
LlNEAR ALGEBRA AND ITS APPLICATIONS 5, W-281 (1972) 277 

Context-Free Grammars and Nonnegative Matrices 

DAVID SANKOFF 

Uniuersite’ de Montre’al 

Montre’al, Que’bec. Canada 

Communicated by A. J. Hoffman 

The probabilistic interpretation of certain nonnegative matrix prop- 

erties can be applied to the study of context-free grammars. The first 

theorem provides the matrix property central to our discussion. 

THEOREM 1. Let P = 

matrix such that the largest eigenvalue of A is 2 < 1. Then as N + 03, 

P’V+QwhereQ=(~ :)and R=(I-A)L. 

Proof. See [6]. 

To apply this fact we first define a context-free grammar and describe 

how to attach probabilities to the rules of such a grammar, in constructing 

a behavioral model of sentence production. 

A context-free grammar consists of two sets of integers, T = (1,. . , m> 

and C = {HZ + 1,. . ., m + n}, the terminal integers and the nontevminal 

integers respectively, and a set G = (Y], . . . , yh} of rewrote rules. Each 

rule is of the form i + c+, where i E C and tc, is a finite sequence of elements 

from T U C. Each i E C must be on the left of the arrow for at least one 

rule in G. 
The sentences generated by the grammar (T, C, G) are all those and 

only those sequences produced as follows. Start with the sequence con- 

sisting of the single term m + 1. Choose from among the rules in G any 

one which rewrites m + 1, i.e., of form m + 1 + IX. Rewrite (replace) 
m + 1 with the sequence a. If there are any terms which are elements 
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of C in this new sequence, these must also be rewritten. When a term is 

rewritten it is simply deleted from the sequence and replaced by the one 

or more elements in SC, if Y is the rewriting rule selected, without disturbing 

the neighboring terms of the sequence on the left and right. The process 

stops when the last sequence contains only elements of T. This sequence 

is a sentence, of which there are at most, countably many. 

Exam@. T = (1, 2}, C = (3, 4}, G = {Y,, Y.,, yg, Ye} = (3 + 1 ; 3 + 

4,3; 4 +2,1; 4 + 3, 4). I3y starting with the sequence consisting of 

3( = m f 1) and applying rules in the order r,; y1 ; y4 ; yy ; yl, one arrives 

successively at the sequences 4, 3; 4, 1; 3, 4, 1; 3, 2, 1, 1; and finally at 

the sentence I, 2, 1, 1. 

In constructing a behavioral or stochastic model of sentence production, 

we must take into account that it is necessary at each step of a production 

to make a choice from the subset of rules G(i) C G which rewrite a particular 

i E C. This is most simply accomplished by setting up, in advance, a 

probability distribution on each G(i). (See 12-51.) The probability 

distributions may be unambiguously denoted by a single function zr( * ), 

since the G(i) are disjoint, and 

The problem we investigate here is as follows. If u’e know the riles 

of the grammar but not the fluxtion YC( . ), and -we tax observe the outjut 

of the grammar, e.g., the average nzunber of terms of various t!Pes per sentence, 

tax we use this injormation to find n( . ) ? 
.z( . ) determines an (nz + n) x (m + n) nonnegative matrix P, where 

Pi, may be interpreted as the expected number of i terms to be expected 

when i is rewritten (i E C, i E T U C). In other words 

Pij = c n(r) ‘number of j terms in cc,], for iEC. 
Y&(L) 

For i E T, we make the convention Pij == hi,. 

Let e,+i be the unit vector in the (WZ + 1)st coordinate. Then the 

vectors 

represent the expected numbers of the different integers after m $- 1 

has been rewritten, after all the terms belonging to C in the new sequence 

have been rewritten, after all the terms belonging to C in the sequence 
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thus derived have been rewritten, and so on. If z(. ) is such that AAV + 0 

as N -+ 00 (A < I), then P” +Q, a matrix with finite entries, and e,+iQ 

represents the expected numbers of the different integers in the sentences 

generated by the grammar (zero, for each i E C). 

In our problem, we assume e,+,Q can be directly observed. This fact, 

together with the relation R = (I - A)L of Theorem 1, and further 

information obtained from the form of the rules in G, can sometimes be 

combined to solve the problem. Whether or not this is possible depends 

on the precise nature of the grammar in question as discussed in [6], 

but a necessary condition is given by the next theorem. 

THEOREM 2. If for any function 7c(. ) which specifies $robability 

distributions on the G(i), observation of e,+lQ determines n( ’ ), then m 3 

h - n. 

Proof. The only restraint on z(. ) is that it sum to one over G(i), for 

each i E C. There being lz rules and n elements of C, there are effectively 

/z ~ gz independent quantities to be determined by e,,+,Q. But 

e,,+,Q = lb,,. , L,m, 0,. . ,O), 

and no set of more than VJZ independent variables can be functionally 

determined by the nz variables L,,, . . , L,,,. 
In discussing the problem of inferring n( . ) from average frequencies 

of words in sentences, we have not taken account of a feature of context- 

free grammars which distinguishes them from other multitype branching 

processes [l] having the same expectation matrices. A sentence is not 

just a collection of integer terms, but a sequence of these terms. By 

taking advantage of the ordering of the terms in a sequence, we can 

eliminate the condition in Theorem 2. To do this we consider the procedure 

of sentence production as it affects $airs of adjacent terms in the sequence. 

In the example above, the sentence 1, 2, 1, 1 contains one example 

each of the following pairs (1, 2), (2, L), (1, 1) as well as (blank, 1) and 

(1, blank). Inserting blanks at the beginning and end of the sequence 

is helpful; for example, the initial sequence m + 1 contains no pairs 

unless we consider it as blank, M + 1, blank, in which case it contains 

(blank, vz + 1) and (?n + 1, blank). 

There are (rr, + n + 1)2 - 1 different pairs possible using elements 

of T, C and {blank}, (blank, blank) being impossible. In some grammars, 

of course, some of these pairs will not occur. In any case, we can number 



the pairs which can occur and, using the rules of the grammar and the 

function z(. ), construct a matrix P giving the expected number of the 

jth type of pair produced by rewriting an ith type pair. 

This construction is carried out as follows. If the ith type of 

is (a, b) where a E T, b E T, then Isi, = aij. 
If the ith type of pair is (a, b), where a E T but b E C, then 

P’ij = Y2&n(r) [Xi(ij a, Y) + i number of jth type pairs in CX,. 1 

where 

pair 

xi(i, a, Y) = 1 if tc, is of the form t,. . , u and jth pair type is (a, t), 

= 0 otherwise. 

The factor 4 in this formula takes into account that the corresponding 

pairs are counted again, as being produced by a pair of form (b, .). 

Similarly, if the ith type of pair is (a, b), where a E C, b E T, then 

pizi = YEgfij 44 ix&> b> y) + 3 number of jth type pairs in cc,], 

where 

xs(j, b, Y) = 1 if zr is of the form 1,. . , u and jth pair type is (u, b) 

= 0 otherwise. 

Finally, if the ith type of pair is (a, b), where a E C, b E C, then 

pii = & 44 I4 number of jth type pairs in a,j 
I 

where 

X3(j> y, s) = 1 if tl, is of the form t,. . , IL 

and CC,~ is of the form v,. . . , w 

and jth pair type is (,u, v) 

= 0 otherwise. 

p’ij represents the expected number of jth type of pair produced as a 

consequence of rewriting the terms of an itli type of pair. If d is the vector 
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with l’s in the coordinates representing (blank, m + 1) and (WZ + 1, 

blank) and zeros elsewhere, then t?, P, and Q = limLV+copN can play roles 

analogous to e,,,, P and Q in the solution of our grammatical inference 

problem. The advantage is that when there are m terminal integers, there 

are of the order of m2 terminal pair types which may be observed. Since 

h - n, the number of independent allocations of values of ‘z( * ), remains 

the same, the condition in Theorem 2 is clearly no longer necessary. 

If m2 < lz - n there is still the possibility of extending these methods 

to triplets, quadtuples, etc. 

To summarize, we have related the output of context-free grammars 

to their probabilistic structures, in the first instance by using a multitype 

branching process model; this can work only for grammars satisfying 

a restriction on the number of rules and the numbers of different types 

of terms. By taking account of the order of terms within a sentence, the 

analysis can be extended and the method can be applied to grammars 

not satisfying this restriction. 
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