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Abstract

We show that Macula’s claim of a Hamming distance 4 between any two candidate sets of
positive clones in his pool design is incorrect. However, a previous proof of his on a weaker
result (with a condition on design parameters) is correct. We also show that the condition is
sharp and the distance 4 result is also sharp for arbitrary parameter values.
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1. Introduction

A clone library stores clones which are subsequence of a particular DNA sequence.
Often, one needs to know which clones contain a given probe, a speci;ed DNA subse-
quence of interest. We will call a clone positive if it contains the probe, and negative
if not. It would be time-consuming and costly if we have to assay the clones one by
one. Since typically the number of positive clones is small, one can pool a subset of
clones together for an assay. The assay outcome is negative if all clones in the pool
are negative, and is positive otherwise. A pool design is a 0−1 matrix where columns
represent clones, rows represent pools and an 1-entry in cell (i; j) signi;es that clone
j is in pool i. The goal of a pool design is to identify the positive clones from the
negative clones as much as possible with a minimum number of pools.
For a binary matrix with t rows, we can view each column as a subset of the set

{1; : : : ; t} in terms of the positions of the 1-entries. Such a matrix is called d-disjunct if
no column is contained in the union of any other d columns. It is well known [1] that
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a d-disjunct matrix can identify all positive clones as long as the number p of positive
clones satis;es p6d. Recently, Macula [3] introduced the notion of de-disjunct if any
column has at least e + 1 1-entries not in the union of any other d columns. Another
relevant notion is the Hamming distance H (M) of a d-disjunct matrix M which is
de;ned to be the minimum number of bit disagreement between a union of u columns
and a union of v columns, u6 v6d.

Macula [2] gave a construction of a d-disjunct matrix. Suppose there are z clones to
be screened. Select n; k; d such that d¡k and

( n
k

)
¿ z. Let [n] denote the set {1; : : : ; n}

and
(
[n]
k

)
the set of all k-subsets of n. Randomly select z members of

(
[n]
k

)
to label

the clones (columns), and label the rows by the set
(
[n]
d

)
(so there are

( n
d

)
rows).

The design �z(n; d; k) has an 1-entry in cell (i; j) if and only if the label of row i is
contained in the label of column j. Macula proved that �z(n; d; k) is d-disjunct.
Macula [3] also considered the enhanced matrix �∗z (n; d; k) which is obtained from

�z(n; d; k) by adding n additional pools labeled { I1; I2; : : : ; In}, where Ii contains all clones
whose labels do not contain i. He claimed that H (�∗z (n; d; k))¿ 4 (hence 1-error-
correcting) by proving

Theorem 1. �∗z (n; d; k) is d1-disjunct.

We will show that this claim is wrong on several counts. Nevertheless, a previous
weaker claim of Macula as reported by Du and Hwang [1] remains correct:

Theorem 2. Suppose k − d¿ 3. Then H (�∗z (n; d; k))¿ 4.

Further, we show that both the condition k − d¿ 3 and the result of distance 4 are
sharp.

2. The main result

We ;rst give a counter-example against Theorem 1.

Example 1. �∗z (5; 2; 3) containing three columns C0 = {1; 2; 3}, C1 = {1; 2; 4}, C2 =
{1; 3; 5}. It is easily veri;ed that the only 1-entry in C0 but not in the union of C1 and
C2 is the row with label (2; 3). Hence �∗z (5; 2; 3) is not d1-disjunct.
The problem in the proof of Theorem 1 lies in the statement that let C0; C1; : : : ; Cd

be d+1 distinct columns and |C0\Ci|=1 for 16 i6d, then C0\Ci �= C0\Cj implies
Ci\C0 = Cj\C0. The above example shows that the implication is not realized since
C1\C0 = 4 �= C3\C0 = 5.
Example 1 can be extended to general d, k with k¿d. Let

Ci = [k + 1]\{k + 1− i}; 06 i6d− 1;

Cd = [k + 2]\{k − d+ 1; k + 1}:
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Then the only 1-entry in C0 but not in the union of C1; : : : ; Cd is the row with label
{k − d+ 1; k − d+ 2; : : : ; k}.

Next we argue that even though Theorem 1 were correct, it would not be enough to
substantiate the claim that H (�∗z (n; d; k))¿ 4. This is because the two candidate sets of
positive clones can diLer only in one column C. Then the Hamming distance between
those two sets is simply the number of 1-entries in C but not in the union of the other
columns, which is only guaranteed to be 2 by Theorem 1. Note that d1-disjunct would
imply H (�∗z (n; d; k))6 4 if d is the exact number of positive clones, not just an upper
bound.
In a diLerent sense, the d1-disjunctness is too strong a property to prove a Hamming

distance 4. For example, one column in one candidate set may contribute only distance
1, while the other candidate set contributes distance 3 to compensate. The two sets have
Hamming distance 4, but do not satisfy d1-disjunctness. Note that the counter-example
given at the beginning of this section is not a counter-example against Theorem 2
since it is easily veri;ed that any two candidate sets of cardinality 6 2 have Hamming
distance at least 4. A formal proof of Theorem 2 can be found in [1].
Can the condition k − d¿ 3 in Theorem 2 be eliminated (as in Theorem 1) or at

least weakened? The following example shows that it cannot.

Example 2. �∗z (7; 3; 5) containing columns C1 = {1; 2; 3; 4; 5}, C2 = {1; 2; 3; 4; 6} and
C3 = {1; 2; 3; 5; 7}. Consider the two candidate sets {C1; C2; C3} and {C2; C3}. It is
easily veri;ed that they diLer only in three rows with labels {1; 4; 6}, {2; 4; 6}, {3; 4; 6}.

We now expand the example to arbitrary k with d= k − 2 and d¿ 3.
Let n¿ k + 2, then �∗z (n; k − 2; k) contains k − 2 columns

Ci = [k + 1]\{k + 2− i}; 06 i6 k − 3; and

Ck−2 = [k + 2]\{4; k + 1}:
Then the two candidate sets {C0; C1; : : : ; Ck−3} and {C1; : : : ; Ck−3} diLer only in rows
with labels {1; 4; 5; : : : ; k}, {2; 4; 5; : : : ; k} and {3; 4; 5; : : : ; k}.
Examples for k − d¡ 2 are even easier to construct and omitted here.

Next we show that regardless of how large is k−d, the guaranteed Hamming distance
remains at 4.

Example 3. �∗z (n; 2; k) (where n¿ k + 1) containing three columns C1 = {1; : : : ; k},
C2 = {1; : : : ; k − 1; k + 1}, C3 = {1; : : : ; k − 2; k; k + 1}. Consider two candidate sets
{C1; C2} and {C2; C3}. It is easily veri;ed that the only four diLerent rows are those
labeled by {k − 1; k}, {k; k + 1}, {k − 1} and {k + 1}.
Again, Example 3 can be extended to general d. Let

Ci = [k + 1]\{k + 2− i}; 16 i6d+ 1:

Then the two candidate sets {C1; : : : ; Cd} and {C2; : : : ; Cd+1} diLer only in the four
rows with labels {k − d + 1; k − d + 2; : : : ; k}, {k − d + 2; k − d + 3; : : : ; k + 1},
{k − d+ 2} and {k + 1}.
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A referee reminds us that a de-disjunct matrix can correct e errors. The decoding
procedure is to take a subset E of rows, and change all outcomes in these rows.
Do this for all E with |E|6 e. Let V denote the outcome vector before change, and
VE ≡ V ∪ E is the outcome vector after change. Then a column C is positive if and
only if there exists an E such that VE contains C. To see this, note that when E is the
set of errors, then the outcome vector is corrected back to the errorless state in which
C only appears in rows with positive outcomes. On the other hand, if C is negative,
then the de-disjunctness guarantees that C has at least e + 1 rows not in VE , and at
most e of them are in E, hence C has a row not in VE .
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