Note
 On Macula's error-correcting pool designs ${ }^{\text {T }}$

F.K. Hwang
Department of Applied Mathematics, National Chiao Tung University, Hsin-chu 30050, Taiwan, ROC

Received 11 December 2001; received in revised form 15 November 2002; accepted 3 December 2002

Abstract

We show that Macula's claim of a Hamming distance 4 between any two candidate sets of positive clones in his pool design is incorrect. However, a previous proof of his on a weaker result (with a condition on design parameters) is correct. We also show that the condition is sharp and the distance 4 result is also sharp for arbitrary parameter values. (c) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Pooling designs; Group testing; Error-correcting; Disjunct matrix

1. Introduction

A clone library stores clones which are subsequence of a particular DNA sequence. Often, one needs to know which clones contain a given probe, a specified DNA subsequence of interest. We will call a clone positive if it contains the probe, and negative if not. It would be time-consuming and costly if we have to assay the clones one by one. Since typically the number of positive clones is small, one can pool a subset of clones together for an assay. The assay outcome is negative if all clones in the pool are negative, and is positive otherwise. A pool design is a $0-1$ matrix where columns represent clones, rows represent pools and an 1 -entry in cell (i, j) signifies that clone j is in pool i. The goal of a pool design is to identify the positive clones from the negative clones as much as possible with a minimum number of pools.

For a binary matrix with t rows, we can view each column as a subset of the set $\{1, \ldots, t\}$ in terms of the positions of the 1 -entries. Such a matrix is called d-disjunct if no column is contained in the union of any other d columns. It is well known [1] that

[^0]a d-disjunct matrix can identify all positive clones as long as the number p of positive clones satisfies $p \leqslant d$. Recently, Macula [3] introduced the notion of d^{e}-disjunct if any column has at least $e+11$-entries not in the union of any other d columns. Another relevant notion is the Hamming distance $H(M)$ of a d-disjunct matrix M which is defined to be the minimum number of bit disagreement between a union of u columns and a union of v columns, $u \leqslant v \leqslant d$.

Macula [2] gave a construction of a d-disjunct matrix. Suppose there are z clones to be screened. Select n, k, d such that $d<k$ and $\binom{n}{k} \geqslant z$. Let $[n]$ denote the set $\{1, \ldots, n\}$ and $\binom{[n]}{k}$ the set of all k-subsets of n. Randomly select z members of $\binom{[n]}{k}$ to label the clones (columns), and label the rows by the set $\binom{[n]}{d}$ (so there are $\binom{n}{d}$ rows). The design $\delta_{z}(n, d, k)$ has an 1-entry in cell (i, j) if and only if the label of row i is contained in the label of column j. Macula proved that $\delta_{z}(n, d, k)$ is d-disjunct.

Macula [3] also considered the enhanced matrix $\delta_{z}^{*}(n, d, k)$ which is obtained from $\delta_{z}(n, d, k)$ by adding n additional pools labeled $\{\overline{1}, \overline{2}, \ldots, \bar{n}\}$, where \bar{i} contains all clones whose labels do not contain i. He claimed that $H\left(\delta_{z}^{*}(n, d, k)\right) \geqslant 4$ (hence 1-errorcorrecting) by proving

Theorem 1. $\delta_{z}^{*}(n, d, k)$ is d^{1}-disjunct.
We will show that this claim is wrong on several counts. Nevertheless, a previous weaker claim of Macula as reported by Du and Hwang [1] remains correct:

Theorem 2. Suppose $k-d \geqslant 3$. Then $H\left(\delta_{z}^{*}(n, d, k)\right) \geqslant 4$.
Further, we show that both the condition $k-d \geqslant 3$ and the result of distance 4 are sharp.

2. The main result

We first give a counter-example against Theorem 1.
Example 1. $\delta_{z}^{*}(5,2,3)$ containing three columns $C_{0}=\{1,2,3\}, C_{1}=\{1,2,4\}, C_{2}=$ $\{1,3,5\}$. It is easily verified that the only 1 -entry in C_{0} but not in the union of C_{1} and C_{2} is the row with label $(2,3)$. Hence $\delta_{z}^{*}(5,2,3)$ is not d^{1}-disjunct.

The problem in the proof of Theorem 1 lies in the statement that let $C_{0}, C_{1}, \ldots, C_{d}$ be $d+1$ distinct columns and $\left|C_{0} \backslash C_{i}\right|=1$ for $1 \leqslant i \leqslant d$, then $C_{0} \backslash C_{i} \neq C_{0} \backslash C_{j}$ implies $C_{i} \backslash C_{0}=C_{j} \backslash C_{0}$. The above example shows that the implication is not realized since $C_{1} \backslash C_{0}=4 \neq C_{3} \backslash C_{0}=5$.

Example 1 can be extended to general d, k with $k \geqslant d$. Let

$$
\begin{aligned}
& C_{i}=[k+1] \backslash\{k+1-i\}, \quad 0 \leqslant i \leqslant d-1, \\
& C_{d}=[k+2] \backslash\{k-d+1, k+1\} .
\end{aligned}
$$

Then the only 1 -entry in C_{0} but not in the union of C_{1}, \ldots, C_{d} is the row with label $\{k-d+1, k-d+2, \ldots, k\}$.

Next we argue that even though Theorem 1 were correct, it would not be enough to substantiate the claim that $H\left(\delta_{z}^{*}(n, d, k)\right) \geqslant 4$. This is because the two candidate sets of positive clones can differ only in one column C. Then the Hamming distance between those two sets is simply the number of 1 -entries in C but not in the union of the other columns, which is only guaranteed to be 2 by Theorem 1 . Note that d^{1}-disjunct would imply $H\left(\delta_{z}^{*}(n, d, k)\right) \leqslant 4$ if d is the exact number of positive clones, not just an upper bound.

In a different sense, the d^{1}-disjunctness is too strong a property to prove a Hamming distance 4 . For example, one column in one candidate set may contribute only distance 1 , while the other candidate set contributes distance 3 to compensate. The two sets have Hamming distance 4, but do not satisfy d^{1}-disjunctness. Note that the counter-example given at the beginning of this section is not a counter-example against Theorem 2 since it is easily verified that any two candidate sets of cardinality $\leqslant 2$ have Hamming distance at least 4. A formal proof of Theorem 2 can be found in [1].

Can the condition $k-d \geqslant 3$ in Theorem 2 be eliminated (as in Theorem 1) or at least weakened? The following example shows that it cannot.

Example 2. $\delta_{z}^{*}(7,3,5)$ containing columns $C_{1}=\{1,2,3,4,5\}, C_{2}=\{1,2,3,4,6\}$ and $C_{3}=\{1,2,3,5,7\}$. Consider the two candidate sets $\left\{C_{1}, C_{2}, C_{3}\right\}$ and $\left\{C_{2}, C_{3}\right\}$. It is easily verified that they differ only in three rows with labels $\{1,4,6\},\{2,4,6\},\{3,4,6\}$.

We now expand the example to arbitrary k with $d=k-2$ and $d \geqslant 3$.
Let $n \geqslant k+2$, then $\delta_{z}^{*}(n, k-2, k)$ contains $k-2$ columns

$$
\begin{aligned}
& C_{i}=[k+1] \backslash\{k+2-i\}, \quad 0 \leqslant i \leqslant k-3, \quad \text { and } \\
& C_{k-2}=[k+2] \backslash\{4, k+1\} .
\end{aligned}
$$

Then the two candidate sets $\left\{C_{0}, C_{1}, \ldots, C_{k-3}\right\}$ and $\left\{C_{1}, \ldots, C_{k-3}\right\}$ differ only in rows with labels $\{1,4,5, \ldots, k\},\{2,4,5, \ldots, k\}$ and $\{3,4,5, \ldots, k\}$.

Examples for $k-d<2$ are even easier to construct and omitted here.
Next we show that regardless of how large is $k-d$, the guaranteed Hamming distance remains at 4.

Example 3. $\delta_{z}^{*}(n, 2, k)$ (where $n \geqslant k+1$) containing three columns $C_{1}=\{1, \ldots, k\}$, $C_{2}=\{1, \ldots, k-1, k+1\}, C_{3}=\{1, \ldots, k-2, k, k+1\}$. Consider two candidate sets $\left\{C_{1}, C_{2}\right\}$ and $\left\{C_{2}, C_{3}\right\}$. It is easily verified that the only four different rows are those labeled by $\{k-1, k\},\{k, k+1\},\{\overline{k-1}\}$ and $\{\overline{k+1}\}$.

Again, Example 3 can be extended to general d. Let

$$
C_{i}=[k+1] \backslash\{k+2-i\}, \quad 1 \leqslant i \leqslant d+1 .
$$

Then the two candidate sets $\left\{C_{1}, \ldots, C_{d}\right\}$ and $\left\{C_{2}, \ldots, C_{d+1}\right\}$ differ only in the four rows with labels $\{k-d+1, k-d+2, \ldots, k\},\{k-d+2, k-d+3, \ldots, k+1\}$, $\{\overline{k-d+2}\}$ and $\{\overline{k+1}\}$.

A referee reminds us that a d^{e}-disjunct matrix can correct e errors. The decoding procedure is to take a subset E of rows, and change all outcomes in these rows. Do this for all E with $|E| \leqslant e$. Let V denote the outcome vector before change, and $V_{E} \equiv V \cup E$ is the outcome vector after change. Then a column C is positive if and only if there exists an E such that V_{E} contains C. To see this, note that when E is the set of errors, then the outcome vector is corrected back to the errorless state in which C only appears in rows with positive outcomes. On the other hand, if C is negative, then the d^{e}-disjunctness guarantees that C has at least $e+1$ rows not in V_{E}, and at most e of them are in E, hence C has a row not in V_{E}.

Acknowledgements

The author thanks Y.C. Liu for providing extensions to the examples, and a referee for providing the above paragraph.

References

[1] D.Z. Du, F.K. Hwang, Combinatorial Group Testing and Its Application, 2nd Edition, World Scientific, Singapore, 2000.
[2] A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights, Discrete Math. 162 (1996) 311-312.
[3] A.J. Macula, Error correcting nonadaptive group testing with d^{e}-disjunct matrices, Discrete Appl. Math. 80 (1997) 217-222.

[^0]: ${ }^{2}$ Research partially supported by the Republic of China NSC grant 90-2115-M-009-029.
 E-mail address: fhwang@math.nctu.edu.tw (F.K. Hwang).

