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Abstract

This paper is concerned with the dynamics of a cylindrical vessel containing a small amount of liquid which, during rotation, is

spun out to form a thin liquid layer on the outermost inner surface of the vessel. The liquid is able to counteract unbalanced mass

in an elastically mounted rotor. Hence the name ‘fluid balancer’. The paper discusses the equations of motion for the coupled

fluid-structure system, their solution in terms of a perturbation method, and how they can explain the working principle of the fluid

balancer.
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1. Introduction

The dynamics, and possible unstable motion (whirl), of rotating machinery has been of concern for more than

100 years1,2. The influence of a small amount of fluid trapped inside a cylindrical rotating, whirling vessel was

investigated for the first time (theoretically) by Schmidt3 in 1958 and followed up (theoretically and experimentally)

by Kollmann4 in 1961. These pioneering papers initiated many detailed investigations which mainly are concerned

with the stability of the rotor motion, and how the fluid may cause instability.

But it has been known even longer that a small amount of trapped fluid also can stabilize an unbalanced, whirling

rotor, in the sense that the fluid can act as a counterbalance and thus limit the whirl amplitude5. This is a topic that

has enjoyed renewed interest in recent years, with applications in household washing machines as one example. It

was the aim of a recent paper6 to explain the basic mechanism behind this application, known as a ‘fluid balancer’.

The modeling of the fluid layer followed the shallow water wave approach of Berman et al. 7. The scaling used in

the perturbation analysis was also similar to the one used in that paper, with the ratio between the fluid mass and the

mass of the empty rotor playing the role of the basic small parameter in the problem. However, this parameter is not
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necessarily so small in a typical modern washing machine. In the present formulation we use a different and more

appropriate scaling, assuming that the basic small parameter is of the order (fluid layer thickness)/(vessel radius).

The equations of motion for the rotor are given in section 2. The equations describing the fluid layer are given in

section 3. The perturbation-based solution of these equations is described in section 5. The coupling between fluid

and structure, and the mechanical principle of the fluid balancer, is discussed in section 6. A shock-like hydraulic

jump solution is discussed in section 7. Finally, concluding remarks are made in section 8.

2. The rotor equations

We consider a rotating vessel (rotating fluid chamber) of mass M equipped with a small unbalanced mass m located

a distance s from the geometric center, and containing a small amount of liquid, as sketched in Fig. 1. The inner

radius of the vessel is R. The rotor is supported by springs with spring constants Kx and Ky, in the X̄ and Ȳ directions,

respectively, of the space-fixed coordinate system (X̄, Ȳ). The structural damping forces in both of these directions are

proportional to the parameter C.

t

Fig. 1. Sketch of the basic configuration, with definition of the space-fixed coordinate system (X̄, Ȳ), the rotating (rotor-fixed) coordinate system

(x̄, ȳ), and some of the fundamental symbols.

The matrix equation of motion in terms of a coordinate system (x̄, ȳ) fixed to the rotor is[
M + m 0

0 M + m

] {
ẍr

ÿr

}
+

[
C −2(M + m)Ω

2(M + m)Ω C

] {
ẋr

ẏr

}

+

[
Kx − (M + m)Ω2 −CΩ

CΩ Ky − (M + m)Ω2

] {
xr

yr

}
=

{
msΩ2

0

}
+

{
Fx

Fy

}
. (1)

where xr and yr are the rotor deflections in the x̄ and ȳ direction, respectively, Ω is the angular velocity of the rotor,

and t is the time. An overdot denotes differentiation with respect to t. In the rotating coordinate system the unbalanced

mass introduces a time-independent force proportional to Ω2, acting in the x̄-direction.

3. Fluid modeling by the shallow water equations

The fluid motion in the rotating vessel will be described by a shallow water wave approximation of the Navier-

Stokes equations, and in terms of a coordinate system (x, y) attached to the wall of the rotor, as shown in Fig. 1. x and

y are rectangular (Cartesian) coordinates, indicating that curvature effects will be ignored. This is permissible when

the fluid layer thickness h(t, x) is sufficiently small in comparison with the vessel radius R, i.e., |h(t, x)|/R � 1 for all

x, t. Ignoring gravitational forces also, the fluid equations of motion can be written as7,8

∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
− 2Ωv = −1

ρ

∂p
∂x
+ ν
∂2u
∂y2
+ Ẍr sin

( x
R

)
− Ÿr cos

( x
R

)
. (2)

∂v
∂t
+ 2Ωu + RΩ2 = −1

ρ

∂p
∂y
. (3)
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Here u and v are the fluid velocity components in the x and y directions, p is the fluid pressure, ρ is the fluid density,

and ν is the kinematic viscosity of the fluid. The body force F = Ẍr sin (x/R) − Ÿr cos (x/R) is given relative to the

rotor-fixed coordinate system (x̄, ȳ), where the acceleration vector {Ẍr Ÿr}T is given by{
Ẍr

Ÿr

}
=

[
1 0

0 1

] {
ẍr

ÿr

}
+ 2Ω

[
0 −1

1 0

] {
ẋr

ẏr

}
−Ω2

[
1 0

0 1

] {
xr

yr

}
. (4)

Strictly speaking, a body force term on the form G = Ẍr cos (x/R) + Ÿr sin (x/R) is present on the right hand side of

(3), as is a viscous term on the form ν∂2v/∂y2. These terms have been dropped here, however, since the fluid layer is

thin (in comparison with R).

The continuity equation is

∂u
∂x
+
∂v
∂y
= 0. (5)

The boundary conditions are

u = v = 0 at y = 0,

(
∂h
∂t
+ u
∂h
∂x

)
= v, p = 0, at y = h, (6)

where, again, h(t, x) specifies the free surface of the fluid layer.

In the shallow water approximation it is assumed8 that

v(t, x, y) =
y
h0

∂h
∂t
, (7)

where h0 is the mean fluid depth. Using this relation (3) can be written as

y
h0

∂2h
∂t2
+ 2Ωu + RΩ2 = −1

ρ

∂p
∂y
. (8)

This equation can be integrated (with respect to y), to give

1

ρ
p =

1

2h0

(
h2

0 − y2
) ∂2h
∂t2
+ 2Ω

∫ h

y
u dy + RΩ2(h − y). (9)

Inserting (9) into (2) we get

∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
= −RΩ2 ∂h

∂x
+ 2Ω

∂h
∂t
− 1

2h0

(h2
0 − y2)

∂3h
∂x∂t2

+ ν
∂2u
∂y2
+ Ẍr sin

( x
R

)
− Ÿr cos

( x
R

)
. (10)

Let

U =
1

h

∫ h

0

u dy (11)

denote the mean flow velocity in the x-direction. Applying this ‘operator’ to (10) we get

∂U
∂t
+ U
∂U
∂x
+

h0

3

∂3h
∂x∂t2

+ RΩ2 ∂h
∂x
− 2Ω

∂h
∂t
− ηU2 − νev

∂2U
∂x2
= Ẍr sin

( x
R

)
− Ÿr cos

( x
R

)
, (12)

where

βU2 � − ν
h0

[
∂u
∂y

]
y=0

, νev

∂2U
∂x2

� − ∂
∂x

1

h0

∫ h0

0

(u − U)2dy (13)

are models for dissipation due to wall friction and internal fluid friction, respectively. In the first equation β is a

friction coefficient (known from head loss in pipe flow) and νev in the second equation is a so-called eddy viscosity

coefficient. Applying (11) to the continuity equation (5), the latter can be written as

∂h
∂t
= −∂(hU)

∂x
. (14)
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At this point we introduce the nondimensional ‘traveling wave’ variable

ξ =
x
R
− (ω −Ω)t, (15)

where ω is the angular whirling velocity of the vessel, which is assumed to be close, but not equal, to the imposed

angular velocity Ω. The body force, that is, the right hand side of (12), needs to be transformed into this ‘coordinate

system’. To this end we write

sin
( x
R

)
= sin

[{ x
R
− (ω −Ω) t

}
+ (ω −Ω) t

]
= sin (ξ + (ω −Ω) t) (16)

= sin ξ cos(ω −Ω)t − cos ξ sin(ω −Ω)t,

and similarly for the cos(x/R) term. This expresses the body force in terms of ξ but it is still given in terms of the

rotor-fixed coordinate system (x̄, ȳ). It will be shown in section 5 that ω < Ω. Then, ξ = x/R − (ω − Ω)t represents a

backward traveling wave. Thus, in order to transform the rotor-fixed body force components (F,G)T backwards, into

the traveling wave-fixed components (Fw,Gw)T , we need the transformation†

{
Fw

Gw

}
=

[
cos(ω −Ω)t − sin(ω −Ω)t
sin(ω −Ω)t cos(ω −Ω)t

] {
F

G

}
, (17)

which gives the simple expressions Fw = Ẍr sin ξ − Ÿr cos ξ and Gw = Ẍr cos ξ + Ÿr sin ξ. Writing U = U(ξ),
h = h0 + h′(ξ), (12) can now be written as

Ω(2ω −Ω)
∂h′

∂ξ
− (ω −Ω)

∂U
∂ξ
= −U

R
∂U
∂ξ
+
νev

R2

∂2U
∂ξ2
+ βU2 − h0

3

(ω −Ω)2

R
∂3h′

∂ξ3
+ Ẍr sin ξ − Ÿr cos ξ, (18)

where h′ is the fluid layer thickness perturbation. The continuity equation (14) can be written as

−(ω −Ω)
∂h′

∂ξ
+

h0

R
∂U
∂ξ
= −U

R
∂h′

∂ξ
− 1

R
h′
∂U
∂ξ
. (19)

4. Nondimensionalization

In order to recast the governing equations into nondimensional form we introduce the parameters

δ =

(
h0

R

) 1
2

, h∗ =
h′

R
, ω∗ =

ω

ωs
, ωs =

(Kx

M

)1
2

, Ω∗ =
Ω

ωs
, t∗ = Ωt, ω̄s =

ωs

Ω
=

1

Ω∗
, (20)

c0 = RΩ
(

h0

R

)1
2

, p∗ =
p

1
2
ρc2

0

, U∗ =
U
c0

, β∗ = Rβ, ν∗ =
νev

Rc0

, Ẍ∗ =
Ẍ

h0Ω2
, Ÿ∗ =

Ÿ

h0Ω2
,

x∗ =
xr

h0

, y∗ =
yr

h0

, μ =
m
M
, ζ =

C

(MKx)
1
2

, Fx∗ =
Fx

MΩ2h0

, Fy∗ =
Fy

MΩ2h0

, σ =
s
R
, χ =

Ky

Kx
.

In terms of standard shallow water wave theory8 the parameter c0 corresponds to the shallow water wave speed (gh0)
1
2 ,

but here the gravity acceleration g is replaced by the centrifugal acceleration RΩ2.

In the following we will assume that the time-dependent terms in (18), as well as those in the rotor matrix equation

(1), depends on the slow time τ = αt∗ only. Here α is a small ‘bookkeeping’ parameter, assumed to be of the order

(fluid layer thickness)/(vessel radius), that is, α = O(h0/R) = O(δ2).

† It is noted that although G is ignored in (3) we still need to consider it here in order to get F correctly transformed into Fw.
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4.1. The fluid equations

A nondimensional version of (18) can now be obtained as

−(1 − 2ω̃)
∂h∗
∂ξ
+ δ−1(1 − ω̃)

∂U∗
∂ξ
= −U∗

∂U∗
∂ξ
+ ν∗
∂2U∗
∂ξ2

+ β∗U2
∗ − 1

3
δ2(1 − ω̃)2 ∂

3h∗
∂ξ3

(21)

+

(
α2 ∂

2x∗
∂τ2
− 2α

∂y∗
∂τ
− x∗
)

sin ξ −
(
α2 ∂

2y∗
∂τ2
+ 2α

∂x∗
∂τ
− y∗
)

cos ξ,

where ω̃ = ω/Ω = ω∗/Ω∗. Similarly, the continuity equation (19) can be written as

(1 − ω̃)δ−1 ∂h∗
∂ξ
+
∂U∗
∂ξ
= −U∗

∂h∗
∂ξ
+ h∗
∂U∗
∂ξ
. (22)

4.2. The rotor matrix equation

Applying (20) to (1) we obtain

α2

[
1 + μ 0

0 1 + μ

] {
x′′∗
y′′∗

}
+ α

[
ζω̄s −2(1 + μ)

2(1 + μ) ζω̄s

] {
x′∗
y′∗

}
+

[
ω̄2

s − (1 + μ) −ζω̄s

ζω̄s χω̄2
s − (1 + μ)

] {
x∗
y∗

}
(23)

=

{
μσδ−1

0

}
+

{
F∗x
F∗y

}
,

where a dash denotes differentiation with respect to the nondimensional time t∗.

5. Perturbation solution of the fluid equations

Let

h∗(ξ) = αh1(ξ) + α2h2(ξ) + · · · , U∗(ξ) = αU1(ξ) + α2U2(ξ) + · · · , ω̃ = ω̃0 + αω̃1 + · · · . (24)

Also, let ν∗ = αν1, and assume that δ2/α = O(1). Collecting the terms of order α1 then gives

−(1 − 2ω̃0)
∂h1

∂ξ
+ δ−1(1 − ω̃0)

∂U1

∂ξ
= 0, (1 − ω̃0)δ−1 ∂h1

∂ξ
+
∂U1

∂ξ
= 0. (25)

These equations only have non-trivial solutions if∣∣∣∣∣∣ −(1 − 2ω̃0) δ−1(1 − ω̃0)

δ−1(1 − ω̃0) 1

∣∣∣∣∣∣ = 0, (26)

which gives ω̃0 = 1+ δ2 ± δ(1+ δ2)
1
2 . The traveling wave definition (15) gives that these frequencies correspond to the

possible wave speeds c± = c0

[
δ ± (1 + δ2)

1
2

]
. The ‘+ solution’ corresponds to a progressive (forward traveling) wave

and the ‘− solution’ to a retrograde (backward traveling) wave. Experiments show that only the latter type exists7,

that is, is stable; accordingly the ‘− solution’ is used in the following. [This means that the whirling frequency ω is

slightly lower than the rotor frequency Ω, i.e., that ω̃ < 1, as was mentioned in Section 3.] The continuity equation

(second equation in (25)) now gives U1 = h1c−/c0 =
[
δ − (1 + δ2)

1
2

]
h1. Employing this expression, the terms of order

α2 in the expansion of (21) can be written as

A1

∂h1

∂ξ
− B1h1

∂h1

∂ξ
− C1

∂3h1

∂ξ3
−D1

∂2h1

∂ξ2
+ E1h2

1 = x∗ sin ξ − y∗ cos ξ, (27)

where

A1 = −2ω̃1

(
1 + δ2

) 1
2

δ
, B1 = 3

(
c−
c0

)2
, C1 =

1
3
δ2
(

c−
c0

)2
, D1 = −ν1 c−

c0

, E1 = β∗
(

c−
c0

)2
. (28)

Equation (27) is a forced Korteweg-de Vries-Burgers equation. Without dissipation (D1 = E1 = 0) and external

forcing (x∗ = y∗ = 0) it reduces to the Korteweg-de Vries equation. The Burgers equation is obtained with C1 = E1 = 0

and x∗ = y∗ = 0.
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5.1. A boundary layer problem

In the following we will assume that E1 = 0, that is, boundary friction is ignored. Then, one integration gives

−A1h1 +
1
2
B1h2

1 + C1

∂2h1

∂ξ2
+D1

∂h1

∂ξ
= x∗ cos ξ + y∗ sin ξ + C, (29)

where C is an integration constant. The periodicity conditions which must be satisfied are

h1(0) = h1(2π),
∂h1

∂ξ
(0) =

∂h1

∂ξ
(2π). (30)

In the light of these conditions we will set C = 0 in (29). The constant C1 is now assumed to be small (as it is in the

case of a typical washing machine). Thus, let ε = C1 be a small parameter and write (29) on the form

ε
∂2h1

∂ξ2
+ d1

∂h1

∂ξ
+ a1h1 + b1h2

1 = ε (x cos ξ + y sin ξ) , (31)

where

d1 = D1, a1 = −A1, b1 =
1
2
B1, x =

x∗
ε
, y =

y∗
ε
. (32)

Here it is assumed that x∗/ε, y∗/ε = O(1). Let the ‘outer variable’ h1(ξ), away from possible boundary layers, be

expanded as

h1(ξ) = εκ1(ξ) + ε2κ2(ξ) + · · · (33)

The terms of order ε1 are

d1

dκ1
dξ
+ a1κ1 = x cos ξ + y sin ξ. (34)

The complete solution to this equation is

κ1(ξ) =
x

a2
1
+ d2

1

{
a1 cos ξ + d1 sin ξ

}
+

y
a2

1
+ d2

1

{
a1 sin ξ − d1 cos ξ

}
+ Ce−(a1/d1)ξ, (35)

where C is again a constant. The periodicity conditions (30) can only be satisfied if C = 0. On the other hand, this

choice is not associated with any problems. This is thus a boundary value problem without a boundary layer!‡
Returning to the original variables, we get the fluid layer thickness perturbation, described to leading order, as

h1(ξ) =
x∗

A2
1
+D2

1

{
−A1 cos ξ +D1 sin ξ

}
− y∗
A2

1
+D2

1

{
A1 sin ξ +D1 cos ξ

}
. (36)

The determination of A1 necessitates consideration of the next order in the expansion in α, due to the still undeter-

mined ω̃1, see (28). This problem will not be considered in the present paper; we will be content with a qualitative

solution of the coupled fluid-structure problem.

It is noticed at this point that in order to have stable asynchronous whirl, as was assumed from the outset, it is

necessary to have A1 < 0, that is, to have ω̃1 > 0. This is clear from (29), and from the well-known corollary to the

Routh-Hurwitz criterion10 that, in order to have a stable solution, all coefficients of the characteristic polynomial must

have the same sign. Thus we will assume in the following thatA1 < 0.

6. Coupling with the rotor equation

The nondimensional version of the pressure equation (9), evaluated on the vessel surface y = 0, takes the form

p∗(0) = α

⎡⎢⎢⎢⎢⎢⎣δ4
(

c−
c0

)2
∂2h1

∂ξ2
+ 2

(
1 + 2δ

c−
c0

)
h1

⎤⎥⎥⎥⎥⎥⎦ + O(α2) ≈ α2

(
1 + 2δ

c−
c0

)
h1, (37)

‡ Such cases are not uncommon, see e.g. the book by Bender & Orszag 9.
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where the last approximation is made on the assumption that δ is small.

The fluid force components, acting in the radial and the tangential direction relative to the traveling wave, are given

by

Fr∗ =
Γ

δ2

∫ 2π

0

p∗(ξ, 0) cos ξ dξ, Ft∗ =
Γ

δ2

∫ 2π

0

p∗(ξ, 0) sin ξ dξ, (38)

where Γ = 1
4π

Mfluid/M, where Mfluid = ρ2πRh0w is the mass of the contained fluid, w being the width of the vessel

(the height ‘out of the paper’ in Fig. 1). Evaluation gives

Fr∗ ≈ −Γ α
δ2

2π

(
1 + 2δ

c−
c0

) A1x∗ +D1y∗
A2

1
+D2

1

, Ft∗ ≈ Γ
α

δ2
2π

(
1 + 2δ

c−
c0

) D1x∗ − A1y∗
A2

1
+D2

1

. (39)

In Section 5 it was assumed that δ2/α = O(1). Thus, in (39) we must likewise assume that α/δ2 = O(1).

In order to transform these force components forward to the rotor-fixed coordinate system, we need the transfor-

mation inverse to (17), which in terms of nondimensional parameters is given by{
F∗x
F∗y

}
=

[
cos(ω̃ − 1)t∗ sin(ω̃ − 1)t∗
− sin ω̃ − 1)t∗ cos(ω̃ − 1)t∗

] {
Fr∗
Ft∗

}
. (40)

Since ω̃ is close to 1 the coefficients in the matrix are slowly varying parameters, and we will write cos(ω̃ − 1)t∗ =
1 − [1 − cos(ω̃ − 1)t∗] � 1 − α[1 − cos(ω̃ − 1)t∗] and similarly sin(ω̃ − 1)t∗ � α sin(ω̃ − 1)t∗, which is true for non-

large times t∗. Thus, inserting (39) and (40) into (23), we get, to leading order (and for non-large times t∗), the static

problem[
ω̄2

s − (1 + μ) −ζω̄s

ζω̄s χω̄2
s − (1 + μ)

] {
x∗
y∗

}
=

{
μσδ−1

0

}
+

{
Fr∗
Ft∗

}
. (41)

Solution gives

x∗ =
μσ

δ2
1

D

{
χω̄2

s − (1 + μ) +A1Φ
}
, y∗ =

μσ

δ2
1

D

{
ζω̄s +D1Φ

}
, (42)

where D =
{
ω̄2

s − (1 + μ)
} {
χω̄2

s − (1 + μ)
}
+ (D1Φ − ζω̄s)

2 , Φ = 2π

(
1 + 2δ

c−
c0

)
Γ

A2
1
+D2

1

.

6.1. Physical interpretation

Although the effect of the fluid loading complicates the equation a bit, it can be seen from (42) that the x∗ com-

ponent of the rotor deflection changes sign by passage through resonance, from x∗ > 0 at pre-resonance rotational

speeds to x∗ < 0 at post-resonance speeds (the definition of ω̄s should be noted, see the first line in (20), right), just as

in standard rotor theory5. The sign of y∗, however, does not change. Returning to the expression for x∗, it is noticed

also that the fluid loading acts as added mass (sinceA1 < 0 and 1 + μ represents the structural mass).

Consider now again (36). Since x∗ changes sign by passing through resonance, so does the fluid layer perturbation

thickness h1. If it is assumed that −A1 > D1 (which is very reasonable when the fluid is water) then the ‘wave top’ of

the fluid layer will be located at the position of the unbalance mass at pre-resonance and opposite it at post-resonance.

This explains the action of the fluid balancer.

It is noted, finally, that the rotation (40) in reality will move the wave top slowly away from perfect balancing. This

is consistent with the experimental observations of a slow drift of the balancing wave top6.

7. Shock-like hydraulic jump solutions

In returning to (29), if the parameterD1 (which is proportional to the eddy viscosity coefficient defined by (13)) is

small, of same order of magnitude as C1, then (29) will, to the lowest order, reduce to an algebraic equation, which

solution is

h1(ξ) =
A1

B1

±
[ (A1

B1

)2
+

2

B1

(x∗ cos ξ + y∗ sin ξ + C)
] 1

2

. (43)
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A jump from the lower branch to the upper branch can be considered as representing a shock-like hydraulic jump7.

The constant C can be chosen such that h1 is continuous, except for the jump at the (so far) unknown position ξ = s.

The problem as it stands, with two rotor degrees of freedom (x∗, y∗) is quite difficult. From the previous paper6 it is

known that |y∗| � |x∗| always; thus, assuming that y∗ ≈ 0 still gives meaningful results. Carrying out a thus simplified

version of the analysis along the lines of Section 6, it is possible also to obtain a transcendent equation for the jump

location s.

Such an analysis has been carried out, considering steps of both +− type and −+ type (that is, upper branch →
lower branch in (43), and vice versa, in terms of increasing values of ξ). Due to the space limitation we will not show

details here, but just give an outline of the main results. It was found that (i) only the −+ type is possible (there are

no roots in the equation for determining s for the other type); (ii) the location of the jump does change when passing

through resonance; on the other hand, the jump moves continuously with increasing rotation speed. Thus, according to

these results, the fluid balancer cannot ‘work’ by the action of a hydraulic jump. This is corroborated by experimental

results, which show that such large-amplitude shock-like waves exist only in the near vicinity of the resonance point

of the rotor11.

8. Concluding remarks

In this paper the dynamics of the so-called fluid balancer has been investigated based on a model of a rotor con-

taining a small amount of liquid. The thin internal fluid layer, which forms due to the rotation, is described in terms

of shallow water wave theory. A perturbation approach gives that the fluid layer thickness variation is described by

a forced Korteweg-de Vries-Burgers equation. An approximate solution to this equation is given. The form of this

equation, where the term of the highest derivative vanishes in the lowest order approximation, suggests application of

boundary layer theory. Nonetheless, the lowest order approximation is able to satisfy all boundary conditions which,

in the present case, are periodicity conditions. Thus, a boundary layer does not come into play.

The working principle of the fluid balancer has been explained explicitly/analytically, through the derivation of

simple expressions for fluid layer distribution and rotor deflection. The highly nonlinear hydraulic jump solutions,

which exist in the vicinity of the rotor resonance speed, have been considered as well.

Finally, it is noted that, rather than the fluid balancer itself, perhaps the most interesting aspect of the present

work is the investigation of solutions to the forced Korteweg de Vries-Burgers equation. While analytical solutions

to the unforced (homogeneous) problem are well known, the forced problem is, except for a few special cases, still

unsolved12.
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