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The motility, angiogenesis and metastasis-stimulating factor Autotaxin (Atx), over expressed by
human neuroblastomas (NB), is constitutively expressed by human Nmyc-amplified SK-N-BE and
non-Nmyc-amplified SH-SY5Y NB cells. Here, we characterise a novel Atx transcriptional mecha-
nism, utilised by both cell lines, that is restricted to the first 285 bp of the Atx promoter and involves
AP-1 and SP transcription factors, acting through a CRE/AP-1-like element at position �142 to �149
and a GAbox at position �227 to �235 relative to the Atx translational start site. This novel transcrip-
tional mechanism can be inhibited by internally initiated SP-3 and the natural phenol curcumin.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction nancies and nervous system tumours glioblastoma and neuroblas-
Autotaxin (Atx), originally identified as an autocrine motility
factor in melanoma cells [1–3], catalyses the transformation of
lysophosphatidyl choline into lysophosphatidic acid (LPA) and
forms an Atx/LPA/LPA receptor axis that promotes tumour progres-
sion by modulating cancer-related inflammation; inhibiting apop-
tosis; stimulating angiogenesis, tumour cell motility, invasion and
metastasis; and promoting metastatic bone disease by activating
osteoclasts [4–11]. Atx overexpression has been implicated in the
progression of breast, ovary, thyroid, liver, kidney and lung malig-
chemical Societies. Published by E
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toma (NB) [5,6,11–20]. Atx is, therefore, considered a novel cancer
therapeutic target.

NB is an aggressive tumour that arises during sympathetic ner-
vous system development from neural crest cells of the sympatho-
adrenal lineage and accounts for approximately 10% of all paediat-
ric tumours [21,22]. Despite general therapeutic improvements,
the age of onset and high frequency of post-therapeutic relapse
translate into low survival rates, highlighting the need for greater
understanding of the molecular mechanisms involved in NB path-
ogenesis and progression and translation into novel therapeutic
strategies. NBs are highly heterogeneous and exhibit a high degree
of genetic and biological variability. Advanced stage NBs metastas-
ise to bone, bone marrow, lymph nodes, liver and skin, with met-
astatic bone disease carrying the poorest prognosis. Amplification
of the Nmyc gene characterises a significant proportion of aggres-
sive NBs and has been implicated in Atx expression [20,21].

In spite of the role played by the Atx/LPA/LPA receptor axis in
tumour progression, relatively little is known about the transcrip-
lsevier B.V. All rights reserved.
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tional regulation of Atx. The human Atx promoter has been cloned
and characterised as containing several putative SP sites but no
typical TATA or CAAT boxes. Atx transcription initiates from bases
�61 and �64, relative to the translational start site (+1) [20,23]
and in human NB cells has been attributed to Nmyc acting through
a putative myc element within an uncharacterised 33 bp promoter
region (�287 to �254), which also contains a putative GATA ele-
ment [20], or to be regulated by retinoic acid in Nmyc amplified
NB cells in an Nmyc-independent manner [24]. In human breast
cancer cells, a6b4 integrin receptor activation stimulates Atx tran-
scription through putative NFAT sites at positions �310 and �1780
[25] and Atx transcriptional repression has been attributed to his-
tone de-acetylases HDAC3 and HDAC7 [26]. In chick embryo fibro-
blasts v-Jun oncogene induces Atx expression [27], whereas in
murine embryonic fibroblasts HOXA group 13 transcription factors
have been implicated in Atx expression [28].

Here, we report a novel Nmyc-independent transcriptional
mechanism for Atx expression, utilised by both Nmyc amplified
and non-amplified NB cells, that involves AP-1 and SP transcription
factors acting through CRE/AP-1-like and GAbox within the first
285 bp of the Atx promoter and can be inhibited by internally ini-
tiated SP-3 and curcumin.

2. Materials and methods

2.1. Cells and reagents

Cell lines, reagents and culture conditions are described in Sup-
plementary material.

2.2. Nuclear extracts

Nuclear extracts were prepared as previously described [29].
Protein concentrations were determined by Bio-Rad assay, as di-
rected by the manufacturer (Bio-Rad, Hercules, CA).

2.3. In vitro footprinting

In vitro footprint analysis was performed as previously reported
[30], and is described in Supplementary material.

2.4. Electrophoretic mobility shift assays (EMSAs)

EMSAs were performed as previously described [31]. The Atx-
specific oligonucleotide sequences are provided in Supplementary
material.

2.5. Plasmid constructs

The Atx reporter gene constructs �1197Atx and �287Atx have
been previously reported [20]. All other Atx reporter gene deletion
and mutated constructs are described in Supplementary material.

2.6. Transient transfection and reporter gene assays

Cells grown on 60 mm petri dishes were transfected with
supercoiled plasmid DNA (3 lg) using Lipofectamine™, as directed
(Invitrogen, Carlsbad, CA). Conditions and reporter gene assays are
described in Supplementary material.

2.7. Chromatin immunoprecipitation assays (ChIp)

ChIp assays were performed as previously described [32]. The
oligonucleotide sequences used are detailed in Supplementary
material.
2.8. Immunoblotting

Western blots were performed as previously described [33],
using either 50–100 lg of nuclear extracts or 20-fold concentrated
72 h serum-free culture conditioned medium for Atx. Coomassie
blue-stained membranes were used to control differences in load-
ing. Densitometric analyses were performed using Molecular Anal-
ysis Software for the BioRad 710 Imaging densitometer.

2.9. RT-PCR analysis of Atx expression in NB cells

RT reactions were performed on total RNAs (1 lg) using the
Moloney Murine Leukaemia virus RT kit, as detailed by the manu-
facturer (Life Technologies, Inc., Paisley, UK). RT reactions were
subjected to PCR using the primers and conditions described in
Supplementary material. Densitometric analysis of ethidium bro-
mide stained RT-PCR products, separated by agarose gel electro-
phoresis, was performed using Molecular Analysis Software for
the BioRad 710 Imaging densitometer.

2.10. Curcumin treatment

Sub-confluent (80% confluent) cell cultures were incubated
with curcumin at the concentrations stated for 24 h, at 37 �C. Fol-
lowing incubation, non-adherent non-viable cells were removed
by washing 3 times in pre-warmed PBS and total RNA extracted
from the remaining viable adherent cell population, for RT-PCR
comparison.

2.11. Statistical analysis

The Student’s t test was used for statistical comparisons, means
giving t values with associated probabilities of 60.05 were consid-
ered statistically significant.

3. Results

3.1. SK-N-BE and SH-SY5Y cells express Atx

RT-PCR detected similar levels of Atx relative to GAPDH mRNA
expression in Nmyc-amplified SK-N-BE and non-Nmyc-amplified
SH-SY5Y cells, quantified by densitometric analysis of ethidium
bromide stained gels as 63% and 58% of GAPDH levels, respectively
(Fig 1A). Western blotting also detected similar levels of Atx pro-
tein in concentrated 72 h serum-free supernatants from identical
cell numbers of SK-N-BE and SH-SY5Y cells. Densitometric quanti-
fication of Westerns, adjusted for differences in loading obtained
by densitometric analysis of the Coomassie blue-stained mem-
brane, indicated that SH-SY5Y cells had secreted 85% of the Atx lev-
els secreted by an identical number of SK-N-BE cells (Fig 1B).
Similar levels of Atx mRNA and protein expression characterised
both sub confluent (80%) and confluent (100%) SH-SY5Y and SK-
N-BE cell cultures (data not displayed).

3.2. The Atx promoter reporter gene is activated constitutively in SK-N-
BE and SH-SY5Y cells

For Atx promoter sequence numeration, the A of the initiating
codon ATG is defined as +1, as previously described [20].

SK-N-BE and SH-SY5Y cells constitutively activated a luciferase
reporter gene construct containing 1197 bp of 50 promoter se-
quence (�1197Atx) to similar non-statistically different levels
(P 6 0.5, n = 18). Promoter activity in both cell lines approximated
to 10000 RLUs/100 lg of protein extract. This is the equivalent of
10 pg of purified luciferase and represented a statistically signifi-



-Atx

-GAPDH 

RT-PCR 

-Atx (120kDa) 

Western Blot 

SH-SY5Y SK-N-BE

SH-SY5Y SK-N-BE -120kDa 

0
10
20
30
40
50
60
70
80
90

100

At
x 

le
ve

ls
 a

s 
a 

pe
rc

en
ta

ge
 o

f 
G

AP
D

H
 le

ve
ls

 
Coomassie Blue 
(Loading control) 

0

20

40

60

80

100

120

 A
tx

 le
ve

ls
 s

ec
re

te
d 

by
 S

H
-S

Y5
Y 

co
m

pa
re

d 
to

 S
K-

N
-B

E 
ce

lls
 (1

00
%

), 
ad

ju
st

ed
 fo

r l
oa

di
ng

 d
iff

er
en

ce
s 

A B

Fig. 1. Atx is expression by human NB cells. (A) Ethidium bromide-stained agarose gel demonstrating Atx and GAPDH RT-PCR products from exponentially growing SH-SY5Y
and SK-N-BE cells plus a histogram demonstrating densitometric quantification of Atx RT-PCR levels in SK-N-BE and SH-SY5Y cells, expressed as a percentage of GADH levels
in the adjacent gel. (B) A representative Western blot demonstrating levels of 120 kDa Atx in 20-fold concentrated 72 h serum-free conditioned medium from identical
numbers of SH-SY5Y and SK-N-BE cells (upper panel), the Coomassie blue-stained membrane as a loading control (middle panel) and a histogram demonstrating
densitometric quantification of Atx proteins levels secreted by SH-SY5Y cells as a percentage of Atx levels secreted by an equal number of SK-N-BE cells, in the adjacent
Western blot, given the arbitrary value of 100%, adjusted for differences in protein loading obtained by densitometric analysis of the Coomassie blue-stained membrane.
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cant increase in activity of >100 fold over the basic promoter-less
construct PGL2 (100 RLU/100 lg protein) (P < 0.001, n = 18)
(Fig. 2A). The deletion of 912 bp of 50 upstream Atx sequence to
give the construct �285Atx, did not significantly reduce reporter
gene activity in either SK-N-BE or SH-SY5Y cells (P 6 0.5 for both
cell lines, n = 18). A further 150 bp deletion to give the construct
�135Atx, significantly reduced Atx promoter activity by <95% in
both SH-SY5Y and SK-N-BE cells (P 6 0.001, n = 18, for both cell
lines) (Fig 2A).

3.3. In vitro footprint analysis of the Atx promoter in SK-N-BE and
SH-SY5Y cells

DNAse In vitro footprinting of the Atx promoter region from
�317 to �26 identified two identical areas protected by SK-N-BE
and SH-SY5Y nuclear extracts. The first, bases �155 to �137 (50-
CCTGTGATGTAATCAAGCT-30), contains a CRE/AP-1-like site
(underlined) and the second, bases �238 to �207 (50-TTAGGG-
GAGGGACCTGTAAGGGGCGGGGATAA-30), contains a GAbox and a
GCbox (underlined) (Fig. 2B).

3.4. Atx-promoter deletion and mutation analysis

Deletion of 71 bp from the construct �285Atx to give the con-
struct �214Atx, eliminating putative myc, GATA and GA elements,
significantly reduced luciferase activity in SK-N-BE (Fig 3A) and SH-
SY5Y (Fig 3B) cells by approximately 50% (P 6 0.001, n = 18 for both
cell lines). Further deletions of 10 bp (�204Atx), eliminating the
GCbox, 12 bp (�182Atx), 20 bp (�162Atx) and 6 bp (�156Atx) did
not further reduce promoter activity below that detected using
the �214Atx construct in SK-N-BE cells (Fig. 3A, all deletions) or
SH-SY5Y cells (Fig 3B, �156Atx only). Elimination of the CRE/AP-
1-like element by a further 11 bp deletion (�145Atx, SK-N-BE cells)
or a further 21 bp deletion (�135Atx, SH-SY5Y and SK-N-BE cells)
reduced promoter activity by >95%, compared to the intact pro-
moter (P 6 0.001, n = 18 for both cell lines) (Fig. 3A and B).

Within the context of the full promoter, GAbox mutation from
50-GGGGAGGG-30 to 50-GcGGccGc-30 (�1197GAm) significantly re-
duced promoter activity by 52 ± 7.5% in SK-N-BE cells (Fig. 3A) and
50 ± 6.8% in SH-SY5Y cells (Fig. 3B) (P 6 0.001 for both cell lines).
GCbox mutation from 50-GGGGCGGGG-30 to 50-GaGatcGGG-30

(�1197GCm) did not reduce activity in either cell line (Fig. 3A
and B). CRE/AP-1-like site mutation from 50-TGATGTAAT-30 to 50-
TttTtTccT-30 (�1197CRE/AP-1 m) significantly reduced activity by
55 ± 9.5% in SK-N-BE cells (Fig. 3A) and by 61 ± 8.5% in SH-SY5Y
cells (Fig. 3B) (P 6 0.001, for both cell lines). Combined GAbox
and CRE/AP-1-like site mutation (�1197GAmCREm) significantly
reduced activity by >90% in both cell lines (Fig. 3A and B)
(P 6 0.001, for both cell lines). Neither Myc site (�260) mutation
from 50-CACATGA-30 to 50-CAggcct-30 (�1197Mycm, both SK-N-BE
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and SH-SY5Y cells) nor GATA (�263) mutation from 50-GGATAC-30

to 50-GGcctC-30 (�1197GATAm, SK-N-BE cells only) reduced pro-
moter activity (Fig. 3A and B).

Oligonucleotides bearing the above mutations did not bind spe-
cific proteins in SK-N-BE or SH-SY5Y nuclear extracts (not dis-
played). Mutated GAbox and CRE/AP-1-like oligonucleotides did
not compete with specific GAbox and CRE/AP-1 like site binding
complexes in nuclear extracts (Figs. 4B and 5B).
3.5. GAbox and CRE/AP-1-like site-binding complexes

The specificity of GAbox (Fig. 4A left panel SK-N-BE and Fig. 4B
first 4 lanes SH-SY5Y) and CRE/AP-1-like (Fig. 5A left panel SK-N-
BE and Fig. 5B left panel SH-SY5Y) site-binding complexes was
confirmed by competition EMSA in which excess unlabelled spe-
cific but not non-specific (NS) or mutated oligonucleotides com-
peted with complexes.
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Super-shift EMSA identified SP-1, SP-2 and SP-3 proteins in spe-
cific GAbox binding complexes (Fig. 4A right panel SK-N-BE and
Fig. 4B last 5 lanes SH-SY5Y) and identified cjun, JunD, cfos, CREB-
1 and ATF-1 proteins in specific CRE/AP-1-like site binding com-
plexes (Fig. 5A right panel SK-N-BE, Fig. 5B right panel SH-SY5Y
and Fig. 5C right panel SK-N-BE and left panel SH-SY5Y) in both cell
lines. Western blots confirmed the presence of 65–80 kDa internally
initiated SP-3 [34], in addition to 125–130 kDa full-length SP-3,
105 kDa SP-1, 85 kDa SP-2 and 105–110kda SP-4 proteins in nuclear
extracts from both cell lines. Histone 4 levels are provided as an
internal control for nuclear extracts (Fig. 4C). Variability in non-spe-
cific complex binding levels in competition EMSAs (Fig. 4A and B)
most likely reflects competition of non-specific binding complexes
by 100 fold excess competitor oligonucleotide and does not detract
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from the clear demonstration that specific but not non-specific or
mutated oligonucleotides competed with specific GA box binding
complexes in competition EMSAs.

The GCbox (�219) oligonucleotide also bound specific com-
plexes containing SP-1, SP-2 and SP-3 (data not displayed). Super-
shift antibodies did not bind oligonucleotides in the absence of
nuclear extracts.
3.6. Chromatin Immunoprecipitation (ChIp)

ChIp detected SP-1, SP-2 and SP-3 at the GA/GC box region
(Fig. 4D) and detected cjun, JunD, CREB and ATF-1 at the CRE/AP-
1 like site region (Fig. 5D) of the endogenous Atx promoter in both
SK-N-BE and SH-SY5Y cells but, due to background problems,
failed to conclusively demonstrate the presence of c-fos.
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3.7. SP-1 stimulates and internally initiated SP3 represses Atx
transcription

Transient SP-1 expression in drosophila SL2 cells [34] signifi-
cantly increased �1197Atx promoter activity by 122 ± 22.3%
(p 6 0.001, n = 18) but did not stimulate transcription from the
mutated GAbox construct �1197GAmAtx (Fig. 6A). Transient
expression of internally initiated SP-3 (pCMV4-spM2), an 80 kDa
SP-3 isoform that arises from translational initiation within the
SP-3 trans-activation domain, binds SP-1 binding sites and re-
presses SP-1/SP-3-mediated transcription [34], did not stimulate
transcription from either �1197Atx or 1197GAmAtx constructs
and significantly reduced SP-1 stimulation of Atx reporter gene
activity from 122 ± 22.3% to 55 ± 13% (P 6 0.05, n = 18), upon co-
transfection in SL2 cells (Fig. 6A). Neither SP-2 nor full-length SP-
3 were evaluated due to expression problems (this study and
34). Transient expression of internally initiated SP-3 in SK-N-BE
cells significantly inhibited Atx mRNA expression relative to empty
vector transfected controls by 30 ± 5.2% (P < 0.05, n = 4), assessed
by densitometric analysis of ethidium bromide stained gels
(Fig. 7A).
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3.8. C-Jun (AP-1) transactivates the Atx promoter

Transient c-Jun expression in SK-N-BE cells significantly in-
creased �1197Atx but not mutated �1197CRE/AP-1-like-Atx re-
porter gene activity by 45 ± 13.3% (P 6 0.02) compared to empty
vector-transfected controls (Fig. 6B). Neither transient expression
of dominant-negative kCREB [35] nor pre-incubation with dibu-
tyrly cAMP Rp-isomer (100 lM) [36] reduced �1197Atx reporter
gene activity in SK-N-BE cells (Fig 6B).

3.9. Curcumin abrogates Atx expression

Considering AP1 and SP transcription factor involvement in Atx
expression, we evaluated the potential inhibitory effect of curcumin,
a natural phenolic inhibitor of the thioredoxin-regulated transcrip-
tion factors AP-1 and SP-1 [37–40]. Curcumin inhibited Atx relative
to GAPDH mRNA expression in a dose dependent manner at concen-
trations P1 lM in SK-N-BE cells and P10 lM in SH-SY5Y cells,
determined by densitometric analysis of ethidium bromide stained
agarose gels and adjusted according to internal GAPDH control lev-
els (Fig 7B). At the optimum non-toxic concentration of 10 lM, cur-
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cumin reduced Atx relative to GAPDH mRNA expression by approx-
imately 35% in SH-SY5Y cells and 55% in SK-N-BE cells and more
toxic concentrations of 50 lm and 100 lm, which reduced SK-N-
BE and SH-SY5Y viability by P50% within 24 h (data not shown),
Atx expression was completely abrogated relative to GAPDH within
the remaining viable adherent cell populations (Fig 7B).
4. Discussion

We characterise a novel transcriptional mechanism for consti-
tutive Atx expression utilised by human Nmyc amplified SK-N-BE
and non-Nmyc amplified SH-SY5Y NB cells. This mechanism is re-
stricted to the first 285 bp of Atx promoter and mediated by AP1
and SP transcription factors acting through a CRE/AP-1-like ele-
ment at position �142 to �149 and a GAbox at position �227 to
�235, respectively. This constitutive mechanism is partially re-
pressed by internally initiated SP-3 and can be completely abro-
gated by the natural phenol curcumin.
The similar level of constitutive Atx mRNA and protein ex-
pressed by Nmyc amplified SK-N-BE and non-Nmyc amplified
SH-SY5Y NB cells, combined with the close similarity exhibited
by both cell lines in in vitro footprint, EMSA, ChIp and Atx pro-
moter reporter gene assays, suggests an identical transcriptional
mechanism restricted to the initial 285 bp of the Atx promoter.
Within this region, identical Atx promoter sequences were pro-
tected by nuclear extracts from both cell lines. The first, bases
�155 to �137 (50-CCTGTGATGTAATCAAGCT-30), contains a putative
CRE/AP1-like element, and the second, bases �238 to �207 (50-
TTAGGGGAGGGACCTGTAAG GGGCGGGGATAA-30), contains a GAbox
and a GCbox. A function for the CRE/AP1-like element and GAbox
but not for putative GCbox, GATA or myc elements within this re-
gion [20] was confirmed by deletion and point mutation of these
sites. Furthermore, simultaneous CRE/AP-1-like and a GAbox
mutation abrogated Atx reporter gene activity in both cell lines,
confirming an absolute requirement for both elements for full re-
porter gene activity in both cell lines. We found no evidence for
involvement of the 33 bp region (bases �287 to �254) reported
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to confer Atx promoter activity to SMS-KAN NB cells [20], suggest-
ing that more than one mechanism for constitutive Atx transcrip-
tion may characterise NB. We also exclude a potential function
for the NFAT elements involved in integrin-mediated Atx transcrip-
tion in human breast cancer cells [25].

AP-1 transcription factor [41] involvement in Atx transcription,
acting through the CRE/AP-1-like element (�142 to�149), was sup-
ported by the identification of cjun, JunD and cfos proteins in specific
CRE/AP-1-like site-binding complexes by EMSA and by ChIp detec-
tion of cjun and JunD at the endogenous Atx promoter, in both cell
lines. Furthermore, transient c-Jun expression stimulated Atx repor-
ter gene activity in SK-N-BE cells through the intact but not mutated
CRE/AP-1-like element. These data help to explain v-Jun-induced
Atx expression in transformation of chick embryo fibroblasts [27]
and Epstein-Barr induced Atx expression in Hodgkin lymphoma
cells considered potentially to involve AP-1 [15]. CREB-1 and ATF-
1 transcription factors were also detected in specific CRE/AP-1-like
(�153) site-binding complexes. However, neither transient domi-
nant-negative kCREB transfection [35] nor pre-incubation with the
CREB inhibitor cAMP Rp isomer [36] reduced Atx reporter gene activ-
ity, suggesting a CREB-independent transcriptional mechanism.

SP transcription factor involvement in Atx transcription, acting
through the GAbox (�227 to �235), was supported by the identi-
fication of SP-1, 2 and 3 proteins in specific GAbox binding com-
plexes in nuclear extracts by EMSA and by ChIp detection of
same proteins at endogenous Atx promoter. Furthermore, transient
SP-1 expression stimulated Atx reporter gene activity in non-SP
expressing SL2 drosophila cells [34] through the intact but not mu-
tated GAbox. In contrast, internally initiated SP-3, which represses
SP1/3-mediated gene transcription [34,42], did not stimulate Atx
promoter activity but significantly reduced SP-1 stimulation of
Atx promoter activity in SL2 cells and, upon transient transfection,
also inhibited Atx mRNA expression in SK-N-BE and SH-SY5Y cells,
confirming a Atx transcription-repressing function for internally
initiated SP-3 in these NB cell lines.

Considering AP1 and SP transcription factor involvement in Atx
expression, we evaluated the potential inhibitory effect of curcu-
min, a natural phenolic inhibitor of thioredoxin-regulated AP-1
and SP-1 transcription factors [37–40]. Curcumin inhibited Atx
mRNA expression at concentrations P1 lM in SK-N-BE cells and
P10 lM and SH-SY5Y cells. At the optimum non-toxic concentra-
tion of 10 lM, curcumin inhibited Atx expression in both cell lines
by 35–55% and at the more toxic concentrations of 50 lM and
100 lM completely abrogated Atx expression in the remaining via-
ble adherent population of both cell lines.

We propose that the novel Atx transcriptional mechanism iden-
tified in this study, utilised by both Nmyc amplified and non-
amplified NB, is mediated by AP1 and SP transcription factors act-
ing through CRE/AP1-like (�142 to �149) and GAbox-elements
(�227 to �235) and can be inhibited by internally initiated SP-3
and by the natural phenolic AP-1 and SP inhibitor curcumin.
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