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0. Introduction

This is the first of two papers which will explore analogues ia the
category of ‘‘compactly generated” groups of free tepological groups
and free products of topological groups, considered as constructions in
the category of all topological groups. In particular, this paper contains
an existence theorem for free k-groups and a new existence theorem for
free topological groups which is rather more constructive than previous
p-oofs, and employs the theory of k-spaces (hence, compactiness argu-
ments) rather than the norms [7], pseudotnetrics [3], unitacy groups [4]
or other machinery previously used.

The free topological group on a completely regular Hausdorff space i
was introduced by Markov [7] and has since been studied fairly exten-
sively. More recently Nummela [11] has worked with the corresponding
construction for “compactly generated’ groups; the free k-group on a
weak Hausdorff k-space. In sketching an existence proof for a free k-group,
Nuinmelz observed that one can define the free topology directly, rather
than show its existence as the finest member of a class one member of
which is constructed by the use of such techniques as cited above.

Our mgzjor object in this paper is to carry out the construction indi-
cated by Nummela [10} and [11] with encugh care to enable us to
clarify the difference between the topological case and the “com »actly gener-
ated” case. By constructing in general the free k-group on a weak Haus-
dorff k-space, we obtain also the free topological group on a compact
Hausdorff space and thus the existence of free topological groups in
general,

In Section 1 we provide a summary of properties of %-spaces which
will also be used in the sequel to this papar [12]. Sections 2, 3 and 4
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contain the main results. Section 5 contains further description of the
‘topologies introduced earlier, which will be important in the sequel. The
sequel will consider free products of k-groups, relations butween free
products and free groups, and relations between the category of topc-
logical groups and the category of &-groups. Section 6 contains details
of a proof. ‘

The author wishes to thank S.A. Morris for numerous helpful discus-
sions and E.C. Nummela for detailed and helpful correspondence. This
research was done while the author was a guest at the University of
New South Wales, partially supported by a Fulbright—Hays grant.

1. Definitiors and preliminaries

We will be relying heavily on machinery due to Steenrod [14].
McCord {8], and Nummela [10, 11], but find it useful to vary terminol-
ogy somewhat. In particular, we admit compact spaces which are not
Hausdorff, and thus cannot conciude that every compact space is a
k-space (comnpare [15]). In view of the delicacy of our arguments (many
of which take place in spaces with no s¢paration property) we state our
definitions and preliminary lemmas in some detail.

The letter X will always denote a toyological space. X is T, if one-
point subsets are closed and T, (Hausdorf¥) if any two distinct points
have disjoint neight-orhoods. X is compact if every open cover has a
finite subcover. The letter C will always denote a compact Hausdorff
space. X is t, (weak Hausdorf}) if for every C and every contir.uous
map ¢ : C- X, ¢{C) is closed in X. In particular, a compact Hausdorff
subset of a t, space is closed.

The set of integers, in the finite-complement topology [13, p.491] is
T, but not t,. The one-peint compactification of the rationals [13, p. 63]
is t, but not T, (for more =xamples, with an indication of proof, see
[11, Example 1]).

Lemma 1:1. (a) A continuous image of a compact space is compact.

(b) 4 closed subset of a compact space is compact.

(c) A compact subspace of a Hausdorff space i closed.

(d) Any subspace of a T, (resp. ty, T,) space is T, (resp. t,, Ty

(e) T, implies t, and t, implies T,. |

() If X is t, and ¢ : C~ X is continuous, F(C) is compact Hausdorff.

(¢) If C, and C, are compact Hausdorff subspaces of a t, space, then
C, V C, is compact Hausdorfy.
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Proof. (a) — (e) are routine. (f) is 2.1 of [8]. (g) follows from (f)
since C; U G, is a continuous image of the union of disjoint copies of
Cl and Cz.D :

A subset A of X is called compactly closed in X if for every C and
every continuous f: C— X, ¢~1(4) is closed in C kX is the space with
the same points as X, and A4 closed in kX if and only if A is compactly
closed in X. X is a k-space if X = kX (i.e., if they have the same topology).
If f: X - Y is a continuous onto map of topological spaces such that
A C Y and f~1(4) closed in X implies 4 is closed in Y, then f is a quotient
map and Y is a quotient of X. _

The reader should be warned that our definitions of compactly closed
and of k-space agree with [8] but disagree with some earlier definitions,
notably [14]. Loosely, [14] considers a set compactly closed if it has
closed intersection with each compact Hausdorff subset of X. We shall
see in Lemma 2(h) that this coincides with our definition if X is t,. If
X fails to be t,, however, the definitions differ. For example, by our
definition, the set of integers, with the finite-complement topology, is
a k-space; it fails to be a k-space in some other definitions.

Lemma 1.2. (a) If A is closed in X, A is compactly closed in X.
(b) The topology of kX is at least as fine as that of X.
©) k(X X)=kX. ,
(d) A closed subspace of a k-space is a k-space.
(e) A quotient of a k-space is a k-space.
®) Iff: X = Y is a continuous map of topulogical spaces, f: kX + kY
is corntinuous.
(g} A compact Hausdorff space is a k-space.
(h} A subset of a ty-space X is compactly closed if and orly if its inter-
section with every compact Hausdorff subset D of X is close.l (since X
is ty, D is closed in X and the intersection is closed in D N X if and only
if it is closed in X).
(N If c: A = X is a closed inclusior: (A is a closed subset of the topo-
logical space X}, then ¢ : kA ~ kX is a closed inclusion.

Proof. All are routine or in [8]; we illustrate with (i). Letc: 4> X bea
closed inclusion. As ¢(A4) is closed in X, itis closed in kA, ¢ : k4 = &X is
continuous by (f). Now suppose B is closed in k4, hence compactly closed
in 4; we must show it is closed in kX. Let ¢ : C -+ X be continuous;

é: CN ¢ 1(4) = A is continuous on the compact Hausdorff space
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Cn ¢-1(4), so ¢~1(B) is closed in C N ¢~1(4) and hence in C. Thus B
is compactly closed in X and closed in kX, as desired. O

If X and Y are topological spaces, X X, Y denoies the ordinary prod-
uct of topological spaces. If X und Y are k-spaces, X X; Y denotes
kXX, ). IfXX, Y=XX,Y, we write X X Y. If G is an (abstract)
group, p : G X G - G is the map given by p(g, h) =gh~L. If G is a group
and a topological space, G is a topological group if p : G X, G+ G is
continuvous. If G is a group and a k-space, itis a kgroup ifp : GX; G~ G
is continuous. ' '

Lemma 1.3. (a) The projections 1y : X X;; Y > X andny: X X, Y > Y are
continuous, for X and Y k-spaces.

(b) If X and Y are compact Hausdorff, X X; Y =X X, Y.

(c)If X and Y are k-spacesand f : X -~ X', g : ¥ - V' are quotient
(onto) maps, fX g : X X, Y > X' X3 Y' is a quotient inap.

(d) If X is a k-space, X is t, if and only if the diagonal is closed in
X X X. |

(e) If G is a k-group and the :ieatity {e} is closed, G is t,.

DIff: A~ G, g B~ Guare continuous maps of topological spaces
into topological groups, fX g: AX B> Ggivenby (fX g)(a,b)=
f@)(g®)! is continuous, |

®@Iff: A~ G, g: B- G are continuous maps of k-spaces into k-
groups, fX g : A X, B~ G given by (fX g)(a, b) = f(a) (g(b))! is con-
finuous.

(h) If G is a topological group, kG is a k-group.

Proof. (a) and (b) are routine. (c) is stated without proof as 2.2 of [8];

a proof is provided in Section 6 of this paper. (d} is 2.3 of [8]. To prove
(e), note that p : G X;. G - G is continuous, so {e} closed implies p~1(e),
the diagonal of G X, G, is closed; thus G is t, by (d). (f) and (g) are rou-
tine. To show (h), note that since » : G X ¢ G = G is continuous,

p : k(G X G) - kG is continuous. However, k(G X, G) = kG X; kG. This
may be shown directly (compare Proposition 2.8 of [1]) or by appealing
to categorical arguments (e.g., k is an adjoint functor, and adjoints pre-
serve products). O

Suppose X is the union of an expanding sequence of subspaces
Xy C X, C.... We say X has the weak topology if A is closed in X if and
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only if A N X, is closed in X,, for all ». If in addition each X, is compact
Hausdorff, X is called a k -space.

Lemma 1.4. Let X be a union of an éxpanding sequence of subspaces
X; C X, C ... and have the weak topology.

(@) If each X, is closed in X, and each X, is a t, k-space, then X is a
ty k-space.

(b) If each X,, is compact Hausdorff, then X is a Hausdorff k-space.

(c)If Xand Y are k ,-spaces, X X, Y is a k -space, and hence
XX, Y=XX, Y. If X=UX,and Y =U Y, are decompositions of X
and Y as k ,-spaces, then X X Y =U (X, X Y,)) is a decomposition of
XXY.

(d) If Y is a topological space and f : X > Y is continuous on each X,,,
it is continuous on X.

(e) If each X,, is closed in X and each X, is T,, and ¢ : C~ X is con-
tinuous, then ¢(C) C X,, for some n.

Proof. (a) is [8, 2.61. (b) is essentially contained in [3, Theorem 5): if x
and y are in X, and X, is normal, there are neighborhoods U, (x), ¥, (»)
in X, with disjoint closures; an expanding union of such neighborhoods,
as n increases, yields disjoint neighborhoods of x and y in X. Hence X is
Hausdorff, the X, are closed, and (a) applies. (c) is a well-known result
of Milnor [9]. (d) is routine, and (e) is [14, 9.3].0

Finally, we must recall the definition of a free topological group. For
simplicity we restrict ourselves to free topological groups in the sense of
Graev [3]. If X is a completely regular Hausdorff topological space with
basepoint ¢, FGX denotes the (unique) topological group containing X
as a subspace and such that if f : X = G is any continuous map of the
space X to a topological group G, with the hasepoint ¢ € X going to the
identity e € G, there is a unique continuous homomorphism f : FGX - G
extending . The preliminaries, as in [3], are well known: to show the
existence of FGX it suffices to find any topology on the free group FX
generated by X with e as identity (hence, freely generated by X — {e})
which is a Hausdorff group topology and induces the original topology
on the subset X; the free topological group topology is the finest such
topology. . :

The free (Graev) k-group on X, denoted here by FKX, is similar; X
must be a t, k-space and FKX is a t, k-group. The reason FGX is Hausdorf{f
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and FKX merely 1) appears to liein Lemma 1.3 (e); a Tl topological group
is Hausdorff, but a Tj k-group need only be t,. For further discussion of
FKX, see [11].

2. The topology (FX, 1)

Let X be a t, k-space with basepoint 2, and FX the abstract free group
on the set X’ with e as identity. We shall describe a topology 7 on FX. In
Section 4 we will see that (FX, 7)is

(1) FKX, in general; _

(2) FGX and FKX (which thus coincide) if X is compact Hausdorff.
We will go on to conclude FGX exists and is Hausdorff for all completely
regular Hausdorff X

Let X~! denote a space homeomorphic to X consisting of elements

1 forx € X. Let X denote X U, X1, the one-point union with e= e~
Let X{ =Xy X, ... X X, (n factors, recall that if X is compact Hausdorff,
this is ﬂ'e ordlnary topologlcal product). Imbed X7 in X"+1 by

CXP > 1§ X {e} c X3 and let X* denote the union U,, 1 X3 Let A be
closed m X*ifAis relatlvely closed in each X (4 N X7 is closed in X7).
Clearly each X" is contained as a closed subset of X”* and so by Lemma
1.4(a), X' isa t2 k-space. (If X is compact Hausdorff, X* is a k w-Space).

Now define amapi : X* > FX by i(xt, ..., x{") = x, .. (e =%]).
Let 7 denote the quotient topology cn FX ie. 4 C FX is closed when-
ever i~1(A4) is closed in X*, It will sometimes help to let X? contain the

unique empty string ( ), setting i( ) = e and making appropnate conver:-
tions on inclusions, products, and so on.

3. Properties of (FX, 1)

Lemma 3.1. (FX, 'r) has the weak topology as the union of {e} = z()’o)c
ix)c l(Xz)C iX )c:

Proof. Let A N i(X3) be closed in i(X7) for each n. Then i AN i, Yoo n g
is closed in X§; but it is equal to z‘l(A) N Xg (since an.element of X ¢

mapping to A maps to 4 N z(X" )), so each z“(A) N X" is closed, and A
is closed in (FX, 7).O0

Proposition 3.2. Let m > 1 be fixzd. Let A be a subset of 1XE) C (FX, 1)
such that i~(4) N X is closed (in X'). Then A is closed in (FX 7).
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Proof. We must show that i~1(4) is closed in X*, i.e., that i1An Xj is
closed in X§ foralln. if 0<n<m, i) n Xp= t‘l(A) n@mn X")“
Gl nXx "’) N X" the intersection of two closed sets in X*. Thus
i~la)yn X" is closed in X*, and thus in X%, for n < m, and in particular
lor n=m and n=m-—1. Now suppose i 1O(A) N Xj and i1Hn X"“ '
are closed, n + 2 > m, and proceed by inducticn. i 1(A) N X3 is the
union of (1) finitely many copies of i~1(4) N X%*; a typical mjectlon

£y 714 N XM i71(4) X2

is f,@@}!, a%, ..., a, %) = (@', ¢, a3, ..., YY) (the1e are n + 2 places
where e can be inserted and the n + 2 images are clearly closed in X"*z),
together with the union of (2) finitely many copies of the closed set
(1(4) N XP) X, Xy; a typical injection is

g,: WA 0 XY X, X, "’l‘l(z‘f)nX'“z

given by g3((@5, ..., a5, x)=(@a§t aP, x*!, x%, a5, ..., a"). There are
n + 1 places where (x*!, x¥1) can be inserted; that the image in each case
is closed follows easily from Lemma ;.3(d) and the fact that the product
of closed sets is closed in the topological product and hence in the k-prod-
uct. (We remark that in the case when X is compact Hausdorff, it is rou-
tine that each set in (1) and (2) is compact and hence closed in X"+2 )
This union ((1) and (2)) includes all of i~}(4) N X"+2 since any word
representing an element of A4 can be reduced to a word of at most _
m (< n + 2) letters. Thus eachi—1(4) N X % is closed, and 4 is closed in
the quotient (FX, 7). O

Corollary 3.3. (FX, 7)is T; each i(X:)") is closed in (FX, 7); each map
i: Xy - i(X7) is a quotient map.

Proof. {e} is closed in (FX, 7) since i~1(e) N X} = {e} is closed in X}, If
w # o, write w as x(}, ..., x; where nox;ise, ecche;=¢1, and 1fx = X1
then ¢; = €ty Then w € z(X"‘) and i~Y(w) N X = {(x vers X35, whlch
is closed in X7, so {w} is closed in (FX, 7). z(X'") is closed in (FX 7)
since x"lz(X' )N X§) = X§ is closed in X' i : X§' = i(X{) is a quo-
tient map since if A C i(XF) and i~1(4) is closed in XT, A is closed in
(FX, 7) and thus in i(X).0O

Proposition 3.4. The topology induced on the subset i(Xg) X J(X" Yof
(FX, 1) X (FX, 1) is i(XT) X, i(X%).
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Proof. i(Xg)* isa quatiént o_f a k-,space, hence a &-space. X * is at, k-space
by Lemma 1.4(b), so its quotient FX is a k-space. As i(X() is a closed
subspace of (F.X, 1), | o

r 1 i(XG) X, (XE) > (FX, 1) X, (FX, 1)
is a clcsed inclusion, so ‘by Lemma 1.2¢), so is

r: i(Xg) X, i(X’g) - (FX, 1) X, (FX, 7).0

Recall p : FX X FX —~ FX is the algebraic map p(g, k) = gh~L. We first
considler its restriction to i(X73) X #(X%).

Proposition 3.5. p : i(Xp) X, i(XE) > i(X1*H is continuous.

Proof. Define p': X X; X§ - X3** by p'((3, ..., 8%*), (WYL ..., W) =

@Y, ... &% % ..., h1™). This is a homeomorphism. In the commutative
diagram

4 +k
X ot 1

gy li’ li

XR) X, H0X8)—2—s 1T+

the vertical map on each side is a quotient map (i’ =i X iisa guotient
map by Lemma 1.3 (c)), so p is continuous. (If B is closed in i(X' 3""),
p'~li"l(®) = i-1p~Y(B) is closed, so p~1(B) is closed). O

Proposition 3.6. p : (FX, 7) X x (FX, 1)~ (FX, 1) is continuous.

Proof. Let B C (FX, 7) be closed; we must show p~YB) compactly closed.
If C is compact Hausdorff and ¢ : C - (FX, 1) X ¢ (FX, 1) is continuous,

my ¢ ¢(C) C i(X7) for some n by Lemma 1.4(e). Similarly 7, o ¢(C) € i(X%)
for some £; so ¢(C) C i(XP) X i(XE). Now, as p restricted to i(X%) X . 0.¢3)
is continuous, p~1(B) n Li(XG) X i(X’é)] is closed: so

¢~1p71(B) = o™X p~1(B) N $(C)) =4 (p B N L(XT) X, iXEN])

is closed. As this is true for all ¢, p~1(B) is compactly closed and thus
closed in the k-space (FX, 7) X, (FX, 7).
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4. Existence theoirems

Theorem 4.1. Let X be a t, k-space and (FX, 1) the free group on X
(with e € X as identity) with the topology t as constructed in Section 2.
Then

(1) (FX, 1) is a t, k-group; '

(2) (FX, 1) is the (Graev) free k-group FKX; hence FKX exists, is ts,
is c’gebraically FX, and contains X as a closed subset.

Proof. By Propaosition 3.6, (FX, 1) is a k-group. It is Tl by Coi rollary 3.3
and hence t, by Lemma 1.3(g). By Corchary 3.3,i: XO - i(X l,) C((FX, 7
is a quotient map. Since { is one-to-one on X} 0» it is @ homeomorphism of
X onto the closed subset t(.X ) of (FX, 7). Considering X as a closed
subsef of X, = X}, X is home nmorphlc to the closed subset i(X) C FX, 7)
as desired. All th.at remains to be shown is that if f : X = G is & contin-
uous map of X to a k-group G, with f(e) = e, ther; the unique algebraic
extension f: (FX, 7) = G is continuous. Clearly tite natural extension

of fto a map X, > G is continuous, as is each X§ - G (by an obvious
extension of L:mma 1.3(g)). Thus the extensmnf X* + G is con-
tinuous ‘Lerima 1.4(d)) and since i : X* - (FX, 7) is a quotient and
fi=r*, fis continuous.O

To avoid unduly complicating the preoof of Theorem 4.3, Theorem 4.2
is stated only for compact Hausdorff spaces. In the next section we will
extend it to k -spaces.

Theorem 4.2. Let X be a compact Hausdorff space and (FY', 1) the free
group on X (with e € X as identity) with the topology t ini*oduced in
Section 2. Then

(13 (FX, 1) is a Hausdorff topolong'al group and a k ,-spuce;

(2) (FX, 1) is the (Graev) free topological group FGX hence FGX
exists, is Hausdorff, is algebraically FX, and contains X as a closed subset.

Proof. By Theorem 4.1, (FX, 7) is a ty k-space. Since each X7} ic compact
Hausdorff, each i(X7) is compact Hausdorff by Lemma 1.1(f). Hence tv
Lemma 3.1, (X, 1) is a k ,-space, and by Lemma 1.4(b), it is Hausdaorff.
Now by Lemma 1.4(c), (FX, 7) X} (FX, 7) = (FX, 7) X, (FX, 7) and by
Proposition 3.6, (FX, 7) is a topological group. The proof that it is FGX
is identical to the corresponding part of Theorem 4.1, but relies on
Lemma 1.3(f) instead of 1.3(g). O
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'We now are able to conciude FGX exists for all completely regular
Hausd orff spaces.

Theorem 4.3. Let X be a completely regular Hausdorff space. Then FGX
exzsts, is algebraical!y FX, is Hausdorff and contains X as a closed subset.

Proof. Thcre is an inclusion f : X - BX, where BX is the Stone—¢’ech
compactification of X [2]. Form FGBX as in Theorem 4.2, and =xtend
f algebraically to an injection f : FX - FGBX. Topologize FX as a subset
of FGBX. Qlearly this is a Hausdorff group topology on FX containing
X in its original topology as a closed subset (X = i(fX) N FX in FGBX);
the finest such topology is the topology of FGX. O :

We remark that even in very simple cases, there is no reason to expect
the topology induced on FGX by FGBX to be fine enough to be the free
topological group topology; compare the example in [5] where it is
shown that the subgroup of FG[O0, 1] generated by ¢0, 1) C [0, 1] is not
FG(0, 1).

It would be of interest to know whether a Hausdorff k-space :lways
generates a HausdorfT free k-group. We cannot answer this, but observe:

Corollary 4.4. If X is a completely regular Hausdorff k-space, then FKX
is Hausdorff.

Proof. FGX exists by Theoreii: 4.3 and is Hausdorff. By Lemma 1.3 (h),
kFGX is a k-group topology or. FX which contains X as a closed subspace
by Lemma 1.2(i). The finest such topology is that of FXX; since it is
finer than the topology of FGX, it is Hausdorif. O

B.V.S. Thomas has recently [16] improved Theorem 4.3, clari‘ying
what happens if the hypctheses on X are weakened, FGX still exists but
contains X as a closed cabspace if and only if X is completely regalar T,
and is Hausdorff if and only if X is functmnally Hausdorff.

S. Further observations

If X is compact Hausdorff, FGX and FKX POlnCldf’ We shall see that
they also coincide if X is a k w-space.
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If Cis a subset of X containing the identity e, then C, Cfj and so onare
defined as X, X and so on were in Section 2. If X is a t, k-space and
C compact Hausdorff, Cjj is a compact Hausdorff subspace of Xj (this

may be proven by taking topological products and applymg Lemma
1.23).

Lemma 5.1, Let X be a t, k-space and FKX its free k-group. A subset
A of FKX is closed in FKX if and only if A N i(Cy) is closed in l(C")

(i~Y(A) is closed in CY) for every n and every compact Hausdorff C C X
containing e.

Proof. If A is closed in FKX, it is closed in each i{X{) and hengc in each
compact z(Cg) C i(X§). Conversely, let A be closed in each i(Cg); we
must show i~1(4) is compactly closed in each X7 0- By Lemma l 2(11), it
will suffice to show i~1(4) is closed in each compact Hausdor{f D C X3
The projections of D onto each of the n factors of X§ are compact
Hausdorff spaces Dy, ..., D,,. For each D;, let

D; =D;n X, D;={xeXlix €D}
(D5 is homeomorphic to D; N X~1). Let
C=DiuD{'u..uD!uD,.

Clearly C is compact Hausdorff (by Lemma 1.1(g), since exch D} and
Dy is) and C, contains D, U ... U D, so D C CB. Buti~1(4) is relstively
closed in Cg, so surely it is relatlvely closed in D C C§, completing the
proof. O

Theorem 5.2. If X is a k ,~space, then FKX is the (Graev) free topological
group FGX and is a k ,-space.

Proof. X is the ascending union of an ascending sequence of compact
Hausdorff subspaces X, n > 1, with this weak topology. Szt , X=X, U {e}
then since X is Hauslorff (Lemma 1.4 (b)), , X is compact Hausdorff and
in fact X is the weak union of the , X, n > 1. (For details of the manipula-
tion of k -spaces, see: [6].) We shall show that FKX is the weak union of
the compact Hausdoff subspaces i((, X)g), n> 1.

If 4 is closed in FKX, it clearly has closed intersection with ¢ach
i((, X)3)- Now suppose A has closed intersection with each i(,, X)}); by
Lemma 5.1, it will suffice to show .4 has closed intersection with i(CF")
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for wve<y m > 1 and every compact Hausdorff C C X. Fix m and C' By
Lemnia 1.4(e), CC X for some p > 1.Lettingn = max(m, p), C)'isa
subspace of (,,X)o, so AN .(C"‘) AN z((,,X)’é) N i(CF) is closed as de-
sired.

Hence FKX isak o -Space, and thus FKX Xy FKX = FKX X , FXX, so
FKX isa topologlcal group. The proof that maps X - G extend to maps
FKX - G is as in Theorems 4.1 and 4.2.0

Propositions 5.3 and 5.4 will be useful in the sequel [12] to this paper.
They, together with Lemma 5.1, result from correspondence with
E.C. Nummela.

Proposition 5.3. Let X be a t, k-space and C be a compact Hausdcrff
subspace containing the bascpoint. Then the subgroup of FKX generated
by Cis FKCand is closed in FKX. Further, a subset A of FKX is closed
if and only if it has closed irtersection with each such FKC

Proof. Since the inclusion map C- X is continuous, so is the extension
FKC -» FKX. We must show that if 4 is a closed subset of FKC, it is
closed in FKX. Since A is closed in FKC, i~1(4) n C{,‘ is closed in C?
(hence compact Hausdorff) for each #; note that it is immaterial whether
we are talking about i~1(4) using the map i : Ci = FKC, or using the
restriction of the mapi: X§~ FKX to Cj C X", since the product
torsiogy on Cff and the subspace topology on Cj C X§ coincide (this is
obviously true if X7 is taken to be an n-fold topolog,loal product, so it is
true ior the k-space product by Lemma 2(i)). Hence 4 N i(C§) is com-
pact Hausdorff and thus closed in FKX. Let D be any compact Ha:usdorff
subset of X containing e, Then

AN i(Dg)= A4n i(Cg‘)) N i(D'a)

is the iniersection of two closed subsets of FKX and is closed. Thus by
Lemma 5.1, A4 is closed in FKX as desired. Hence FKC - FKX is a homeo-
morphism onto a closed subgroup.

Now suppose 4 ¢ FKX is such that 4 N FKCis closed in FKC for
every compact Hausdorff C C X containing e. Then 4 N i(Cy) is closed

for all Cand n, so 4 is closed in FKX by Lemma 5.1, completir = .he
proof. O
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Proposition 5.4. If X is a completely regular Hausdorff space and (is a
compact subspace containing the basepoint, then the subgroup of FGX
generated by Cis FGC and is closed in FGX.

Proof. As above, the map FGC- FGX is continuous. Further, the com-
posite '

FGC-L FGX-%> FGBX
coincides with the map
FGC=FKC-&8~ FKBX = FGBX

which is a closed inclusion by Proposition 5.3. Thus if 4 is closed in
FGC, f(4) =g 1(gf(A4)) =g Y (gf(A)) is closed in FGX as desired. 0

The situations of Propositions 5.3 and 5.4 are more distinct than may
appear; it is no accident that Proposition 5.3 required Leinma 5.1 and
Proposition 5.4 did not. We will see in the sequel [12] that Lemma 5.1,
and the last statement of Proposition 5.3, may be false for FGX even
when X is a k-space. In fact, it wii suffice to produce a compl:tely re-
gular Hausdorff k-space X for which FGX is not a k-space; for if FGX
had its topology determined by the compact subsets i(Cj) of Lemma 5.1,
or by the k_,-space subsets FKC = FGC of Proposition 5.3, it would
necessarily be a k-space. ~

If X is a t, k-space, X = colim C where C runs through the compact
Hausdorff subsets of X. As the functor FK(C - FKC) is left adjoint to
the forgetful functor, it preserves colimits. (This was pointed out tc me
by Nummela). Hence FKX = colim FKC, and Proposition 5.3 teils us
that in this case this is not only a colimit in the category of k-groups but
a straightforward topological colimit. If X is also a completely regular
Hausdorff space, we similarly have FGX = colim FGC (with FGC = FK{)
but the colimit is now in the category of topological groups and fails in
general to be a colimit of topological spaces.

6. Proof of Lemma 1.3(c).

Lemma 1.3(c) is stated without proof in [8] and proven (for the case
when all the spaces involved are Hausdorff) in [14, Theorem 4.4]. We
here sketch the proof of the general case (without separation axioms).

Lemma 1.3(c). If X and Y are k-spacesand f: X + X', g: Y - Y ' are
quotient (cnto) n. ups, then fX g : X X, Y = X' ¥, Y'is a quotient map.
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Sketch of Proof. Step 1. It is observed in [14] that it is sufficient to con-
sider the special case when ¥ = Y’ and g is the identitymap 1 : Y -» Y.
The second paragraph of the proof in [14] handles the special case when
Y=Y'and Y and X' are compact Hausdorff; X is a k-space, but no sep-

aration axiom is needed for X.

Stepn 2. If Cis a comnact Hausdorff snace and B is anv k-space. then

F iy BA W OiW W vvl;lruvt B AGCE VIS WA A S uruvv CREENS A AW . o r b

Ny Dy BT Thanram 2 111 ‘
v AgD U AR |1, 22I0UIVII o1k g

CQizon D Wa in maze als nrar blant Fuen nchitonmr: b anoana ¥V V' and V auch that

ofep 5. we nOW SNOW that 10T aroitrary AK-spaces 4, a4 , ana 7 SuCi uiat
Vol w el N e Ak L N e W 7 . Y o\ LW S o seziubimead
f: X~ X isan (onto) quotient, fX 1=X X, ¥ = A" X I 15 a quotient.
- art .. ry . V' vr ax—1s 4 . a . a 11
Let A C X' X ¥ be such that (fX 1)7'(4) is closed in X X Y. It will

suffice to show that 4 is compactly closed in X' X, ¥. Given ¢ : C+X'X,Y,
define m,¢ : Cc~ X, T : C~> Y, anadd) P X Mo :CX Cc->X X Y.
Letd : C- CX C be the diagonal map d(c) = (c, c); then ¢d = ¢. We must
show ¢~Y(A) clesed in C; to do this, it will suffice to show ¢~1(4) closzd
inCx C

Let € be the subspace of C Xy X given by C={(c,x)! w,0(c) = f(x)}
and let p, : &> Cand Py ¢ X be the projections. Then py is a quo-

tient map (CX, X =C X, X by Step ., and p, is onto since f is onto),
and (2) commu f“

a=ias
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