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A unified approach IO a variety of graph-thearetic problems is introduced. The k-closure 
Ck(GI of a simple graph G of order n is the graph obtained from G by recursi*iely joining 
pairs of nonadjacent xxfices with degree-sum at least k. It is shown that, for many proper- 
ties R one can find a suitabk value of k (dependkg on P and n) such that if Ck(G) has P, 
then so does G. For instaqce, if P is the hamihonian property, one msy take k = n. Thus 
if C,(G) is htrmiltonian, then so is G; in particular, if n 3 3 and ~,#~I is complete, then G 
is hamittonian. This condition for a graph to be tlamiltonian is s lown to imply the well- 
known conditions of Chvritat and Las Vergnas. T!le same method, apphed to other proper- 
ties, yields many new theorems <)f a similar nature. 

In this paper, we present a unifie approach to a variety of graph- 
theoreticaf problems. IIt has been inspired by the following theorem of 
Ore [ 141: Let G be a graph of order ~1. w 2 3. If 



c 

ique appks also in many other wtt.ings. H n each 
fficient esndirion accsmpaniecfi by an effic=isept 
routkw a,pplication of’ our Thcarems 3.1 and 
prlak sufficiency tkelorems of’Chv&t~l and 
f th.cs~ arh‘ already iwawn an~d olthers are new. 

them to iffustrak tho verwtility of our ;ipproach r-ather than 

nology fc.4%0-ws tlergc [ 1 1 md Harary is>]. 
y) numbw aIG:\ is as in [ i j; PO avoid confir- 

endent sets” rGher than “stable Seth”. The graphs 
fl._ 2i) etcu are as in [9]. As in [ 81, tk smdfcst 

t paths covering atk the vertices of’G is dcmted 
s also been studied by Boesch et al. [ 2 1.) 

ty defined on all graphs of order n; tet k be a ncrn- 
n P is said to be k-stab& if whenever G + WI has 

0 



see P ppendis 1.) 

(2.3) “G contains a C, (5 < s < n)‘” . . . (2~1 - s)-stable . 

r12.3) “‘G contains a CS (4 G s < rz, seven)” . . . (2n - s - &stable, 

(2.4) *“G contains a CT (4 < .Y < YI)‘* .+. (H -- I )-stabie , 

(Xb 

(2.6) 

f-2.7) 

“G cantains a K2,$ (2 6; s G p1 - 2)” . . . (~1 + s - 2).stable , 

‘3 contains an SK, (2s < n)” . . . (2s -. 1 )-stabie , 

‘*CI contains an s-factor (2 < s C n)” . . . (:- + 2s _-- 4).stable , 

. . . 01 + s - 2)-stable, 

..* (n + s --- 2).stable , 

(2. t oi . . . (2~ --- 2s - I)-stabie . 

The concept c+ X stability is also relevant to the plethora of variations 
on the hamiltonian thcmu: “.s-hamiltonian” 141, ‘2 e ge-hamiltonian” 
[ I I 1, “x-HamiItoniian.=coranecl:ed” [ k 1, etc. 

(3. f 1) “s-hukl tonian” .*. (1. + s)-stable , 

12.12) “s-edg,e-hamil tonian” . . . (N + sf-stable , 

i 2.13) ~‘s-Ej;~rnjltoi~-L’onncoted” . . . (ra + s + 1 j-stable. 

(2.14) “p(G) G s” . . . 01 -- s)-stable . 

Now, let C be a graph of order N a~sd tet k be a nonnegative integer. 
Among all the graphs II af order IZ suck that G c N and 

(2.I5) d,(u) + d,&v) < k 

for ;aH w $ E(H), there is a unique smallest one (for, if I‘ 
the above properties then so., too, dots EI, I+I Ii& ‘We sh 
the ,k-~f~sw~~ of 6’ and denote it by C,(G). 



0 strf ficiency theorems 

)2(s), the complete graph of order PI has all of the 
ices 3’ 2. I ) - (2.14) mmtioned above (with the excqtion of having 

ir1 the lig,ht of Pruposition 2.1, it is 
is complete. ore generalty, if a graph G 

1 t ther? G is ~-CXXI cted, cu(G) G maxf l,n - C), 
it is atso desirable to krtollv when C,(G) has at least 

-- 1, this question reduces to the 
resent two &ated sufficiexlcy theo- 
s af Bontdy (51, C&&a1 [5 ] and Las 
hamiltonian cycles. 

I 
-i-- 1, 

t t wrtices of degree n - 1. 

II -- 2 (otherwisrz G has I vertices of de- 
ext we may assume tha;t 

O_ On the other had, if k -- n 2 0 
pa vertices of degree IZ -.. 1) so that 

3.1 B is sat~s~ed by i = k - n + 31. 



Let i = dtl (II ). Ny the choice of tr zinii u, we h;ive d;;c~ ) < d/,(u) and so. 
by (3.3). i c ; k. 

SinCe d, G d&d) G d,&tr), (3.2) yields i > k -.- ~1. Rosidcs, (3.3) im- 
plies that u is ntxxldja4xnt to 3f least Pz -- k + i ccrticcs in I-1. By the 
chsic-e of 11, each if these has degree (in w) at most i. Since d, (~9 < L$,(w) 
for every w, WC conctude that d,._ k+i G i. Moreover, 24 is nonadjacent to 
exactly CF ... a - * i vertices in fi. By (3.3) and the choice of u, exch of these 
has degree at mast k: ..-- 1 - i. As (r,,Cu, = i < k -- 1 .- i, there are at least 

- i vertices of If that hwe degree at most k -. I 

:F,.. i 
- i. Thus we have 

$g k - 1 ._._ j, 

Now, to keep the hjqothcsis of our theorem :;atisfied, we must have 
L! fl - r+t 2 k -- i. By (X3), the last inequxfify imyGes d, _ t+I > a,(u). 

Hence there are at least d vertices of If that have degree greater than 
&&.I). By the wfroice of Y, each of them h;~s degree II - - I and the proof 
is finished. 

Remark. if k G 3 -‘- 1 o’r k := PI + t -_ 2, then ‘Theorem 3.1 gives the 
weakest monotone condition in terms of c$‘s which ensures that C,(G) 
has at least f vertices of degree rr I - J. More precisely, if (3.1) is satisfied 
for sonw i then there is a graph G* with degree sequ~ce d; < (I; < .-. < L!,: 
such that c/: > L$ for each j, hut C,(G*) has fewer tha I I vertices of de- 
grix n I then W~Z can set G* = i&i + (Ark ?i U 

(ts --- k + i) K, )I so thal: 
,. 
I, 1 g j s=, 11 -- k t i, 

d; = 

1 

k _- i .- I, t1 -_ k_ -4- i < j < 11 _- i" 

‘c P3 - f a 1v .- i <f j < 12, 

and c’,(G’*) = G”. On the other hand, if t G i < ik and k = n + t - 2 then 
PAX set u* = Kt _ 1 + (K,J _ k.+i w I$ _ I_. i+l) so that 



t h.st t vertices of degree n - 1. 

s possible subject tlwl (i). 

adjacent fin N) to ail the ti, with i < s G rz and s r;t j; 

be adjacent (in H) to ali the U, with j < s I< rt and so 

1) -(n-i- l)=i+k--12, 

- 1bCw=-j)=j+k-w- 1, 

~i))~ (2n -- I)-- (k -- 1)=2n-*k. 

l each s greater than d. 
~~~eS~S~ 
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Comtjining Proposition 2. I with (2.1) we dbtain the following. 

We now describe an algorithm which finds C,(G) r any given v&le 

of k in Q(n’) steps. The input ot” the algorithrn is the ad.@cency matrix 
i-N* j) of G; its output is the adjacency matrix of C,(G). . 

%ep I. For each i, set D(i) = 5: A(& j). 
Set M = 2. 

Step 2. Find a pair (i, j) with i # j, A(i. j) = 0 and D(i) + D(j) 2 k. 
If there is none, stop, 

Step S. Replace A(& j) snd A(j, i) by M. 
Replace D(i) by D(i) + I and D(j) by DCj? + 3. 

Replace M by M -,I- 1. 

Gn to Step 2. 

Upon termination of this algorithm, we hrrve a matrix AU, j) where 
A(i, j) = 1 iff jj E E(G) and .4(i, j) = 0 iffij $ E(C,(G)). Next, suppose 
we have a harniltonian cycic U: U, u2 .._ zl,up in C,(G). (Finding such 
a cycle is a trs~ial matter if C,(G) happens ts be complete and rz 2 3.) 
‘Let JVI be the GUMIMII of d4(i, a’) ta en over aH urn edges of C. Suppose 
m > 1; then there is a unique edge of C with, A(& j) = t3-1. Without loss of 
generality, let thi!; edge k ZQ tz,. We sh;rtl describe a way of’ finding a 
hamiltonian cycle C’ in C such that the maximum of A(i, j) over 
edges of C’ is less than m. The number of ose t+ for ‘Jbrhich 0 C 
< na! and the number of those uj with 0 < (iM,, ui) < nt sum to at kaQ 
Il. ence there mus’t be so le U, with 0 < Al(trr. u~+~) < and 
0 < A(u,~, 11,) < fn. Such an s can be found ‘by inspection within 

s; the desired hamiltonian cycle C’ is 



the first of the z%bovt: algorithms &xi&s within 0(n4) 
e hypothesis of ‘I’hea~rem 4.1 i satisi ied and, if this is 

ond procedure can be us tjo exhibit, within an ad- 
s, a ham~~tonia~ c: 

~o~~~~a~e our sufficiency @ondition (that is, C,(G) = KJ 
r s~f~~~en~y cQnditiotls fk~r a graph to be hamiltonian, 

rem 4.1 compares raither’ fitvaulkably with\ a tine of 
C’S theorem f?]. These in&de, in ascending order sf 
f Ore f 14$, P6sa f t S], Bandy [ 31, Chvsiitai [ 51 snd 

[ 121. The last two theorems on this list are immediate corul- 
1. Indeed, they can be deduced by combining Theo- 

heo~ems _‘.I and 3.2. 

as f 121). Let G kc a graph with vertfces 
3. Let there be no i, i with 

rem 4. S applies whenever any of th-: descendants of 
reover, Tfieorem 4.1 is strict%y stronger than 



whether CJG) is complete,, whereas this may not be the case with a new 
“explicit” condition. The doubting reader is invited to try 2nd apply Las 
Vergnas’ theorem to an unlabeled graph of n~oderate size 

thet applications 

d be clear from the previous section that we have dt our dip 
posal the machinery to han,dle a wide variety of graph-theoretic problens. 
Given a k-stable property I, let ut(P) be an integer such that each K,, 
with yz 2 PI(P) has plqerty P, and let t = t(P? rz ) be a fun&x3 off n such 
that evew grs ph of order M (.where n 2 n(P)‘) with at least tU? n) vertices 
of degree n - 1 i ias property 1F. 

Now, let G be a graph of order n where )I 2 n( ). The de- 
scribed in the previous section enables us to find, in CWz4) steps, the 



- 
CI 

. 
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This ths;orem (as well as many others in our table) is best possible in 
jtlg sense. If (5.1) fails, then there is a graph C” with degree 

sequerWe d; G G/f;; $E . . . 
Indeed, i;.f (5.1) fails fo 

at Qli’ 2 dj for all jr but p(G*) > s. 
we may take C* = Ki +( 

(i + s) K, 1. 
lit may be helpful to note that, as long as 212 k, the situaticxn is some- 

Mied,, Indeed, c&Y) has at least t vertices of degree 32 -- 1 if 
and only if it is complete. Besides, sufficient con itions for Ck(G) to be 
complete may be obtained from those of Theorem 3.1 iresprc%ively 
Theorem 3.2) by deleting the inequality (in_r+1 < k - i -- 1 (respectively 
j&n--HI). 

It is sometimes of interest to know C&(G) for every valve of k in th 
range Cl 6 k G 2:n - 3. For instance, if k > n - 2 and C,(G) has at 1 
k + 2 -- rz vertices of degree yt - 1 then G is (k + 2 -- ~~)-~‘oml~~ted. 
following modi$cation of our algorithm from Section 3 evaluates a 
closure: Ckic) rsimultaneously in 0%“) steps. 

step 3. 

Step 2. 

Step 3. 

St ;p 4,. 

For each i, set D(i) = 2Z AC, j). 
Set k = %n -- 3 arrd M = 2, 
Set C’“(i, j) = A (i, ,i) for all i and j. 
Repke each AU, j) by (2n - - 3) ,4 (d, j). 
If k =: 0, stap. 
Otherwise replace k by k -- II. 

Find a pair (i, j) with i + j, Ati, j) = 0 anal Dii j t- D(i) > k. 
there is none, go to Step 2. 

eplace R(i, j) and A( j, i) by k. 



n in Section 2 that the property of king hamiltonian 
to I?&). In the context or bipartite graphs, this can 

s fOllOWS. 

se that G + uu is a hamiltonian subgraph elf K,,,, but G is 

u = ZQ C~II be adjacent only tci2 Ui’S with CfQtXI i 
adjacent only to u$ with add i. It‘d&) * i-l&o 3 

wme (odd) k such that u is adjacent to uksl 
JE then G’ has the hamiltonian cycle 



7. ge-colorin 

Let P,. Pz, . . . . P,,* be properties ASned on graphs of order n; let G be 
a graph ob order n. The?1 G wilf bc said to have property It’, x P, x . . . x fm 

if, for any coloring &’ = G, u G, u .., u Gm of the edges of G by wt col- 
ors, there is always an i such that t&e graph G, defined by the ith color 
has property Pi. In particular, if the property Pi is “to contain a subgraph 
igiomorphic to Fi” then 

(‘I.1 ) c + (F’p Fp . ..) Fm) 

denoth:s the fact :hat C has property P, X P, X . . . X Ppn . The smallest n 
such tht K, -+ (F,, r;B, *.., Fm) is usually denoted by 

(7.2) 

its exktence is guaranteed by Ramsey”s thearem [ 16). If IFi = F for allI i 
then we write G + (F)m and r(F), rather than (7. iI) and U.2). 

Proof. Assume the theorem false. Then there is a graph G with nonadja- 
cent vertices u, u such that d&d) + d,(u) 2 k, 6; + tm has property P but 
G does not. Thus there is a coloring G = G’, u C2 u . . . u G, where no 
(7, hap property Pi. riting (rii(w) far the degree of 1%’ in Gi we have 

Z@.+(u) + 13,(U)) 3 k > ~(ki --- 1 r 

and so di(u) + d&u) 2 ki for some i. Without loss of generality we may 
assume i = 1. She P, is kI-stable, G, + EIU does not have property P, a 

But then CT + w = (G, + uu) u G2 u . . . u 6, and so G + uv does not 
have propeiZy P, a contradiction. 



ed this with 112 = 3. Our next res It settles their cmjecture for 

.2, the property G + (sI$), is k-stable where 
. Thus Q(G) is complete of order at feast r(~Kz)~ 

--, SK, jm. By Propos*itian 2. I, we conclude that 

7.3 can *be strengthened: If C,(C) = Ka where 
r(s& jnr I then G -+ (dV2),n. T?lerefore Theo- 

e weaker conditions under which G + (SK, )ln. 
dt ttiils to the interested xadcr. 

s 

note tha*t zvcry k-stable property is (k + 1).stable and every 
(al -- 3)-ostable. In this smtiort, we chall invcstigatc the prop- 

g, a subgraph isomorphic to a given graph F. If, for jz 
tS ~ropetiy is (2n -- 4).stable, them? I;’ GEf be cakd 

-2) -- (lb), each of ttme graphs Cp &, K2 S and SK, is stable. 
cari show that Cp” is sItaWe whenever.~ 2 Z!nt + 2. it is not 

‘that the disjoirlt union of stable graphs is stahte. How- 



(b) d&f) = 2. Let ?I be the other neighbour of u in I;: s before, there 
is a vertex k~ E k’(G) .-. V(F), and td w, UW E E(G). Since F J5 M,, x19 $ E(F). 
Therefore the neighbours of u in F include those crf .r in F [except for u). 
One can now replace u by w and x by u to obtain a subgraph of 6;: isornor- 
phic to I;: 

Pmof. (i) * (ii). Given an edge q w2 of F, set 

H=(n-- Wf 1 K, ti (F --. (14$, “*)) . 

Add two m-m verticm 14, u and join each of them to iI1 the vcrtkes of E. 
C’att the resulting graph G Tnen d,(u) f d&O = 2~ - 4 and F C’ G + uu. 
As I;’ is stable, we havlz F c G. Resides, afi but IFI vertices o 
gree two. Therefore F c j1’* + (F - {q, w,}) and (ii) follows. 

(ii) * (i). Let G 5c a graph suck; that F‘c~ + uu and CI&) +d,$.O 
= 3 --_ 4. If G + uu = G then F c G and we are done. Otherwise 
G’ = K, + (F - {rl, u} 1. As I;* c C -t UC+, there are distinct vertices q, w3 

of F with F -- {q, wz) c G - ftr, v), If q bv2 is not an edge of F, we- 
h.ave I”* c 6’ and so we are done. Otherwise, by (i& there are nonadja- 
cent vertices ~3, ~‘4 off;‘ with F - (w3, rijg) c F - (w,, ~2). ut then . 

F c Fir2 + (II”-- (ws, ?V4)) c q + (F -.- {w,, w7)) c +(C-- (16uj)=G 

md we are done. 

or example, heorem 8.2 shows that the 

. Characterize stable gra 

ce 



,,rosfs of results on the stability (relative to 

?I, s be positive integers with 4 ‘G s G n* men the prop 

ing C, is ( 2n - s]+stable, 

ctorrtains a C” bult 6 does not, then G contains a path 

1 ::i a, 4 = u. Let ?I be the slE’1)graPh of G induced by 
hen 11-k uu is hamiltonian but H is not TI.~erefore 

s = 9) and its obvious generaliza:tions show that the 
nnot be improlvcd as long ass is odd. if 

I.42 shov s that 2n - s is best possible 
:rictiy smaller than y1 we obtain a slight 

et n, s tw positive integers such that s is evw and 
4 property of containing C, is ( 2n - s -- I )-stahk 

does not then G contains a path 
graph of G induced by 



{up up . . . . Ed,). s in the proof of 'heorern 9.1 9 we have dl,(tc) -k d&3) < 5, 

If EL and v have no common ncighbour outside {I theE we arc done as 

Thus we .may assume that 14 and v EWW a common ;leighhour IV out- 
side If, Now, set 

A = (i: 
i 

2~iGhx4adjacent toui}, e 

B = {i: 2 G i G s:, v adjacent to ui__ 1 ) . 

Thus ve may assume that 

Besides, we have 

(9.3) A 13 iB = { 2, 3. . . . . s’) . 



tip. 3. 

heorcm 9.2 canno be improved as fang as s 2 6. 
n a much better result. 

oes not, then 24 an!3 u have less tha+? 

si 



Fig. 4 (with s = 7) and its obvious generalizations show that the bound 
p”t -- I in Theorem 9.4 cannot be improved. 

eorem 3.5. Let N, s be posithe integers with s G tn. T?wn the property 
of tlontuinr ylg un shfz is (2s - 1 )-stable. 

roof. If C + TV has an sK2 but G does not then d-; it cleades 2(s --- I ) ver- 
tices 

(9.6) ill’ 5. l a*? U,_1’ q7 5, l **y U,_*l 

all distinct from u ar:ti U, with ui adjacent to Vi for each I’. 
contain an SKIM earn neighbour of u and each neighbour 
(9.6). For the same reason, no three edges of G can have one endpoint 

e same set fui, Vi) and the other in {u, v}. Hence 

core 



ssrnc that ,Y = 4n --- 2)s; tet WV be an edge of F. 
{tc, M’) equals Cxte, WIL” nNlst have w E e - A. 

@h that WV t is an edge sf F; we have w f E A -- 8. 

2, there is another vertex I+ such that w1 wz is an 
A, WC have lvz + u and so (8.7’1 with {wi, We}= 

t then necessarily ltlz E ,4 and 

ttv, wz f wp ‘- uac + wu 

f G. To avoid this contradiction, WC must: have N < [n -_ 2js. 

A w B includes neither u nor u and so N = s( iAt + IB i ). 
two inequalities we obtain I,41 + /IS?\ < IZ _.-- 2 and so 

- 4 in Theorem 6.6 cannot: be im- 
e shall show this by means of an example. Take the 

(with bipartition P u Q). Take a graph 
guished vertex u such that d&l) = s -- 2 but all the other 

ran be dune with s + 2 ver- 
r3 :new vertices, 0 and 1%‘. 

er and to all1 the verticmes in Q. Join II to! all the 
graph 47. Bbvi;ously, 
cf&,?) = 2s -- 2. How- 

P has degree s and so does 

he ,s vertices of 



The graph K, ._ j + f K,, s u K,) shows that the bound n + s 
Theorm W cannot be &proved. 

2 in 

Proof. Suppme G + uu is s-edge-connected hut G is not. Then there is a 
set H ofs - 1 edges of G such that u and v beicsng to distinct conrpo- 
nents of G .- R. Therefore G contams at most s - 1 01 &-disjoint paths 
from u to u. h particular, u and u huve at most s - 1 ~~onmon neigh- 
hours and so rl,( t4) + dG(u) < tl -- 2 9 s. 



se that, fsr some set of at most s vertices of C, G + flu) -- le 
= G -- V is nut. TIw-I 

l) shsws that the bcund II I- s ira Theo- 

G + uu is s-edge-hamittan!ian but I? is not. Then there 
s that form pakwisz disjoint paths in G such that c’ + uu 

KM? cycle contai~i 311 of E, but C doe; not. Consider the 
t~~~~d from 6’ by su vidirpg each edge in F ir:ta two. Th~en 

~~t~~iaR but H is IMH. Therefore 

amilton-eonnected but G is not. 
ni;rn path q u2 . . . u, in G + uu and a set J ofs 
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The graph kf$’ L.) N -- S $;hows that the bound II -- s in Theorem 9.13 

is best possible. 



e cu~c~~lsj~~ fait. There are i, /’ with i Z 0.1); choose them 
as pCl?s:Ibie. 331~ of all, we shall show that 
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