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SUMMARY

The chemokine receptor CCR7 plays a crucial role in
the homing of central memory and naive T cells to
peripheral lymphoid organs. Here, we show that the
HIV-1 accessory protein Vpu downregulates CCR7
on the surface of CD4+ T cells. Vpu and CCR7 were
found to specifically interact and colocalize within
the trans-Golgi network, where CCR7 is retained.
Downmodulation of CCR7 did not involve degrada-
tion or endocytosis and was strictly dependent on
Vpu expression. Stimulation of HIV-1-infected pri-
mary CD4+ T cells with the CCR7 ligand CCL19 re-
sulted in reduced mobilization of Ca2+, reduced
phosphorylation of Erk1/2, and impaired migration
toward CCL19. Specific amino acid residues within
the transmembrane domain of Vpu that were previ-
ously shown to be critical for BST-2 downmodulation
(A14, A18, and W22) were also necessary for CCR7
downregulation. These results suggest that BST-2
and CCR7 may be downregulated via similar mecha-
nisms.

INTRODUCTION

HIV-1 encodes four accessory genes, vpu, nef, vif, and vpr, that

have numerous effects on the host cell. These effects include

downregulation of cell-surface molecules and evasion of re-

striction factors and innate immune responses (reviewed in

Kirchhoff, 2010; Malim and Emerman, 2008). The HIV-1 Vpu

protein has a predicted length that ranges from 77 to 86 amino

acid residues. Vpu is translated from a vpu-env bicistronic

mRNA (Schwartz et al., 1990; Strebel et al., 1988) during a

late phase of the viral life cycle and is not thought to be incor-

porated into budding virions (Nomaguchi et al., 2008). Structur-

ally, Vpu consists of three major domains: a short N-terminal
C

luminal tail (3–12 amino acids), a single hydrophobic trans-

membrane domain (TMD; 27 amino acids), and a C-terminal

amphipathic portion (54 residues) that extends into the cyto-

plasm (Maldarelli et al., 1993; Wray et al., 1995). The C-terminal

region consists of two a-helices connected by a short motif in

which two conserved serine residues (serine 52 and serine 56)

are phosphorylation sites for casein kinase II and are respon-

sible for the recruitment of b-TrCP-1 and b-TrCP-2 (Strebel,

2007).

Vpu sequesters de novo synthesized CD4 in the endoplasmic

reticulum (ER), targeting it for proteasomal degradation (Willey

et al., 1992). This function is dependent on the binding of

b-TrCP to Vpu’s cytoplasmic phosphoserine residues (Butticaz

et al., 2007; Margottin et al., 1998). Vpu-mediated downmodula-

tion of BST-2/Tetherin has been shown to be partly dependent

on the interaction of Vpu with b-TrCP (Iwabu et al., 2009),

although whether this interaction leads to degradation of BST-

2 is still debated (Dubé et al., 2010; Mangeat et al., 2009). Vpu

interacts with BST-2 within the trans-Golgi network (TGN) and

in recycling endosomes (Douglas et al., 2009; Dubé et al.,

2010; Mitchell et al., 2009) rather than within the ER, as is the

case with CD4 (Willey et al., 1992). Vpu has been shown to

cooperate with Nef in the downregulation of CD1d from the

surface of HIV-1-infected dendritic cells (DCs), thereby limiting

the ability of CD1d to patrol the endocytic system in search of

lipid antigens to present to invariant natural killer T (iNKT) cells

(Moll et al., 2010).

Shah et al. (2010) recently found that Vpu also downmodulates

the surface expression of the NK cell coactivating receptor NK-T

and B cell antigen (NTB-A) on infected CD4+ T cells. As a conse-

quence, degranulation by NK cells, which requires signaling

through NTB-A, is impaired. Downregulation of NTB-A by Vpu

protects the infected cells from lysis by NK cells (Shah et al.,

2010). Interestingly, it appears that recruitment of b-TrCP is not

required for either Vpu-mediated CD1d or NTB-A surface down-

modulation, suggesting that Vpu acts as a multifunctional viral

protein that is able to interfere in different ways with different

host factors (Sandberg et al., 2012).
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In this work, we describe the ability of HIV-1 to downregulate

the C-C chemokine receptor-7 (CCR7) from the surface of

primary CD4+ T cells in a Vpu-dependent manner. CCR7 belongs

to a family of seven-transmembrane-spanning chemokine

receptors that mediate their signals through the activation of

heterotrimeric Gai proteins. CCR7 ismainly expressed bymature

dendritic cells (Ohl et al., 2004), naive B cells (Reif et al., 2002),

and naive and central memory CD4+ T cells (Sallusto et al.,

1999). Studies in CCR7-deficient mice underscored the central

role of CCR7 as a major homing receptor that directs the migra-

tion of cells into the lymph nodes, where priming and assembly of

immune responses take place (Förster et al., 1999). Additionally,

recent studies have revealed previously unrecognized functions

of CCR7 in promoting T cell recirculation in peripheral tissues

(Debes et al., 2005; Höpken et al., 2010). CCR7 signaling is

triggered by the chemokinesCCL19 andCCL21 (Rot and vonAn-

drian, 2004), which are constitutively expressed by reticular stro-

mal cells in lymphoid organs (Luther et al., 2000). Binding of

either ligand to the receptor culminates in G protein activation,

calcium flux, and chemotactic responses (Willimann et al.,

1998; Yoshida et al., 1998). We show that HIV-1 infected cells,

through the action of Vpu, display reduced expression of CCR7

and a reduced ability to signal andmigrate in response toCCL19.

RESULTS

HIV-1 Downregulates the Chemokine Receptor CCR7 on
the Surface of Primary CD4+ T-Lymphocytes
We previously reported that HIV-1 infection of in vitro cultured

central memory T cells (TCM) generates a population of produc-

tively infected cells (Bosque and Planelles, 2009). We wished to

examine whether any phenotypic differences induced by HIV-1

infection occurred in these cells. To that end, we infected pri-

mary CD4+ lymphocytes (generated as described in Experi-

mental Procedures) with a replication-deficient HIV-1 molecular

clone (termed DHIV) carrying GFP in place of Nef (DHIV-

GFPDNef; Figure S1) and analyzed the expression of GFP versus

different surface markers at 2 days postinfection. As shown in

Figure 1A, both uninfected and infected cells expressed similar

levels of the activation marker CD45RO, the chemokine receptor

CXCR4, and the costimulatory molecule CD27, all of which are

highly expressed on cultured TCM. As expected, infected cells

downregulated CD4 as a consequence of Vpu expression (Willey

et al., 1992). Unexpectedly, we found that the levels of the

chemokine receptor CCR7 were 49% lower (based on mean

fluorescence intensity [MFI] values) in infected cells relative to

uninfected cells (Figure 1A).

We then investigated whether this was a general effect of

HIV-1 on chemokine receptors. We infected TCM cells with a

molecular clone of HIV-1 that encodes all of the accessory

genes. In this case, cells were stained for surface expression

of the chemokine receptors CCR7, CXCR4, CXCR3, CCR4,

CCR6, and CCR5, followed by intracellular staining of p24Gag

viral antigen. As shown in Figure 1B, among the tested receptors,

HIV-1 was only able to downregulate CCR7. Contrary to previous

findings showing that Nef downmodulates the chemokine recep-

tor CXCR4 (Hrecka et al., 2005; Venzke et al., 2006), we did not

observe CXCR4 downregulation.
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Vpu Mediates Cell-Surface CCR7 Downregulation in
CD4+ T Cells
Next, we tested whether any accessory protein had a potential

role in manipulating CCR7 expression. To that end, we infected

cells with HIV-1 viruses lacking each accessory gene and

analyzed CCR7 expression 2 days postinfection. As shown in

Figure 2A, CCR7 was downmodulated from the cell surface by

HIV-1DVpr, HIV-1DVif, and HIV-1DNef to the same extent as it

was by wild-type (WT) HIV-1 (panels i–v). However, HIV-1DVpu

failed to downregulate CCR7, indicating that Vpu was necessary

for this function (panel vi).

We then examined whether Vpu was sufficient for CCR7

surface downregulation. CCRF-CEMT cells, which constitutively

express CCR7 and CD4, were nucleofected with expression

vectors encoding either Vpu-GFP or GFP alone (Shah et al.,

2010). CCR7 surface expression was reduced in Vpu-GFP, but

not GFP-transfected, cells (Figure 2B, compare panels i and ii),

indicating that Vpu is sufficient to downmodulate CCR7. As

expected, CD4 surface levels were also lower in Vpu-GFP-

expressing, but not GFP-expressing, cells (Figure 2B, panels iii

and iv; Willey et al., 1992).

To address whether HIV-1 infection reduced the total levels of

CCR7 (as opposed to only surface levels), cells were fixed,

permeabilized, and costained with CCR7 and p24Gag anti-

bodies. As a control, we stained for CD4, whose degradation is

triggered by Vpu via the ER-associated degradation (ERAD)

pathway (Binette et al., 2007; Magadán et al., 2010; Schubert

et al., 1998; Willey et al., 1992). As shown in Figures 2C (panels

i and iii) and 2D, the total levels of CCR7 were not significantly

different between infected and uninfected cells (see ‘‘Total’’ in

Figures 2C and 2D), suggesting that Vpu did not induce CCR7

degradation but, more likely, promoted its redistribution within

the cell. In contrast, HIV-1 infection drastically reduced the sur-

face and total levels of CD4 (Figure 2B, panels ii and iv) due to

the combined effect of both Vpu and Nef degrading the protein

(Kirchhoff, 2010).

To directly assess whether Vpu induces CCR7 degradation,

we conducted both a cycloheximide (CHX) study and a pulse-

chase analysis. We used CHX, a blocker of protein synthesis,

so that we could evaluate the fate of total levels of protein in

the absence of de novo synthesis. As shown in Figure S2A,

when HIV-1-infected primary cells were incubated in the pres-

ence of CHX for 24 hr, the total levels of CCR7 remained constant

between infected and uninfected cells. Therefore, the decrease

in surface CCR7 induced by Vpu cannot be explained by protein

degradation.

As an independent method to examine the possible degrada-

tion of CCR7, we performed a pulse-chase analysis in 293T cells

by cotransfecting CCR7-Flag with an expression vector encod-

ing GFP or a Vpu-GFP fusion protein (Shah et al., 2010). At

24 hr posttransfection, cells were pulse labeled with [35S] for

30 min and chased for up to 24 hr. CCR7 was then immunopre-

cipitated using an anti-Flag antibody and the lysates were sepa-

rated by SDS-PAGE, followed by autoradiography. We observed

a band at 43 kDa corresponding to CCR7. We detected only a

minor difference in CCR7 protein levels in the absence or pres-

ence of Vpu (100% versus 86%, respectively) after 24 hr (Figures

S2B and S2C). Therefore, although these results do not exclude



Figure 1. HIV-1 Downregulates the Chemokine Receptor CCR7 from the Surface of Infected Primary CD4+ T Cells

(A) Surface levels of CD45RO (iii and iv), CXCR4 (v and vi), CD27 (vii and viii), CD4 (ix and x), and CCR7 (xi and xii) versus GFP expression were analyzed 2 days

postinfection in uninfected (Mock) and infected (DHIV-GFPDNef) cultured CD4+ TCM cells. An immunoglobulin G (IgG) matched control was used to establish

positive surface marker expression (i and ii). Unless otherwise noted, all figures involving primary CD4+ T cells are representative of three separate experiments

performed in three different donors.

(B) Primary CD4+ T cells were either mock infected or infected with DHIV. At 2 days postinfection, cells were surface stained for the chemokine receptor CCR7 (i),

CXCR4 (ii), CCR5 (iii), CXCR3 (iv), CCR4 (v), or CCR6 (vi), followed by intracellular staining for HIV-1 p24Gag. A comparison between p24Gagneg cells (blue line)

and p24Gagpos cells (red line) is depicted in each histogram along with an IgG matched isotype control (gray shaded histogram).

See also Figure S1.
a minor contribution of degradation of CCR7, we conclude that

degradation is not the major mechanism by which Vpu induces

downregulation of CCR7 from the cell surface.

Downmodulation of CCR7 by Vpu Occurs with
Replication-Competent HIV-1
To directly examine under more physiological conditions (i.e., in

a spreading infection) whether Vpu could downmodulate CCR7,

we infected primary CD4+ T cells with either HIV-1NL4-3 or the

mutant HIV-1NL4-3DVpu, in which the start codon of Vpu was

mutated to a stop codon. At 2, 3, 5, and 7 days postinfection,

the cells were surface stained for CCR7 or BST-2, followed by

intracellular staining for p24 Gag. Replication-competent HIV-1
C

efficiently downregulated CCR7 from the cell surface, and this

effect becamemore significant as the time of infection increased

(Figures 3A, panels i–iv, and 3B). By comparison, infection of

cells with HIV-1NL4-3DVpu was unable to induce CCR7 surface

downmodulation (Figures 3A, panels v–viii, and 3B). As a control,

Vpu also efficiently downregulated BST-2 from the cell surface

(Figure S3).

CCR7 and Vpu Colocalize within the TGN
Vpu has previously been shown to colocalize with BST-2 (Van

Damme et al., 2008) and preferentially sequester the host protein

within a perinuclear compartment, specifically the TGN (Dubé

et al., 2009, 2010; Hauser et al., 2010; Vigan and Neil, 2010).
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Figure 2. HIV-1 Vpu Is Necessary and Suffi-

cient for Surface Downmodulation, but Not

Degradation, of CCR7

(A) Primary CD4+ T cells were either mock infected

(i) or infected with DHIV (ii), DHIVDVpr (iii), DHIVD

Vif (iv), DHIVDNef (v), or DHIVDVpu (vi). Two days

later, cells were assessed for surface levels of

CCR7 in p24Gagneg (blue line) and p24Gagpos cells

(red line). Gray-shaded histograms represent IgG

matched isotype controls.

(B) CCRF-CEM cells were nucleofected with 2 mg

of either a GFP or Vpu-GFP expression vector. At

24 hr posttransfection, the relative surface levels

of CCR7 (i and iii) and CD4 (ii and iv) were

measured. The histograms depict a comparison

between untransfected (blue line) and transfected

(red line) cells relative to the IgG matched control

(gray-shaded histogram). The figure is represen-

tative of three independent experiments.

(C) The relative surface levels ofCCR7 (i) andCD4 (ii)

wereassessed2daysafter infectionwithDHIV,as in

(A). In addition, cells were permeabilized and cos-

tainedwith antibodies for eitherCCR7 (iii) or CD4 (iv)

along with antibody for p24Gag. HIV-1 p24Gagpos

cells and p24Gagneg cells are represented by red

and blue lines, respectively. Uninfected cells (black

line) were used as a control along with an IgG

matched isotype (gray-shaded histogram).

(D) MFI values of the surface and total levels of

CCR7 from three independent experiments. The

data were normalized by setting MFI values from

uninfected (mock) cells to 100% and are depicted

graphically as mean ± SEM (*p < 0.05).

See also Figure S2.
Therefore, to determine whether Vpu colocalizes and/or seques-

ters CCR7, we transfected HeLa cells with a CCR7 fusion

construct bearing a C-terminal mCherry tag (CCR7-mCherry)

along with Vpu-GFP. In the absence of Vpu-GFP, CCR7-

mCherry localized both at the cell surface and intracellularly

(Figure 4A, top row). The amount of colocalization between

CCR7-mCherry and TGN46, a TGN marker, in the absence of

Vpu, was minimal (Figures 4A, upper panels, and 4B). However,

in cells cotransfected with CCR7-mCherry and Vpu-GFP, both

proteins were highly colocalized together, as quantified by Pear-

son’s correlation coefficient (PCC; Figure 4B), and specifically

within the TGN cellular compartment (Figures 4A, lower panels,

and 4B; Barlow et al., 2010). Moreover, the degree of colocaliza-

tion betweenCCR7-mCherry and TGN46 (PCC= 0.38) increased

when Vpu-GFP was present (PCC = 0.58), suggesting that Vpu

sequesters CCR7within the TGN. These findings are highly remi-
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niscent of how Vpu induces BST-2

surface downregulation (Dubé et al.,

2010; Vigan and Neil, 2010).

Vpu Does Not Increase the
Endocytosis Rate of CCR7 in the
Presence of CCL19
Since we observed that the steady-state

levels of CCR7 remained constant in
HIV-1-infected cells, we tested whether Vpu may be increasing

the internalization rate of the chemokine receptor. Primary

CD4+ T cells infected with HIV-1NL4-3 were stained with an anti-

body against CCR7 at 4�C and then placed back at 37�C for

various time points to allow for internalization. The cells were

then stained with an allophycocyanin (APC)-conjugated second-

ary antibody followed by p24Gag antigen, and analyzed by

flow cytometry. As shown in Figure S4, we did not observe endo-

cytosis of CCR7 in uninfected cells (mock, solid black line),

p24Gagneg cells (solid blue line), or p24Gagpos cells (solid red

line). This indicates that Vpu does not increase the constitutive

endocytosis rate of CCR7. Moreover, the stability of the chemo-

kine receptor on the surface is consistent with previous reports

showing that CCR7 is highly stable on the cell membrane unless

it is provided with one of its chemokine ligands, such as CCL19

(Otero et al., 2006). As a positive control for endocytosis of



Figure 3. Vpu Downregulates CCR7 in the Context of a Spreading Infection

(A) Primary CD4+ T cells were infected with either HIV-1NL4-3 or HIV-1NL4-3DVpu at a multiplicity of infection (moi) of 0.1. At 2, 3, 5, and 7 days postinfection, cells

were surface stained for CCR7 and permeabilized for detection of p24Gag. Histograms represent p24Gagneg cells (blue line), p24Gagpos cells (red line), or an IgG

matched isotype (gray-shaded histogram).

(B) MFI values of the surface levels of CCR7 in HIV-1NL4-3 (left) or HIV-1NL4-3DVpu (right) infected cells. The data were normalized by setting the MFI values from

uninfected (mock) cells to 100% and are depicted graphically as mean ± SEM. The data are representative of three independent experiments in three separate

donors (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figure S3.
CCR7, we stimulated cells with CCL19 (Figure S4, dashed black,

blue, and red lines). It is noteworthy that CCL19-induced endo-

cytosis of CCR7 was also unaffected by the presence of Vpu.

The TMDof Vpu Is Required for Downregulation of CCR7
Vpu triggers CD4 proteasomal degradation by linking this protein

to the Skp1-Cullin-F-box (SCF)/b-TrCP E3 ubiquitin ligase com-

plex (Kerkau et al., 1997; Margottin et al., 1998). Vpu-mediated

BST-2 removal from the surface of HIV-1-infected cells also

requires the interaction of Vpu with b-TrCP (Mitchell et al.,

2009). Two phosphorylated serines (serines 52 and 56) in the

DpSGXXpS motif (where ‘‘p’’ denotes phosphorylation of the

following amino acid residue and ‘‘X’’ denotes any amino acid

residue) present at the C terminus of Vpu recruit b-TrCP (Ev-

rard-Todeschi et al., 2006; Wu et al., 2003). To address whether

Vpu interaction with b-TrCP is required for CCR7 downregula-
C

tion, we used an HIV-1 mutant in which both Vpu serine residues

weremutated to asparagine (VpuS52,56N).We anticipated that if

an interaction with the SCF/b-TrCP complex were required for

CCR7 downregulation, mutation of the serine residues would

completely abolish this phenotype, as is the case for downregu-

lation of CD4 (Willey et al., 1992). As shown in Figure 5A (panels ii

and iv), VpuS52,56N was still able to downregulate CCR7 (MFI =

71 and 42 for p24� and p24+ cells, respectively; 41%downregu-

lation), although somewhat less efficiently thanWTVpu (MFI = 76

and 29 for p24� and p24+ cells, respectively; 62% downregula-

tion). Therefore, VpuS52,56N retainedmost of its ability to down-

regulate surface CCR7. We interpret these results to mean that

interaction with the b-TrCP-containing E3 ubiquitin ligase com-

plex is not required for CCR7 surface downmodulation by Vpu.

The TMD of Vpu (residues 4–27) is highly conserved among

strains of the pandemic HIV-1 group M (Vigan and Neil, 2010,
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Figure 4. Vpu Colocalizes with CCR7 within the TGN

(A) HeLa cells were transiently transfected with either CCR7-mCherry alone (top row) or in combination with Vpu-GFP (bottom row). At 24 hr posttransfection,

cells were fixed, permeabilized, and stained with a TGN-specific antibody (TGN46). Images were acquired using a spinning-disc confocal microscope. Red,

CCR7-mCherry; green, Vpu-GFP; blue, TGN46.

(B) Relative colocalization levels between CCR7-TGN46, Vpu-TGN46, or Vpu and CCR7 were quantified using Pearson’s correlation coefficient (PCC). Data are

graphically depicted as mean ± SEM. The PCC values are representative of ten individual cells (**p < 0.01).

See also Figure S4.
2011). Moreover, this region is required for downregulation of

NTB-A (Shah et al., 2010), BST-2 (McNatt et al., 2013; Van

Damme et al., 2008), and CD4 (Magadán and Bonifacino,

2012; Magadán et al., 2010; Tiganos et al., 1998). To determine

whether the TMD of Vpu played a role in CCR7 downmodulation,

we infected CD4+ T cells with an HIV-1 mutant encoding Vpu

with a scrambled TMD (VpuRD) (Schubert et al., 1996). Infection

of cells with HIV-1VpuRD virus failed to induce CCR7 downregu-

lation (Figure 5B, panels ii and iii). We then investigated the spe-

cific residues within the TM region that may be critical for Vpu to

downmodulate CCR7. Previous studies have shown that the

A14, W22, and to a lesser extent A18 residues within Vpu’s

TMD are important for the downmodulation and interaction of

Vpu with BST-2 (Skasko et al., 2012; Vigan and Neil, 2010).

Mutation of alanine 14 and tryptophan 22 to phenylalanine and

alanine, respectively, completely abolished Vpu-dependent
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CCR7 downregulation (Figure 5B, panels iv and vi). As previously

shown for Vpu-dependent downregulation of BST-2 (Vigan and

Neil, 2010), the change of residue 18 of Vpu also had an interme-

diate effect on CCR7 downregulation (panel v). The A14,18F and

A14,18F/W22A mutations also abolished CCR7 downregulation

(panels vii and viii). Mutation of serine 23 to alanine (panel ix) or

isoleucine 17 to alanine (panel x), however, did not affect

CCR7 downmodulation. The above data indicated that CCR7

downregulation requires specific residues in the TMD of Vpu,

and these residues are the same as those previously shown to

be important for BST-2 downregulation (Vigan and Neil, 2010).

CCR7 Coimmunoprecipitates with Vpu
To address whether Vpu-mediated downregulation of CCR7

required a physical interaction between the viral protein and

the chemokine receptor, we transfected 293T cells with a



Figure 5. CCR7 Surface Downregulation Requires Vpu’s TMD, but Not its Conserved Serines

(A) Primary CD4+ T cells were either mock infected (i) or infected with DHIV (ii), DHIVDVpu (iii), or DHIV-VpuS52,56N (iv), in which Vpu’s conserved serines were

mutated to asparagines. All cells were surface stained for CCR7 expression followed by intracellular p24Gag staining, as in Figure 1B.

(B) Primary CD4+ T cells were either mock infected (i) or infectedwith DHIV (ii) or DHIV-VpuRD (iii), in which the TMDof Vpuwas scrambled. Additionally, cells were

infected with the indicated Vpu TM mutants (iv–x). Cells were stained and analyzed as described in (A).
plasmid expressing either GFP or Vpu-GFP, including mutants

(VpuA14F-GFP, VpuRD-GFP, and VpuS52,56N-GFP) alone or

in combination with CCR7-Flag. At 24 hr posttransfection,

CCR7-Flag was immunoprecipitated from whole-cell lysates,

followed by immunoblotting with anti-GFP. Figure 6 (lane 6)

shows that Vpu coimmunoprecipitated with CCR7. Surprisingly,

both VpuRD and VpuA14F, mutants that failed to downregulate

CCR7, also coimmunoprecipitated with CCR7 (lanes 8 and 10).

Interestingly, VpuS52,56N, which also coimmunoprecipitated

with CCR7 (lane 12), did not show the upper two bands, which

we interpret to be the phosphorylated forms of Vpu at serine

52 and/or serine 56.

The above results indicate that the interaction between CCR7

and Vpu, while necessary, is not sufficient for downmodulation of

CCR7 surface levels. Further studies are needed in order to iden-
C

tify other potential requirements, beyond CCR7-Vpu binding,

that may exist. One possibility is that interaction(s) of Vpu with

additional cellular proteins may be required for the downmodu-

lation of CCR7.

CCL19-Mediated Mobilization of Intracellular Calcium
and Erk1/2 Phosphorylation Are Impaired in HIV-
Infected CD4+ T cells
Binding of either CCL19 or CCL21 to CCR7 initiates a signaling

cascade that leads to the release of calcium from intracellular

stores (Wu et al., 2000) and activates extracellular-signal-regu-

lated kinase 1/2 (Erk1/2) (Tilton et al., 2000). In our preliminary

tests, primary CD4+ T cells migrated in response to CCL19

more efficiently than they did to CCL21 in vitro (Figure S5). There-

fore, to further examine the potential effects of Vpu on CCR7
ell Reports 7, 2019–2030, June 26, 2014 ª2014 The Authors 2025



Figure 6. CCR7 Interacts with Vpu

HEK293T cells were transfected with GFP,

Vpu-GFP, VpuA14F-GFP, VpuRD-GFP, and

VpuS52,56N-GFP either with an empty vector or in

combination with CCR7-Flag. At 24 hr post-

transfection, cells were lysed and immunoprecip-

itated using anti-Flag antibody. Lysates were

analyzed by western blot and probed for b-actin

(42 kDa), GFP (37 kDa), and Flag (43 kDa; un-

glycosylated form of CCR7 [U-CCR7]) by loading

10 mg of lysate per sample. Antibodies probed

against GFP and Flag were used to analyze im-

munoprecipitates by western blot. IgG heavy

chain: 53 kDa. Results are representative of two

different experiments.
function, we decided to use CCL19 for the next set of experi-

ments. We first asked whether decreased surface expression

of CCR7 in HIV-infected cells impaired signaling by CCL19. To

that end, we compared the efficiency of calcium mobilization in

infected and uninfected cells after stimulation with CCL19.

Cultured TCM cells were infected with a recombinant HIV-1NL4-3
construct encoding the murine heat-stable antigen (HSA/

CD24) in place of Vpr (Jamieson and Zack, 1998). As shown in

Figure 7A, mock-infected and HIV-HSAneg (uninfected) cells

responded in a similar fashion to CCL19, with 44.3% and

49.4% of the cells, respectively, increasing the [Ca2+]i at the

lower dose utilized. In contrast, only 28.8% of HIV-HSApos

(infected) cells upregulated [Ca2+]i in response to the same

stimulation.

It is noteworthy that the basal levels (Figure 7A, ‘‘No treat-

ment’’) of [Ca2+]i were higher in infected cells (2.06%) than in

uninfected ones (0.42%). The reason for this difference is un-

known. It is possible that the binding of the staining antibody

against murine HSA could trigger a modest increase in the

[Ca2+]i. The response to ionomycin was comparable in each

sample analyzed, indicating that cells similarly incorporated

the fluorescent dye and that calcium mobilization in response

to other stimuli was preserved and not affected by infection.

Phosphorylation of Erk1/2 is another event triggered by

CCL19 binding to CCR7. We predicted that levels of phos-

phorylated ERK1/2 would be compromised in HIV-infected cells

after stimulation with CCL19. To address this, we infected

activated CD4+ T cells with viruses that expressed Vpu (DHIV-

GFPDNef) or did not express Vpu (DHIV-GFPDNefDVpu). As

expected, unstimulated cells infectedwith either DHIV-GFPDNef

or DHIV-GFPDNefDVpu showed no induction of p-ERK1/2

(Figure 7B, gray and black lines). Phorbol myristate acetate

(PMA) treatment (positive control) led to p-ERK1/2 levels that

were comparable between GFPpos and GFPneg cells infected

with either virus. When cells were stimulated with CCL19, the

GFPneg population had fairly similar levels of p-ERK1/2 regard-
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less of whether the cultures were infected

with DHIV-GFPDNef (red line; MFI = 46)

or DHIV-GFPDNefDVpu (blue line; MFI =

60). In contrast, GFPpos cells infected

with DHIV-GFPDNef had reduced

levels of p-ERK1/2 (red line; MFI = 113)
compared with those infected with DHIV-GFPDNefDVpu (blue

line; MFI = 217).

Interestingly, the levels of both PMA and p-ERK1/2 were

generally higher (regardless of whether the virus was DHIV-

GFPDNef or DHIV-GFPDNefDVpu) in GFPpos cells than in

GFPneg cells. This may reflect the fact that HIV infection

(in particular, the viral protein Tat) may induce cellular stress,

leading to the phosphorylation of Erk1/2 (Herbein and Khan,

2008). Therefore, it is likely that phosphorylation of ERK1/2

during HIV-1 infection occurs in response to multiple signals.

Taken together, the above results suggest that Vpu-mediated

downregulation of CCR7 upon viral infection results in an

impaired ability of infected primary CD4+ T cells to respond

to CCL19.

Vpu Decreases the Capacity of CD4+ T Cells to Migrate
toward CCL19
Based on the above results, we predicted that Vpu downregula-

tion of CCR7 would result in decreased cellular migration in a

CCL19 chemokine gradient. To test our hypothesis, we infected

primary CD4+ T cells with either HIV-1NL4-3 or HIV-1NL4-3DVpu. At

5 days postinfection, cells were placed in the upper chamber of a

transwell plate and allowed to migrate toward either medium

alone or chemokine ligands specific for CCR7 (CCL19) or

CXCR4 (SDF1a). The cells in the lower chambers of the transwell

plates were then fixed and permeabilized, stained for p24Gag,

and enumerated. As shown in Figure 7C, HIV-1NL4-3-infected

cells showed a decreased ability to migrate toward CCL19

relative to noninfected (NI) cells as well as cells infected with

HIV-1NL4-3DVpu. Migration defects were not observed in

response to an SDF1a gradient. Interestingly, cells infected

with HIV-1NL4-3DVpu showed a slightly enhanced ability to

migrate toward CCL19, but not toward SDF1a, relative to NI

cells. Taken together, these results indicate that Vpu negatively

modulates the chemotactic potential of primary CD4+ T cells to

migrate specifically toward CCL19.



Figure 7. CCL19-Mediated Chemotaxis and

Chemotactic Signaling Responses Are

Impaired in HIV-1-Infected Primary CD4+ T

Cells

(A) Primary CD4+ T cells were either mock infected

or infected with DHIV-HSA. At 2 days post-

infection, the cells were loaded with Fluo3-AM

followed by surface staining for HSA. Cells were

left untreated (‘‘No treatment’’) or stimulated with

ionomycin (20 ng/ml) or with either 100 nM or

500 nM CCL19. Changes in fluorescence were

recorded over time by flow cytometry. The figure is

representative of two independent experiments in

two different donors.

(B) Primary CD4+ T cells were either mock infected

or infected with the virus DHIV-GFPDNef or DHIV-

GFPDNefDVpu. Forty-eight hours later, the cells

were stimulated with either 5 ng/ml PMA or

50 ng/ml CCL19 for 5min and immediately stained

to detect ERK1/2 phosphorylation. The histo-

grams depicted are split into GFP� (uninfected)

and GFP+ (infected) rows. The blue line depicts

cells infected with Vpu� virus, and the red line

depicts cells infected with Vpu+ virus. At least 53

104 viable GFP+ and GFP� cells were collected

via flow cytometry. The figure is representative of

two independent experiments performed in two

different donors.

(C) HIV-1NL4-3 or HIV-1NL4-3DVpu was used to

infect primary CD4+ T cells at an moi of 0.1. At

5 days postinfection, cells were placed in the

upper chamber of a transwell, and either medium

alone or medium containing CCL19 or SDF1a was

put into the lower chamber. After 1 hr, the per-

centages of T cells that migrated towards the

lower chamber in response to medium or ligand

relative to total cells stained (input) were calcu-

lated. Data are depicted as the mean ± SEM and

are representative of four independent experi-

ments performed in duplicate and in different do-

nors (*p < 0.05, **p < 0.01, ***p < 0.001).

(D) CCRF-CEM cells transfected with GFP or

Vpu-GFP plasmids were placed in the upper

chamber of a transwell, and either medium or

CCL19 was put into the lower chamber. After 3 hr,

the number of GFP-expressing T cells that

were attracted toward the medium was calculated and is depicted as a migration index (MI). Data are represented as mean ± SEM of three independent ex-

periments performed in duplicate (*p < 0.05).

See also Figure S5.
Finally, to also determine whether Vpu was sufficient to induce

an impaired chemotactic response, CCRF-CEM cells were

nucleofected with expression plasmids encoding GFP or Vpu-

GFP. Twenty-four hours later, the cells were subjected to

in vitro transmigration assays. As shown in Figure 7D, Vpu-

GFP-expressing cells showed a reduced capacity to migrate

toward CCL19 relative to GFP-expressing cells (migration index

[MI] of 6 versus 12), indicating that Vpu alone was still able to

cause a CCR7-specific defect in cellular migration.

DISCUSSION

Naive and central memory CD4+ T cells are characterized by the

ability to continuously transition through secondary lymphoid
C

organs, where cognate antigen is expressed by professional

antigen-presenting cells. In order for T cells to correctly home

to peripheral lymphoid sites, cellular migration is orchestrated

by chemokines and chemokine receptors. The chemokine

receptor CCR7 and its two known ligands, CCL19 and CCL21,

are crucial factors in this process. Previous reports showed

that HIV-1 infection interferes with T cell recirculation, mostly

by accelerating T cell differentiation and promoting a CCR7low

phenotype (Pantaleo and Harari, 2006; Younes et al., 2003).

Perez-Patrigeon et al. (2009) found that chemotaxis triggered

by CCL19 was impaired in naive, central memory, and effector

memory T cells from HIV-infected patients, although they did

not find differences in CCR7 surface expression levels between

T cells of HIV-1-infected patients and those of healthy subjects.
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Thus, the findings by Perez-Patrigeon et al. may be in contradic-

tion to our observations in this study. However, one notable

difference between the two studies is that Perez-Patrigeon

et al. did not analyze CCR7 surface levels in a manner that

discriminated between infected and uninfected cells. It is also

worth noting that a recent report disputed the involvement of

CCR7 in the trafficking of memory CD4+ T cells from blood into

the lymph nodes (Vander Lugt et al., 2013).

Surprisingly, immunoprecipitation of CCR7 from cells ex-

pressing WT Vpu, VpuRD, or VpuA14F (with the latter two being

unable to downregulate CCR7) showed a physical interaction in

all cases. We surmised that the interaction between the two

proteins, although necessary, was not sufficient toward Vpu-

mediated modulation of CCR7. According to the solid-state

nuclear magnetic resonance structure of the HIV-1NL4-3 Vpu

TMD in lipid membranes (Marassi et al., 1999; Park et al.,

2003; Skasko et al., 2012), residues A14, A18, and W22 form a

diagonal line on the TM a-helix. Although previous studies impli-

cated these residues as potential points of contact between Vpu

and BST-2 (Kobayashi et al., 2011; Rong et al., 2009; Skasko

et al., 2012; Vigan and Neil, 2010), McNatt et al. (2013) recently

showed that such residues are responsible for maintaining the

overall structure of Vpu TMD, rather than constituting points of

interaction. Our experiments confirm that residues A14, W22,

and to a lesser extent A18 in Vpu are important for CCR7

downmodulation.

Alteration of immune cell functionality is a hallmark of many

viral infections. Specifically, CCR7 expression levels on DCs

have been found to be downregulated by cytomegalovirus infec-

tion (Moutaftsi et al., 2004) and by HHV-8 (Cirone et al., 2012),

with a consequent decrease in the ability of cells to migrate to

peripheral lymphoid organs and coordinate the immune

response. The data presented here suggest that in a similar

fashion, HIV-1 may inhibit migration of CD4+-infected T cells to

peripheral lymphoid tissues, possibly hindering the initiation of

effective immune responses.

EXPERIMENTAL PROCEDURES

Cells and Plasmids

For details on in vitro cultured TCM cells, see Supplemental Experimental

Procedures. The T-lymphoblastoid CCRF-CEM cell line was maintained in

RPMI complete (supplemented with 10% fetal bovine serum and 1% peni-

cillin-streptomycin-L glutamine). Human embryonic kidney 293T (HEK293T)

and HeLa cells were cultured in Dulbecco’s modified Eagle’s medium com-

plete. For a detailed description of the plasmids used in this work, see Supple-

mental Experimental Procedures. Studies involving primary CD4+ T cells were

covered under protocol #IRB_00067637 approved by the University of Utah

Institutional Review Board.

Transfections, Coimmunoprecipitation, and Immunoblots

For overexpression of Vpu, CCRF-CEM cells were nucleofected with pAcGFP

or pAcGFP-Vpu using the Amaxa Nucleofector Kit C (Lonza). For coimmuno-

precipitation, HEK293T cells were transfected via calcium phosphate with the

indicated plasmids and processed as explained in Supplemental Experimental

Procedures.

Flow Cytometry

Detection of both surface antigens and intracellular p24Gag was previously

described (Ward et al., 2009). Total levels of CCR7 or CD4 and p24Gag within

cells were detected by simultaneous staining with anti-APC-CCR7 or anti-
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APC-CD4 antibodies along with mouse-FITC-anti-p24. Surface levels of

BST-2 were analyzed by staining cells with anti-BST2 (NIH AIDS Reagent

Program; Dr. Klaus Strebel) and then staining cells with a goat anti-rabbit sec-

ondary antibody coupled to Alexa 647 (Molecular Probes, Invitrogen).

Tomeasure relative levels of p-ERK1/2, cells were stimulatedwith CCL19 for

5 min at 37�C. Cells were immediately fixed in 2% formaldehyde (Polyscien-

ces) and permeabilized in 90% ice-cold methanol. They were then labeled

with anti-p-ERK1/2 (Thr202/Tyr204), followed by staining with a goat anti-

rabbit secondary antibody coupled to Alexa 647.

Calcium Mobilization Assay

Intracellular calcium mobilization was measured in primary CD4+ T cells in-

fected with DHIV-HSA virus, encoding HSA/CD24 in place of Vpr, according

to the procedure described in Supplemental Experimental Procedures.

Immunofluorescence Microscopy

HeLa cells were transfected and stained as described in Supplemental

Experimental Procedures. Images were acquired on an Olympus FV-1000

using a 603 oil lens, and quantification was performed using the Velocity 3D

image analysis software (Perkin-Elmer).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.05.015.
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Sandberg, J.K., Andersson, S.K., Bächle, S.M., Nixon, D.F., and Moll, M.

(2012). HIV-1 Vpu interferencewith innate cell-mediated immunemechanisms.

Curr. HIV Res. 10, 327–333.

Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel, K.,

and Montal, M. (1996). Identification of an ion channel activity of the Vpu trans-

membrane domain and its involvement in the regulation of virus release from

HIV-1-infected cells. FEBS Lett. 398, 12–18.

Schubert, U., Antón, L.C., Bacı́k, I., Cox, J.H., Bour, S., Bennink, J.R., Orlow-

ski, M., Strebel, K., and Yewdell, J.W. (1998). CD4 glycoprotein degradation

induced by human immunodeficiency virus type 1 Vpu protein requires the

function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72,

2280–2288.

Schwartz, S., Felber, B.K., Benko, D.M., Fenyö, E.M., and Pavlakis, G.N.
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