Proof. If G + un contains a C; but G does not, then G contains a path
Uy ... ug withuy = u, ug = v. Let H be the subgraph of G induced by
{uy, uy. ... tig}. Then H +uv is hamiltonian but A is not. Therefore

do) +d (V)< 2n - ) +d (W +d, (V< 2N~ +s=2n -5,

Fig. 2 (with s = 9) and its obvious generalizations show that the
bound 2n — s in Theorem 9.1 cannot be improved as long as s is odd. If
s is even and equal to » then K,,; ,,/» shov s that 2n — s is best possible
again. However, for s even and strictly smaller than n we obtain a slight
refinement of Theoiem 9.1.

Theorem 9.2. Let n, s be positive integers such that s is even and
4 < 5 < n. Then the property of containing Cis (2n -~ s -- 1)-stable.

Proof. If ¢ + uv contains a C, but G does not then G contains a path
uyty . ug withwy = u, ug=u. Let H be the si bgraph of ¢ induced by
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{uy, uy, ..., ug}. As in the proof of Theorem 9.1, we have dj (1) +d (V) <.
If « and v have no common neighbour outside // ther: we are done as

dG(u) +d(;(v) <SR- +dﬁ(u) +dH(v) <n<2n-s-1.

Thus we may assume that i and v have a common neighbour w out-
side H. Now, set

A={i: 2<i<s, uadjacent tou,},
B={i:2<i<s vadjacenttou; ;}.

We have dyy (1) = 1A and d (V) = IBL If dpy(u) + dy(v) < s — | then we
are done as

d () +d, (V< 2n-s)+d () +d )< 2n~5 -1,
Thus we may assume that
(9.1) A+ IBl2s - 1.
Besides, we have
(9.2) ANB=0;

indeed. ifi€ AN Bthenwjuu;, ... ug; ... uyisa G in G. Now,
{9.1yand (9.2) imply

(9.3) AUB={2 3 ..5}.

Clearly, we have 3 € A4; otherwise u uyu, ... ujwu. is a Cg in G. Similarly,
we have s — 1 € B; otherwise u u, ... u, yugwuy is a Cg in (. Hence (9.3)
implies that 3€ B and s - 1 € A; that is, u; is adjacent to u, and uy is
adjacent to u, _,.

Next, let us note that
(9.4) jEA=j+1¢4;
otherwise w1, ;.5 ... Uyuyus .. waey isa Cgin G, Similarly,
(9.5) JEB=j+1¢B:

otherwise ugliu;y; .. Ug yuyity .. Uj_jUg isa Coin G.

Now, (9.3), (9.4), (9.5) and 3 € B imply that every odd j withj < s
belongs to B. In particular. we have s — 1 € B contradictings - | ¢ B
established above.

Fig. 3 (with s = 10) and its obvious generalizations show that the
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Fig. 3.

bound 2 - s - | in Theorem 9.2 cannot be improved as long ass > 6.
For C4. we casily obtain a much better result.

Theorzm 9.3. Let n, s be positive integers with s < n - 2. Then the prop-
erty of containing K, ( is (n +s — 2)-stable.

Proof. If (7 + uv contains K, ; but G does not, then « and v have less than
s common neighbours in G. Therefore

d(;fu‘) +d (v)<(n - QD +s.

To see that the bound 2 + 5 — 2 in Theorem 9.3 cannot be improved,
consider a4 graph & with three special vertices 1, v, w where (i) u is adja-
cent to every vertex but itself and v, and (ii) exactly s — 1 neighbours of
u are adjacent to both v and w.

Theorem 9.4. Let n. s be positive integers with 4 < s < n. Then the prop-
ertv of containing P, is (n — 1)-stalle.

Proof. Let G + uv contain a path wu, ... ug; assume that G itself
contains no P,. Let A be the subgraph 01‘ G induced by {1y, 15, ... ug}.
Then (/1 + K ) + uv is hamiltonian but H + K, is not. Therefore

e‘-flh.(u)“f" H+(ciy{v)+ hy<s+1.

Besides, v and v have no commeon neighbours outside H (otherwise G
containsa P, ) and so

'!(E.,s’w) m”(;w) “n—s5+ dﬁ{u) + a’H(v) <n 1.
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o\%

Fig. 4,

Fig. 4 (with s = 7) and its obvious generalizations show that the bound
n — 1 in Theorem 9.4 cannot be improved. '

Theorem 9.5. Let n, s be positive integers with s < in. Then the property
of containing an sK, is (2s — 1)-stable.

Proof. If G + uv has an 5K, but G does not then G ir cludes 2(s ~ 1) ver-
tices

(9.6) Uy, Uge ooy U 1001, Ug5 e, U

all distinct from u ar:u v, with u; adjacent to v; for each i. As G does not
contain an sK,, ea~ neighbour of « and each neighbour of v comes from
(9.6). For the same reason, no three edges of & can have one endpoint

in the same set {u;, v;} and the other in {u, v}. Hence

dG(u) +d (V)< 25 - 1.

The graph K, ,; U K,_,,,, shows that the bound 25 — | in Theorem
9.5 cannot be improved.

Theorem 9.6. Let n, s be positive integers with 2 < s < n. Then the prop-
erty of having an s-factor is (n + 2s — 4)-srable.

Proof. If G + uv has an s-factor but & does not, then G has a spanning
subgraph F such that dp(u) =dg(v) =5 - | and ¢p{w) = s whenever
w # u, v. Let A be the set of vertices that are adjacent to # in (G but not
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n # Similarly. let B be the set of vertices adjacent to v in G but not in F.
Then no edge of F has one endpoint w; in 4 and the other w; in B.

(Otherwise F + uw; +vw; -~ w,w; is an s-factor of G.) Therefore

{(9.7) z{wé. w N A+ i{w, u’j} N Bi

is at most two for each edge wyw; of F. Besides, if w; or w; is « or v then
€9.7} is at most one.

The graph F has exactly jns -- | edges: 2(s — 1) of these are of the
second kind. It NV denotes the sum of (9.7) over all the edges of F then
we have

NS 2ins -D - 2s - D=~ 5.

For the moment, lct us assiene that V= (n — 2)s; let uw be an edge of F.
M é‘«) 7; witt' fu = {u, w} equals one, we must have weRB - A

As d,,( W)= 2' thcre is another vertex wz udn that w, w, is an
edge of F. Smu. wy € 4, we have w, # u and so (9.7) with {w;, w;}=
{wy, w,} equals two. But then necessarily w, € A and

F 4w, — W w, + Wyl —~ uw + WU

1
is an s-factor of . To avoid this contradiction, we must have V< (n - 2)s.
On the other hand, A U B includes neitheru norvand soN= s( iA+1B1).
Comparing the last two inequalities we obtain Al + 181 <n - 2 and so

dG(u)' + d(;w) = dF(u)+ 141+ e!F(U) +IBM<2Us - D+n -2

{f n > 35 + 3 then the bound # + 25 — 4 in Theorem 9.6 cannot be im-
proved. Indeed. we shall show this by means of an example. Take the
complete bipartite graph K;_; ;_, (with bipartition P U Q). Take a graph
H with a distinguished vertex v such that dy(v) =s -- 2 but all the other
vertices of H have degree s. (If 5 is even, this can be done with s + 2 ver-
tices: if s i1s odd, with s + 3 vertices.) Add two new vertices, « and w.
Join v and w to 2ach other and to all the vertices in (. Join u to all the
present vertices except v ard w. Call the resulting graph G. Obviously,

G + wv has an s-factor; besides, dg(u) = n — 3 and dg(vy=21s - 2. How-
ever, (s has no s-factor. Indeed, each vertex in P has degree s and so does
w. Besides, cach vertex in Q is adjacent to all the s vertices of PU {w}.
Thus no vertex from @ can be adjacent, in an s-factor of G, to v. But
thenenly s - | neighbours of v are available.
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Theorem 9.7. Let n, s be positive integers withs < n - 2. Then the pron-
erty of being s-connected is (n +s -- 2)-stabie.

Proof. Suppose G + uv is s-connected but G is not. Then there is a set T
of s — 1 vertices of G such that ¥ and v belong to distinct components
of G - T. So the common neighbours of # and v can come only from T
and we have

d(;(u) + dG(v) <n-2+iTI<n+s -2,

The graph K | + (K, _; U K|) shows that the bound n +s - 2 in
Theorem 9.7 cannot be improved.

Theorem 9.8. Let n, s be positive integers with s < n -- 2. Then the prop-
erty of being s-edge-connected is (n +s — 2)-stable.

Proof. Suppose ¢ + uv is s-edge-connected but G is not. Then there is a
set R of s — | edges of ¢ such that « and v belong to distinct compo-
nents of ¢ — R. Therefore G contains at most s — | e 'ge-disjoint paths
from u to v. In particular, ¥ and v have at most s — | ~ommon neigh-
bours and sodg(u) +dp(v) < n— 2 +s.

Again, the graph K, | +(K,,_; U K,) shows that the bound n +5 - 2
is best possible.

Theorem 9.9. Let n, s be positive integers with s < n. Then the property
“a(GY< s is(2n — 25 - 1)-stable.

Proof. If a(G + uv) < s but a(G) > s then there is a set W of s — 1 ver-
tices of G such thatu, v& W and W U {u. v} is independent in G. But
thend ;(wy<n - 2 iWlandd ()< n -2 - Wi, so that

do)+d (< 2n -5 1),

The graph K, ., + K, shows that the bound 2n - 25 - | in Theo-
rem 9.9 is best possible.

Theorem 9.10. Let n, s be positive integers with s < n 3. Then the
property of being s-hemiltosian is (n + s)-stuble.



132 LA Bondy, V. Chvatal | 4 method in graph theory

ax s AL L KU

Blacsondf Crrovesivoas that far cnmeoe cot W Af ot minet e vorticoe nf 7 (77 4 ) .
TEUVE., QUPPFUIL LIIAL, 1V SUSIIV OVt Fr Ul Al 1RVl J Vi lihes Ui U, 1 “vy

is hamiltonian but A = (- — W is not. Then

d () +d (V) < (d,(u)+ WD+ (d (v) + IW])
3
<{h-1WnN+2IWl=n+IW<n+s.

The graph K, +(K,,_;_, U K|} shows that the bound n + 5 in Theo-
rem 9. 10 ts best possible.
Theorem 9.11. Let n, s be positive integers with s < n — 3. Then the
property of being s-edge-hamiltonian is (n + s)-stable.
Peanf unnose that . 4 1 ic ccadaohamiltn an hat £ ie nre ot ']‘han Hv\ssr
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is a set - of s edges that form pairwise disjoint paths in G such that G +
has a hamnltoman cycle containing all of F, but G does not. Consider the
graph /{ obtained from G by subdividing each edge in F into two. Then
H + uv is hamiltonian but H is not. Therefore

doy +d (v)=dy () +d ,(v)<n+s.

Again, the graph K, +(K,,_,_, U K,) shows that the bound n +5 ‘n

Theorem 9.11 cannot be improved. »

Theorem 9.12. Let n, s be positive integers with s < n — 4. Then the
property of being s-Hamilton-connected is (n + s + 1)-stable.

Proof. Suppose that G + wv is s-Hamilton-connected tut G is not.
inen there is a hamiltonian path uyu, ... 4, in G +uvand asetJ of s
subscripts such that

u=u,,v=u,,, forsomem withm¢ J,

tii} & has nc hamiltonian path with endpoints 4 and v which contains
all the edges w;u,,, withi € J.

Let

.
o
i

£ ow
@
H

LI < i< m:uy; adjacent tow in G},

B ={l<i<m u;,, «djacent tovin G},

~
|

=im+i<i<n u;adjacenttouinG},
D

{m+1<i<n: ,;,, adjacent tov in G} .
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We claim that A N B C J: if there isan i withi € (4 N B) - J then

ll‘llz... uwu, u u

i“mTm-1 Hlumﬂ“nnz un

contradicts ¢ii). Similarly, we have C 1 D C J for otherwise
Uply oo Uy Ul Uy U Uy U
contradicts (ii). Now, we have
d(u) +dv) < (AL +.1CH + (1B + I1D1)
=AU BI+ICUDI+(ANBI+1CA DD

smt+n-—-m)+s=n+s.

The gravh K, +(K,, ;3 U K;) shows that the bound n +s + 1 in
Theorem 9.12 cannot be improved.

Theorem 9.13. Let n, s be positive integers with s < n. Then the property
“w(G) < 57 is (n — s)-stable.

Proof. Suppose that (G +uw) < s but p(G) >s;set =G + K. Then
H + uv is hamiltonian but # is not Therefore

dG(zc) + dG(u) = (a!”(u) — §) + (dh,(u) —§¥<(n +5) 2.

The graph K, U K, shows that the bound n — s in Theorem 9.13
is best possible.

10. Appendix 2

Here we give a proof of the statement in the remark following
Theorem 3.2.

Theorem 10.1. Let &, n, 1 be positive integers with k < 2n ~ 4. Let &
be a graph with degree sequence ¢y < d, < ... < d,. Let there be no non-
negative s with

- n<s<ik. d

nok+s <5s.
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Tiwen there are no i, j with

l<i<j<n, d,.éi*:-k»——;:,
(16. 1) diéi«bkwn«-l, di+di£§kwl,
i+j=z2n -k, jzn-t+1, dl.sénm?..

Proof. Let the conclusion fail. There are 7, j with (10.1); choose them
with i as small as possible. First of all, we shall show that

(10.2y  i<n-1k.

Indeed.ifizn— jhkthen(i - D+j2 G - D+ +1)>2n - kand
i > 2. By minimality of i. we must haved; | >{i- 1) + k - n and so
d;=i+k-n2=jik Butthend;+d; > 24; > k contradicting (10.1).
Now,set s =7+ k — n. Then s is nonnagative (as d; < 8);i 2 | and
(10.25imply &k —n <s < ik Besides,d;<i+k —nreadsd,_ ;. <s.
Let us aiso note that G has at most d; vertices of degree # - 1 and so
d, ;<n- 2
Next, we shall prove thati 2 2. Indeed. ifi= 1 thenk -s—-1=n -2
and, to keep the hypothesis saisfied, we must have d, _,,y =n - 1. But
thend, = n — | contradicting (10.1).
Finally. Izt us note thatj > max(n — s, n ~ ¢+ 1) and so d; >
max(d, .. d, ,41)> k- s Therefore

j?;djnk%ir-i-l?nw.s"i-l=2n——t’~k+l

aid so (i — 1y +j > 2n — k. By minimality of i, we must have d; | >(i - 1)
+k - n sothatd, =i+ k- n. But then

di+dj;ai+k~~n+k-—s=k

contradicting (10.1).
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