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Abstract

We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator,
for a noncompact symmetric space of the complex type. For radial functions, we show that the
Segal–Bargmann transform is a unitary map onto a certainL2 space of meromorphic functions.
For general functions, we give an inversion formula for the Segal–Bargmann transform, involving
integration against an “unwrapped” version of the heat kernel for the dual compact symmetric
space. Both results involve delicate cancellations of singularities.
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1. Introduction

The Segal–Bargmann transform forRd [Se2,Se3,Se4,Ba] is a widely used tool in
mathematical physics and harmonic analysis. The transform is a unitary mapCt from
L2(Rd) ontoHL2(Cd , �t ), where�t is a certain Gaussian measure onCd (depending on
a positive parametert) and whereHL2 denotes the space of holomorphic functions that
are square integrable with respect to the indicated measure. (See Section 2 for details.)
From the point of view of harmonic analysis, one can think of the Segal–Bargmann
transform as combining information about a functionf (x) on Rd with information
about the Fourier transform̂f (�) into a single holomorphic function(Ctf )(x + i�).
From the point of view of quantum mechanics for a particle moving inRd , one can
think of the Segal–Bargmann transform as a unitary map between the “position Hilbert
space”L2(Rd) and the “phase space Hilbert space”HL2(Cd , �t ). In this setting, the
parametert can be interpreted as Planck’s constant. Conceptually, the advantage of
applying the Segal–Bargmann transform is that it gives a description of the state of the
particle that is closer to the underlying classical mechanics, because we now have a
function on the classical phase space rather than on the classical configuration space.
See Section 2, [Fo,H4], for more information about the Segal–Bargmann transform for
Rd and its uses.

In the paper [H1], Hall introduced a generalization of the Segal–Bargmann transform
in which the configuration spaceRd is replaced by a connected compact Lie group
K and the phase spaceCd is replaced by the complexificationKC of K. (See also
the expository papers [H4,H6,H9].) The complex groupKC can also be identified in a
natural way with the cotangent bundleT ∗(K), which is the usual phase space associated
to the configuration spaceK. A main result of Hall [H1] is a unitary mapCt from
L2(K) onto HL2(KC, �t ), where�t is a certain heat kernel measure on the complex
group KC. The transform itself is given by applying the time-t heat operator to a
function f in L2(K) and then analytically continuing the result fromK to KC. The
paper [H2] then gave an inversion formula forCt in which to recover the functionf
onK one integrates the holomorphic functionCtf over each fiber inT ∗(K)�KC with
respect to a suitable heat kernel measure. See also [KTX] for a study of the Segal–
Bargmann transform, defined in terms of the heat operator, on the Heisenberg group.

The motivation for the generalized Segal–Bargmann transform forK was work of
Gross in stochastic analysis, specifically the Gross ergodicity theorem [Gr] for the loop
group overK. See [GM,H6,H8,HS] for connections between the generalized Segal–
Bargmann transform and stochastic analysis. The generalized Segal–Bargmann trans-
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form has also been used in the theory of loop quantum gravity[A,Das1,Das2,Th,TW1,
TW2]. It has a close connection to the canonical quantization of(1 + 1)-dimensional
Yang–Mills theory [DH,H5,Wr]. It can be understood from the point of view of geo-
metric quantization [FMMN1,FMMN2,H7]. Most recently, it has been used in studying
nonabelian theta functions and the conformal blocks in WZW conformal field theory
[FMN1,FMN2]. (See also [Ty].) See the paper [H6] for a survey of the generalized
Segal–Bargmann transform and related notions.

In the paper [St], Stenzel extended the results of [H1,H2] from the case of compact
Lie groups to the case of general compact symmetric spaces. We give here a schematic
description of Stenzel’s results; see Section 5 for details. IfX is a compact symmetric
space, there is a natural “complexification”XC of X. There is a natural diffeomor-
phism between the cotangent bundleT ∗(X) and the complexificationXC. Under this
diffeomorphism, each fiber inT ∗(X) maps to a set insideXC that can be identified
with the dual noncompact symmetric space toX. (For example, ifX is the d-sphere
Sd, then each fiber inT ∗(Sd) gets identified with hyperbolicd-space.) Thus the com-
plexified symmetric spaceXC is something like a product of the compact symmetric
spaceX and the dual noncompact symmetric space. Since each fiber inT ∗(X)�XC

is identified with this noncompact symmetric space, we can put on each fiber theheat
kernel measurefor that noncompact symmetric space (based at the origin in the fiber).

The Segal–Bargmann transform now consists of applying the time-t heat operator to
a function inL2(X) and analytically continuing the resulting function toXC. The first
main result is an inversion formula: to recover a function from its Segal–Bargmann
transform, one simply integrates the Segal–Bargmann transform over each fiber in
T ∗(X)�XC with respect to the appropriate heat kernel measure. The second main
result is an isometry formula: theL2 norm of the original function can be computed by
integrating the absolute-value squared of the Segal–Bargmann transform, first over each
fiber using the heat kernel measure and then over the base with using the Riemannian
volume measure. See Theorem 10 in Section 5 for details. See Section 3.4 of [H6]
for more information on the transform for general compact symmetric spaces and
[H9,HM1,HM2,KR1,KR2] for more on the special case in whichX is a d-sphere.

Since we now have a Segal–Bargmann transform for the Euclidean symmetric space
Rd and for compact symmetric spaces, it is natural to consider also the case of non-
compact symmetric spaces. Indeed, since the duality relationship between compact and
noncompact symmetric spaces is a symmetric one, it might seem at first glance as if one
might be able to simply reverse the roles of the compact and the noncompact spaces
to obtain a transform starting on a noncompact symmetric space. Unfortunately, further
consideration reveals significant difficulties with this idea. First, ifX is a noncompact
symmetric space, then the fibers inT ∗(X) are not compact and therefore cannot be
identified with the compact dual toX. (For example, ifX is hyperbolicd-space, then
the fibers inT ∗(X) are diffeomorphic toRd and not toSd.) Second, if one applies the
time-t heat operator to a function on a noncompact symmetric spaceX and then tries
to analytically continue, one encounters singularities that do not occur in the compact
case.

The present paper is a first step in overcoming these difficulties. (See the end of this
section for other recent work in this direction.) We consider noncompact symmetric
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spaces of the “complex” type, namely, those that can be described asG/K, whereG
is a connectedcomplexsemisimple group andK is a maximal compact subgroup of
G. (The simplest example is hyperbolic 3-space.) The complex case is nothing but the
noncompact dual of the compact group case. For noncompact symmetric spaces of the
complex type, we obtain two main results.

Our first main result is an isometry formula for the Segal–Bargmann transform on the
space of radial functions. We state this briefly here; see Section3 for details. Consider a
functionf in L2(G/K) (G complex) that is “radial” in the symmetric space sense, that
is, invariant under the left action ofK onG/K. Let F = et�/2f and consider the map

X → F(eX), X ∈ p, (1)

where the Lie algebrag of G is decomposed in the usual way asg = k+ p. We show
that map (1) has ameromorphic(but usually not holomorphic) extension fromp to
pC := p + ip. The main result of Section 3 is that there exist a constantc and a
holomorphic function� on pC such that for all radialf in L2(G/K) we have

∫
G/K

|f (x)|2 dx = ect
∫
pC

∣∣∣F(eX+iY )
∣∣∣2 |�(X + iY )|2 e

−|Y |2/t

(�t)d/2
dX dY, F = et�/2f. (2)

There is a “cancellation of singularities” occurring here: although in most cases the
function F(eX+iY ) is singular at certain points, the singularities occur only at points
where�(X+ iY ) is zero. Thus, the singularities inF(eX+iY ) are canceled by the zeros
in the density of the measure occurring on the right-hand side of (2). Furthermore, by
considering radial functions, we are introducing a distinguished basepoint (the identity
coset). Thus, in the radial case, we are able to use the complexified tangent space at
the basepoint (namely,pC) as our “complexification” ofG/K, and we simply do not
attempt to identifypC with T ∗(G/K). Of course, because we are treating the identity
coset differently from other points, this approach is notG-invariant and is not the
correct approach for the general (nonradial) case.

Our second main result is an inversion formula for the Segal–Bargmann transform
of general (not necessarily radial) functions. We state this briefly here; see Section 4
for details. We continue to assume thatG is a connectedcomplexsemisimple group
andK a maximal compact subgroup. For each pointx in G/K, we have the geometric
exponential map expx taking the tangent spaceTx(G/K) into G/K. Let f be in
L2(G/K) and letF = et�/2f. Then, for eachx ∈ G/K, the function

X → F(expx X), X ∈ Tx(G/K), (3)

admits an analytic continuation to some ball around zero. For eachx ∈ G/K, define

L(x,R) = ect/2
∫
Y∈Tx (G/K)|Y | �R

F (expx iY )�(iY )
e−|Y |2/2t

(2�t)d/2
dY
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for all sufficiently smallR. (Here the constantc and the function� are the same as
in the isometry formula (2).)

Our main result is that for eachx in G/K, L(x,R) admits a real-analytic continuation
in R to (0,∞) and, if f is sufficiently regular,

f (x) = lim
R→∞ L(x,R).

We may write this informally as

f (x) = “ lim
R→∞ ”ect/2

∫
|Y |�R

F(expx iY )�(iY )
e−|Y |2/2t

(2�t)d/2
dY, (4)

where the expression “limR→∞” means that we interpret the right-hand side of (4)
literally for small R and then extend to largeR by means of analytic continuation.

As in the isometry formula for radial functions, there is a cancellation of singularities
here that allowsL(x,R) to extend analytically to(0,∞), even thoughF(expx iY )
itself may have singularities for largeY. Because of the rotationally invariant nature
of the integral in (4), the integral only “sees” the part of the functionF(expx iY ) that
is rotationally invariant. Taking the rotationally invariant part eliminates some of the
singularities inF(expx iY ). The remaining singularities are canceled by the zeros in
the function�(iY ).

The measure against which we are integratingF(expx iY ) in (4), namely,

d�t (Y ) = ect/2�(iY )
e−|Y |2/2t

(2�t)d/2
dY

is closely related to the heat kernel measure on thecompact symmetric space dual
to G/K. Specifically, it is an “unwrapped” version of that heat kernel measure, in a
precise sense described in Section4.

The papers [H2,St] use the inversion formula for the Segal–Bargmann transform (for
compact groups and compact symmetric spaces, respectively) to deduce the isometry
formula. Since we now have an inversion formula for the Segal–Bargmann transform
for noncompact symmetric spaces of the complex type, it is reasonable to hope to
obtain an isometry formula as well, following the line of reasoning in [H2,St]. The
hoped-for isometry formula in the complex case would involve integrating|F |2 over
a tube of radiusR (with respect to the appropriate measure) and then analytically
continuing with respect toR. Since, however, there are many technicalities to attend
to in carrying out this idea, we defer this project to a future paper. (See [H9] for an
additional discussion of this matter.)

Meanwhile, it would be desirable to extend the results of this paper to other sym-
metric spaces of the noncompact type. Unfortunately, the singularities that occur in
general are worse than in the complex case and are not as easily canceled out. We
discuss the prospects for other symmetric spaces in Section 6.
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We conclude this introduction by comparing our work here to other types of Segal–
Bargmann transform for noncompact symmetric spaces. First, Ólafsson and Ørsted[OO]
have introduced another sort of Segal–Bargmann transform for noncompact symmetric
spaces, based on the “restriction principle.” This has been developed in [DOZ1,DOZ2]
and used to study Laplace transforms and various classes of orthogonal polynomials
connected to noncompact symmetric spaces. This transform does not involve the heat
operator and is thus not directly comparable to the Segal–Bargmann transform in this
paper.

Meanwhile, Krötz, Ólafsson, and Stanton (see [KS1,KS2,KOS]) have considered the
Segal–Bargmann transform for a general symmetric spaceG/K of the noncompact type
(not necessarily of the complex type), defined in the same way as here, in terms of the
heat equation. In [KS2], Krötz and Stanton identify the maximal domain insideGC/KC

to which a function of the formet�/2f can be analytically continued. Then in [KOS],
Krötz, Ólafsson, and Stanton give an isometry result identifying the image ofL2(G/K)

under the Segal–Bargmann transform in terms of certain orbital integrals. There is also
a cancellation of singularities in their approach, in that the pseudodifferential operator
D in Theorem 3.3 of [KOS] is used to extend the orbital integrals into the range where
the function involved becomes singular. It remains to be worked out how the results
of [KOS] relate, in the complex case, to the isometry result suggested by the results
we obtain in this paper.

2. Review of theRd case

We give here a very brief review of results concerning the Segal–Bargmann transform
for Rd . We do this partly to put into perspective the results for noncompact symmetric
spaces and partly because we will use theRd results in our analysis of the symmetric
space case. See also Section 5 for a description of Stenzel’s results for the case of
compact symmetric spaces.

In the Rd case, we consider the “invariant” form of the Segal–Bargmann transform,
which uses slightly different normalization conventions from Segal [Se4] or Bargmann
[Ba]. (See [H4] or [H3] for a comparison of normalizations.) The transform is the map
Ct from L2(Rd) into the spaceH(Cd) of holomorphic functions onCd given by

(Ctf )(z) =
∫

Rd
(2�t)−d/2e−(z−x)2/2t f (x) dx, z ∈ Cd .

Here (z− x)2 = (z1 − x1)
2 + · · · + (zd − xd)

2 and t is an arbitrary positive parameter.
It is not hard to show that the integral is convergent for allz ∈ Cd and the result is a
holomorphic function ofz.

Recognizing that the function(2�t)−d/2e−(z−x)2/2t is (for z in Rd ) the heat kernel
for Rd , we may also describeCtf as

Ctf = analytic continuation ofet�/2f.
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Here the analytic continuation is fromRd to Cd with t fixed. We take the Laplacian
� = ��2

/�x2
k to be a negative operator, so thatet�/2 is the forward heat operator.

Theorem 1 (Segal–Bargmann). Let f be inL2(Rd) and let F = Ctf . Then we have
the following results:

1. The inversion formula.If f is sufficiently regular we have

f (x) =
∫

Rd
F (x + iy)

e−y2/2t

(2�t)d/2
dy (5)

with absolute convergence of the integral for all x.
2. The isometry formula.For all f in L2(Rd) we have

∫
Rd

|f (x)|2 dx =
∫

Rd

∫
Rd

|F(x + iy)|2 e
−y2/t

(�t)d/2
dy dx. (6)

3. Thesurjectivity theorem.For any holomorphic function F onCd such that the integral
on the right-hand side of(6) is finite, there exists a unique f inL2 with F = Ctf .

The reason for the “sufficiently regular” assumption in the inversion formula is to
guarantee the convergence of the integral on the right-hand side of (5). It suffices to
assume thatf hasn derivatives inL2(Rd), with n > d/2. (See Section 2.1 of [H9].)

The isometry and surjectivity formulas are obtained by adapting results of Segal
[Se4] or Bargmann [Ba] to our normalization of the transform. The inversion formula
is elementary (e.g. [H9]) but does not seem to be as well known as it should be. The
inversion formula is implicit in Theorem 3 of [Se1] and is essentially the same as
the inversion formula for theS-transform in [Ku, Theorem 4.3]. In quantum mechan-
ical language, the inversion formula says that the “position wave function”f (x) can
be obtained from the “phase space wave function”F(x + iy) by integrating out the
momentum variables (with respect to a suitable measure).

It should be noted that becauseF(x+iy) is holomorphic, there can be many different
inversion formulas, that is, many different integrals involvingF(x + iy) all of which
yield the valuef (x). For example, we may think of the heat operator as a unitary
map fromL2(Rd) to the Hilbert space of holomorphic functions for which the right-
hand side of (6) is finite. Then we may obtain one inversion formula by noting that
the adjoint of a unitary map is its inverse. The resulting “inverse = adjoint” formula
is sometimes described as “the” inversion formula for the Segal–Bargmann transform.
Nevertheless, the inversion formula in (5) isnot the one obtained by this method.

In light of what we are going to prove in Section 3, it is worth pointing out that we
could replace “holomorphic” with “meromorphic” in the statement of Theorem 1. That
is, we could describeF as the meromorphic extension ofet�/2f from Rd to Cd (if F
is holomorphic then it is certainly meromorphic), and we could replace the surjectivity
theorem by saying that ifF is any meromorphic function for which the integral on the
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right-hand side of (6) is finite arises as the meromorphic extension ofet�/2f for some
f in L2(Rd). After all, since the density in (6) is strictly positive everywhere, such an
F would have to be locally square-integrable with respect to Lebesgue measure, and
it is not hard to show that a meromorphic function with this property must actually
be holomorphic. (This can be seen from the Weierstrass Preparation Theorem [GH, p.
8].) That is, under the assumption that the right-hand side of (6) is finite, meromorphic
and holomorphic are equivalent.

3. Isometry for radial functions

In this section we describe an isometric version of the Segal–Bargmann transform
for “radial” functions on a noncompact symmetric spaceX of the “complex type”
(e.g., hyperbolic 3-space). We give two different forms of this result. The first involves
integration over the complexified tangent space to the symmetric space at the basepoint.
The second involves integration over the complexified tangent space to the maximal
flat at the basepoint. Both results characterize the image under the Segal–Bargmann
transform of the radial subspace ofL2(X) as a certain holomorphicL2 space of
meromorphic functions. In Section 6, we discuss the prospects for extending these
results to nonradial function and to other symmetric spaces of the noncompact type.

If f is a function on a noncompact symmetric spaceX = G/K, then we wish to
define the Segal–Bargmann transform off to be some sort of analytic continuation
of the functionF := et�/2f. The challenge in the noncompact case is to figure out
precisely what sort of analytic continuation is the right one. One could try to analytically
continue toGC/KC, but examples show thatF does not in general admit an analytic
continuation toGC/KC. Alternatively, one could consider the maximal domain� to
which functions of the formF = et�/2f actually have an analytic continuation. This
domain was identified by Krötz and Stanton [KS2, Theorem 6.1] as the Akhiezer–
Gindikin “crown domain” in GC/KC. Unfortunately, it seems that there can be no
measure� on � such that the map sendingf to the analytic continuation ofF is an
isometry ofL2(G/K) into L2(�, �). (See the discussion in [KOS, Remark 3.1].) Thus,
to get an isometry result of the sort that we have in theRd case and the compact case,
we must venture beyond the domain� into the region whereF has singularities and
find a way to deal with those singularities.

In this section, we assume that the symmetric space is of the complex type and
that f (and thus alsoF ) is radial. We then writeF in exponential coordinates at
the basepoint, which makesF a function on the tangent space at the basepoint. We
show thatF admits ameromorphicextension to the complexified tangent space at the
basepoint. This meromorphic extension ofF is then square-integrable with respect to
a suitable measure; the zeros in the density of the measure cancel the singularities in
F. We obtain in this way an isometry of the radial part ofL2(X) onto a certainL2

space of meromorphic functions.
In the next section, we consider the more complicated case of nonradial functions.

We obtain there an inversion formula involving a more subtle type of cancellation of
singularities.
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The set-up is as follows. We letG be a connectedcomplexsemisimple group and
K a maximal compact subgroup ofG. SinceG is complex,K will be a compact real
form of G. We decomposeg as g = k + p, where p = ik. We then choose an inner
product onp that is invariant under the adjoint action ofK. We consider the manifold
G/K and we think of the tangent space at the identity coset toG/K as the spacep.
There is then a uniqueG-invariant Riemannian structure onG/K whose value at the
identity is the given inner product onp. ThenG/K is a Riemannian symmetric space
of the “complex type.”

We emphasize that the word “complex” here doesnot mean thatG/K is a complex
manifold but rather thatG is a complex Lie group. The complex structure onG will
play no direct role in any definitions or proofs; for example, we will never consider
holomorphic functions onG. Nevertheless, the complex case is quite special among all
symmetric spaces of the noncompact type (i.e., compared to spaces of the formG/K

with G real semisimple andK maximal compact). What is special about the complex
case is not the complex structure per se, but rather the structure of the root system
for G/K in this case: it is a reduced root system in which all roots have multiplicity
2. Still, it is easier to say “complex” than to say “reduced root system with all roots
having multiplicity 2”! The simplest example of a noncompact symmetric space of the
complex type is hyperbolic 3-space, and this is the only hyperbolic space that is of the
complex type.

We will make use of special intertwining formulas for the Laplacian that hold only in
the complex case. (See the proof of Theorem2 for a discussion of why the intertwining
formulas hold only in this case.) Nevertheless, there is hope for obtaining similar but
less explicit results for other symmetric spaces of the noncompact type. See Section 6
for a discussion.

We consider the geometric exponential mapping forG/K at the identity coset. This
coincides with the group-theoretical exponential mapping in the sense that if we identify
the tangent space at the identity coset withp, then the geometric exponential ofX ∈ p
is just the coset containing the exponential ofX in the Lie-group sense. In this section,
we will use the notationeX to denote the geometric exponential at the identity coset
of a vectorX in p. We let � be the square root of the Jacobian of the exponential
mapping at the identity coset. This is the positive function satisfying

∫
G/K

f (x) dx =
∫
p
f (eX)�(X)2 dX, (7)

wheredx is the Riemannian volume measure onG/K and wheredX is the Lebesgue
measure onp (normalized by the inner product). Explicitly,� is the unique Ad-K-
invariant function onp whose restriction to a maximal commutative subspacea is
given by

�(H) =
∏

�∈R+

sinh�(H)

�(H)
. (8)
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Here R is the set of (restricted) roots forG/K (relative to a) and R+ is the set
of positive roots relative to some fixed Weyl chamber ina. Expression (8) may be
obtained by specializing results [He3, Theorem IV.4.1] for general symmetric spaces
of the noncompact type to the complex case, in whichall roots have multiplicity two.
(Compare Eq. (14) in Section V.5 of [He1].)

We consider functions onG/K that are “radial” in the symmetric space sense,
meaning invariant under the left action ofK. (These functions are not necessarily
functions of the distance from the identity coset, except in the rank-one case.) We give
two isometry results, one involving integration overpC := p + ip and one involving
integration overaC := a+ ia.

Theorem 2. Let f be a radial function inL2(G/K) (G complex) and letF = et�G/K/2f .
Then the function

X → F(eX), X ∈ p (9)

has a meromorphic extension fromp to pC and this meromorphic extension satisfies

∫
G/K

|f (x)|2 dx = ect
∫
pC

∣∣∣F(eX+iY )
∣∣∣2 |�(X + iY )|2 e

−|Y |2/t

(�t)d/2
dY dX. (10)

Here c is the norm-squared of half the sum(with multiplicities) of the positive roots
for G/K, and d = dim(G/K).

Conversely, suppose� is a meromorphic function onpC that is invariant under the
adjoint action of K and that satisfies

ect
∫
pC

|�(X + iY )|2 |�(X + iY )|2 e
−|Y |2/t

(�t)d/2
dY dX < ∞. (11)

Then there exists a unique radial function f inL2(G/K) such that

�(X) = (et�G/K/2f )(eX)

for all X ∈ p.

On the right-hand side of (10), the expressionF(eX+iY ) means the meromorphic
extension of the functionX → F(eX), evaluated at the pointX + iY. The proof will
show thatF(eX+iY )�(X + iY ) is holomorphic (not just meromorphic) onpC. This
means that althoughF(eX+iY ) will in most cases have singularities, these singularities
can be canceled out by multiplying by�(X+ iY ). This cancellation of singularities is
the reason that the integral on the right-hand side of (10) is evenlocally finite. Note
that in contrast to theRd case (where the density of the relevant measure is nowhere
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zero), there exist here meromorphic functionsF that are not holomorphic and yet are
square-integrable with respect to the measure in (10). Theorem 2 holds also for the
Euclidean symmetric spaceRd , where in that caseeX+iY = X+ iY, c = 0, and� ≡ 1,
so that we have (6) in the case wheref happens to be radial.

Observe that iff is radial, thenF = et�/2f is also radial. ThusF is determined by
its values on a “maximal flat”A := expa, wherea is any fixed maximal commutative
subspace ofp. Thus it is reasonable to hope that we could replace the right-hand side
of (10) with an expression involving integration only overaC. Our next result is of
this sort. We fix a Weyl chamber ina and letR+ be the positive roots relative to this
chamber. We let� be the function ona given by

�(H) = �(H)
∏

�∈R+
�(H) =

∏
�∈R+

sinh�(H).

This function has an analytic continuation toaC, also denoted�.

Theorem 3. Let f be a radial function inL2(G/K) (G complex) and letF = et�G/K/2f.

Then the function

H → F(eH ), H ∈ a

has a meromorphic extension toaC and this meromorphic extension satisfies

∫
G/K

|f (x)|2 dx = Bect
∫
aC

∣∣∣F(eH+iY )
∣∣∣2 |�(H + iY )|2 e

−|Y |2/t

(�t)r/2
dY dH, (12)

where r = dima is the rank ofG/K and c is as in Theorem2. Here B is a constant
independent of f and t.

Conversely, suppose� is a meromorphic function onaC that is invariant under the
action of the Weyl group and that satisfies

Bect
∫
aC

|�(H + iY )|2 |�(H + iY )|2 e
−|Y |2/t

(�t)r/2
dY dH < ∞. (13)

Then there exists a unique radial function f inL2(G/K) such that

�(H) = (et�G/K/2f )(eH )

for all H ∈ a.

In the dual compact case, an analogous result was established by Florentino et al.
[FMN2, Theorem 2.2] and is described in Theorem 12 in Section 5.



B.C. Hall, J.J. Mitchell / Journal of Functional Analysis 227 (2005) 338–371 349

Note that the functionF(eX+iY ) is invariant under the adjoint action ofKC on pC.

Since almost every point inpC can be mapped intoaC by the adjoint action ofKC,
it should be possible to show directly that the right-hand side of (12) is equal to the
right-hand side of (10). Something similar to this is done in the compact group case
in [FMN2, Theorem 2.3]. However, we will follow a different approach here using
intertwining formulas.

Proof of Theorem 2. For radial functions in the complex case we have a very special
“intertwining formula” relating the non-Euclidean Laplacian�G/K for G/K and the
Euclidean Laplacian�p for p. Let us temporarily identifyp andG/K by means of the
exponential mapping, so that it makes sense to apply both�G/K and �p to the same
function. Then the intertwining formula states that (for radial functions in the complex
case)

�G/Kf = 1

�
[�p − c](�f ), (14)

wherec is the norm-squared of half the sum (with multiplicities) of the positive roots
for G/K. (See Proposition V.5.1 in[He1] and the calculations in the complex case on
p. 484.)

One way to prove identity (14) is to first verify it for spherical functions, which are
known explicitly in the complex case, and then build up general radial functions from
the spherical functions. A more geometric approach is to work with the bilinear form
associated to the Laplacian, namely,

D(f, g) :=
∫
G/K

f (x)�g(x) dx = −
∫
G/K

∇f (x) ·%g(x) dx, (15)

wheref and g are, say, smooth real-valued functions of compact support. Iff and g
are radial, then at each point%f and%g will be tangent to the maximal flat, since
the tangent space to a genericK-orbit is the orthogonal complement of the tangent
space to the flat. From this, it is not hard to see that theEuclideangradients off and
g, viewed as functions onp by means of the exponential mapping, coincide with the
non-Euclidean gradients.

Thinking of %f and%g as Euclidean gradients, let us multiply and divide in (15)
by the Jacobian of the exponential mapping, thus turning the integral into one overp

with respect to Lebesgue measure. If we then do a Euclidean integration by parts onp,

we will get one term involving the Laplacian forp and one term involving derivatives
of the Jacobian�2 of the exponential mapping. With a bit of manipulation, this leads
to an expression of the same form as (14), except with the constantc replaced by the
function� := �p(�)/�. (See Proposition V.5.1 in [He1] or Theorem II.3.15 in [He2].)

Now, up to this point, the argument is valid for an arbitrary symmetric space of the
noncompact type. What is special about the complex case is that in this case [He1,
p. 484], we have that�p(�) = c�, so that� is a constant. It turns out that having
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�p(�) be a constant multiple of� is equivalent to having�G/K(�
−1) be a constant

multiple (with the opposite sign) of�−1. It is shown in detail in[HSt, Section 2] that
this last condition holds precisely when we have a reduced root system with all roots
of multiplicity 2, that is, precisely in the complex case.

Meanwhile, formally exponentiating (14) would give

et�G/K/2f = 1

�
e−ct/2et�p/2(�f ). (16)

Indeed, (16) holds for all radial functionsf in L2(G/K), in which case�f is an
Ad-K-invariant function inL2(p). It is not hard to prove that (16) follows from (14),
once we have established that in the Hilbert space ofL2 radial functions (on either
G/K or p), the Laplacian is essentially self-adjoint onC∞ radial functions of compact
support. To prove the essential self-adjointness, we start with the well-known essential
self-adjointness of the Laplacian onC∞

c , as an operator on the fullL2 space. We then
note that the projection onto the radial subspace (again, on eitherG/K or p) commutes
with the Laplacian and preserves the space ofC∞ functions of compact support. From
this, essential self-adjointness onC∞ radial functions of compact support follows by
elementary functional analysis.

Let us rewrite (16) as

et�p/2(�f ) = ect/2�et�G/K/2f (17)

and then apply theEuclideanSegal–Bargmann transform forp to the function�f in
L2(p). The properties of this transform tell us thatet�p/2(�f ) has an entire analytic
continuation topC and that

∫
p
|�(X)f (X)|2 dX =

∫
pC

∣∣∣et�p/2(�f )(X + iY )

∣∣∣2 e−|Y |2/t

(�t)d/2
dX dY. (18)

Eq. (17) then tells us that�et�G/K/2f also has an analytic continuation topC and that

∫
p
|�(X)f (X)|2 dX = ect

∫
pC

∣∣∣�(X + iY )(et�G/K/2f )(X + iY )

∣∣∣2 e−|Y |2/t

(�t)d/2
dX dY.

(19)

Since the function�et�G/K/2f has a holomorphic extension topC, the function
et�G/K/2f has ameromorphicextension topC.

Let us now undo the identification ofp with G/K in (19). The functionsf and
et�G/K/2f are radial functions onG/K. To turn these functions into functions onp
we compose with the exponential mapping. So we now writef (eX) on the left-hand
side of (19) and(et�G/K/2f )(eX+iY ) on the right-hand side. We then apply (7) to the
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left-hand side of (19) to obtain

∫
G/K

|f (x)|2 dx = ect
∫
pC

∣∣∣�(X + iY )(et�G/K/2f )(eX+iY )
∣∣∣2 e−|Y |2/2

(�t)d/2
dX dY.

This establishes the first part of the theorem.
For the second part of the theorem, suppose that� is meromorphic onpC, radial

(that is, invariant under the adjoint action ofK on pC), and satisfies

ect
∫
pC

|�(X + iY )|2 |�(X + iY )|2 e
−|Y |2/t

(�t)d/2
dY dX < ∞.

Then the function�� is meromorphic onpC and square-integrable with respect to a
measure with a strictly positive density. This, as pointed out in Section2, implies that
�� is actually holomorphic onpC. Then by the surjectivity of the Segal–Bargmann
transform forp, there exists a unique functiong in L2(p) with et�p/2g = ��. Since the
Segal–Bargmann transform commutes with the action ofK, g must also be invariant
under the adjoint action ofK. If we let f be the unique function onG/K such that

f (eX) = ect/2g(X)

�(X)
,

thenf is radial and inL2(G/K). By (16) we have thatet�G/K/2f = 1
�e
t�p/2(g) = � on

p. This establishes the existence of the functionf in the second part of the theorem.
The uniqueness of thisf follows from the injectivity of the operatoret�G/K/2 on
L2(G/K). �

Proof of Theorem 3. The argument is similar to that in the preceding proof, except that
in this case we use an “intertwining formula” that relates the non-Euclidean Laplacian
on G/K to the Euclidean Laplacian ona. This formula says that (for radial functions
f in the complex case) we have

(�G/Kf )
∣∣
a

= 1

�
[�a − c](�fa), (20)

where c is the same constant as in (14) and wherefa is the restriction off to a.
(See [He2, Proposition II.3.10].) An important difference between this formula and (14)
above is that the function�fa is Weyl-anti-invariant, whereas the function�f in (14)
is Ad-K-invariant. Exponentiating (20) gives that

et�G/K/2f = 1

�
e−ct/2et�a/2(�fa) (21)
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and so

et�a/2(�fa) = ect/2�et�G/K/2f. (22)

From properties of the Segal–Bargmann transform fora we then see thatet�a/2(�fa)
has a holomorphic extension toaC and that

∫
a
|�(H)f (H)|2 dH =

∫
aC

∣∣∣et�a/2(�fa)(X + iY )

∣∣∣2 e−|Y |2/t

(�t)r/2
dX dY, (23)

where r = dima. Using (22) then gives

∫
a
|�(H)f (H)|2 dH = ect

∫
aC

∣∣∣(et�G/K/2f )(X + iY )�(X + iY )

∣∣∣2 e−|Y |2/t

(�t)r/2
dX dY.

We now recognize the left-hand side as being—up to an overall constant—theL2 norm
of f over G/K, written using (7) and then generalized polar coordinates forp [He2,
Theorem I.5.17]. We thus obtain the first part of the theorem. The unspecified constant
B in Theorem 3 comes from the constantc in Theorem I.5.17 of [He2].

For the second part of the theorem, assume that� is meromorphic, Weyl-invariant,
and satisfies (13). Then, as in the proof of Theorem 2,�� is holomorphic. In addition,
�� is Weyl-anti-invariant. There then exists a Weyl-anti-invariant functiong in L2(a)

with et�a/2g = ��. We now letf be the function onA := expa satisfying

f (eX) = ect/2g(X)

�(X)
.

Then f is Weyl-invariant onA and has a unique radial extension toG/K. In light of
the comments in the preceding paragraph, this extension off is square-integrable over
G/K. Then (21) tells us thatet�G/K/2f = �. �

4. Inversion formula

In this section, we continue to consider symmetric spacesG/K of the complex type.
However, we now consider functionsf on G/K that are not necessarily radial. We let
F = et�G/K/2f and we want to define the Segal–Bargmann transform as some sort of
analytic continuation ofF. In the radial case, we wroteF in exponential coordinates
at the basepoint and then meromorphically extendedF from p to pC. In the nonradial
case, this approach is not appropriate, because we no longer have a distinguished
basepoint. Instead we will analytically continueF to a neighborhood ofG/K inside
GC/KC.
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For eachx in G/K, we have the geometric exponential map expx : Tx(G/K) →
G/K. It is not hard to show that this can be analytically continued to a holomor-
phic map, also denoted expx , mapping the complexified tangent spaceTx(G/K)C into
GC/KC. We now consider tubesT R(G/K) in the tangent bundle ofG/K,

T R(G/K) = {(x, Y ) ∈ T (G/K) | |Y | < R } .

Then we letUR be the set inGC/KC given by

UR =
{

expx(iY )
∣∣∣(x, Y ) ∈ T R(G/K)

}
.

Here, expx(iY ) refers to the analytic continuation of the exponential map atx. (In the
Rd case, expx(iy) would be nothing butx + iy.)

It can be shown that for all sufficiently smallR, UR is an open set inGC/KC and
the map(x, Y ) → expx(iY ) is a diffeomorphism ofT R(G/K) onto UR. The complex
structure onT R(G/K) obtained by identification withUR is the “adapted complex
structure” of [GS1,GS2,LS,Sz1]. Furthermore, Krötz and Stanton have shown that for
any f in L2(G/K), the functionF = et�G/K/2f has an analytic continuation toUR,
for all sufficiently smallR [KS2, Theorem 6.1]. (These results actually hold for arbi-
trary symmetric spaces of the noncompact type, not necessarily of the complex type.)
We think of the analytic continuation ofF to UR as the Segal–Bargmann transform
of f .

Our goal in this section is to give an inversion formula that recoversf from the
analytic continuation ofF. In analogy to theRd case and the case of compact sym-
metric spaces, this should be done by integratingF over the fibers inUR�T R(G/K).

Something similar to this is done by Leichtnam et al. [LGS], in a very general setting.
However, in [LGS, Theorem 0.3] there is a term involving integration over the bound-
ary of the tube of radiusR. This boundary term involveses�/2f, for all s < t, and
an integration with respect tos. This term is undesirable for us because we wish to
think of t as fixed. In the case of compact symmetric spaces, Stenzel [St] showed that
the boundary term in [LGS] could be removed by letting the radiusR tend to infinity,
thus leading to the inversion formula described in Section 5.

Now, our results here will not be based on the work of [LGS]. Nevertheless, Leicht-
nam et al. [LGS] and Stenzel [St] suggest that it is not possible to get an inversion
formula of the sort we want by working with one fixed finiteR; rather, we need to
let R tend to infinity. Unfortunately, (1) the map(x, Y ) → expx(iY ) ceases to be a
diffeomorphism ofT R(G/K) with UR for largeR, and (2) the functionF = et�G/K/2f

does not in general have a holomorphic (or even meromorphic) extension toUR for
large R. For noncompact symmetric spaces of the complex type, we will neverthe-
less find a way to letR tend to infinity, by means of a cancellation of singularities.
This leads to an inversion formula that is analogous to what we have in the com-
pact and Euclidean cases. These results also lead to a natural conjecture of what the
isometry formula should be in this setting, something we hope to address in a future
paper.
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4.1. Inversion for radial functions at identity coset

Suppose thatf is a radial function inL2(G/K). Then we may use the intertwining
formula (17) and the inversion formula (5) in Theorem 1 to obtain the following.
As in the previous section, we let� denote the square root of the Jacobian of the
exponential mapping forG/K and we letc denote the norm-squared of half the sum
(with multiplicities) of the positive roots forG/K.

Theorem 4. Let f be a sufficiently regular radial function inL2(G/K) (G complex)
and letF = et�G/K/2f. Then

f (x0) = ect/2
∫
p
F(eiY )�(iY )

e−|Y |2/2t

(2�t)d/2
dY, (24)

with absolute convergence of the integral. Herex0 = e0 is the identity coset inG/K.

Specifically, sufficiently regular may be taken to mean thatf has n derivatives in
L2(X) (with respect to the Riemannian volume measure) for somen > d/2. Note that
the proof of Theorem2 shows that the functionX → F(eX)�(X) has an entire analytic
continuation topC. Thus the expressionF(eiY )�(iY ) is well defined and nonsingular
on all of p.

At first glance, it may seem as if this inversion formula is not very useful, since it
applies only to radial functions and then gives only the value off at the identity coset.
Nevertheless, we will see in the next subsection that this result leads to a much more
general inversion formula that applies to not-necessarily-radial functions at arbitrary
points.

Let us think about how this result compares to the inversion formula that holds for
the compact symmetric spaceU/K that is dual toG/K (where, sinceG/K is of the
complex type,U/K is isometric to a compact Lie group). In (24), the meromorphically
continued functionF(eiY ) is being integrated against the signed measure given by

d�t (Y ) := ect/2�(iY )
e−|Y |2/2t

(2�t)d/2
dY, Y ∈ p. (25)

By analogy with the compact case (Theorem10 in the special form of Theorem 11),
we would expect that the (signed) measure�t should be the heat kernel measure at
the identity coset for thecompact symmetric spaceU/K dual to G/K, written in
exponential coordinates. Clearly, this cannot be precisely true, first, because one does
not have global exponential coordinates on the compact symmetric space and, second,
because the density of the measure in (25) assumes negative values, whereas the heat
kernel measure is a positive measure.

Nevertheless, the signed measure in (25) turns out to be very closely related to the
heat kernel measure forU/K. Specifically, thepush-forwardof the measure (25) under
the exponential mapping forU/K is precisely the heat kernel measure (at the identity
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coset) forU/K. Thus (25) itself may be thought of as an “unwrapped” version of
the heat kernel forU/K, where we think of the exponential map as “wrapping” the
tangent space (in a many-to-one way) aroundU/K. What is going on is that the heat
kernel at a pointx in U/K may be expressed as a sum of contributions from all of the
geodesics connecting the identity coset tox. The quantity in (25) is what we obtain by
breaking apart those contributions, thus obtaining something on the space of geodesics,
that is, on the tangent space at the identity coset. Although some geodesics make a
negative contribution to the heat kernel, the heat kernel itself (obtained by summing
over all geodesics) is positive at every point.

Theorem 5. We may identifyp with the tangent space at the identity coset toU/K
in such a way that the following holds: The push-forward of the signed measure�t in
(25) under the exponential mapping forU/K coincides with the heat kernel measure
for U/K at the identity coset.

Let us now recall the construction [He3, Section V.2] ofU/K and explain howp is
identified with the tangent space toU/K at the identity coset. LetGC be the unique
simply connected Lie group whose Lie algebra isgC. Let G̃ be the connected Lie
subgroup ofGC whose Lie algebra isg. For notational simplicity, let us assume that
the inclusion ofg into gC induces an isomorphism ofG with G̃. (Every symmetric
space of the noncompact type can be realized asG/K with G having this property.)
Let U be the connected Lie subgroup ofGC whose Lie algebra isu = k+ ip. Then
the connected Lie subgroup ofU with Lie algebrak is simply the groupK.

We consider the quotient manifoldU/K and we identify the tangent space at the
identity coset inU/K with p∗ := ip. If we use the multiplication byi map to identify
p with p∗, then we may transport the inner product onp to p∗. There is then a
uniqueU -invariant Riemannian metric onU/K coinciding with this inner product at
the identity coset. With this Riemannian metric,U/K becomes a simply connected
symmetric space of the compact type, and is called the “dual” of the symmetric space
G/K of the noncompact type. The duality construction is valid starting with any
symmetric space of the noncompact type, producing a symmetric space of the compact
type (and a very similar procedure goes from compact type to noncompact type). If
one begins with a noncompact symmetric space of the complex type, the dual compact
symmetric space will be isometric to a compact Lie group with a bi-invariant measure.

Proof of Theorem 4. Let us again identifyG/K with p by means of the exponential
mapping at the identity coset. Supposef is a radial function square-integrable with
respect to the Riemannian volume measure forG/K. Then �f is a radial function
square-integrable with respect to the Lebesgue measure forp. According to (17) in the
previous section, we have

et�p/2(�f ) = ect/2�et�G/K/2f. (26)

If �f is “sufficiently regular,” then we may apply the inversion formula for the Eu-
clidean Segal–Bargmann transform ((5) in Theorem 1) to the function�f. Noting that
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�(0) = 1, applying the inversion at the origin gives

f (0) = (�f )(0) = ect/2
∫
p
F(iY )�(iY )

e−|Y |2/2t

(2�t)d/2
dY,

with absolute convergence of the integral, whereF is the meromorphic extension
of et�G/K/2f. To undo the identification ofG/K with p, we simply replacef (0)
with f (e0) and F(Y ) with F(eiY ). This establishes Theorem4, provided that�f is
“sufficiently regular.”

To address the regularity condition, we recall the intertwining formula (14). From this
formula it is not hard to show that iff is radial and in the domain of(cI −�G/K)n/2

for some n, then �f is in the domain of(cI − �p)n/2. However, the domain of
(cI−�G/K)n/2 is precisely the Sobolev space of functions onG/K havingn derivatives
in L2. Thus if f is in this Sobolev space withn > d/2, �f will be in the corresponding
Sobolev space onp and �f will indeed be “sufficiently regular” in the sense of [H9,
Section 2.1]. �

Proof of Theorem 5. We make use of the formula for the heat kernel function (at the
identity) on a compact Lie group, as originally obtained by Èskin [E] and rediscovered
by Urakawa [U]. We continue to use symmetric space notation forU/K, rather than
switching to group notation. Nevertheless, the following formula is validonly in the
case thatU/K is isometric to a compact Lie group (which is precisely whenG/K is
of the complex type). We think ofp∗ := ip as the tangent space toU/K at the identity
coset and we writeeY for the exponential (in the geometric sense) ofY ∈ p∗. For any
maximal commutative subspacea of p, the spacea∗ := ia is a maximal commutative
subspace ofp∗ (and every maximal commutative subspace ofp∗ arises in this way).
Given a fixed such subspacea∗, the setA∗ = exp(a∗) is a maximal flat inU/K andA∗
is isometric to a flat Euclidean torus. Let� ⊂ a∗ denote the kernel of the exponential
mapping fora∗, so that� is a lattice ina∗.

We now let 	t denote the fundamental solution at the identity coset to the heat
equation�u/�t = 1

2�u on U/K. The heat kernel formula asserts that for any maximal
commutative subspacea∗ of p∗ we have

	t (e
H ) = ect/2

(2�t)d/2

∑

∈�

j−1/2(H + 
)e−|H+
|2/2t , H ∈ a∗. (27)

The function 	t is the heat kernelfunction, that is, the density of the heat kernel
measure(at the identity coset) with respect to the (un-normalized) Riemannian volume
measure onU/K.

In this formula,d = dim(U/K) and c is the norm squared of half the sum (with
multiplicities) of the positive roots forU/K. Since (it is easily seen) the roots and
multiplicities for U/K are the same as forG/K, this definition of c agrees with the
one made earlier in this section. Meanwhile, the functionj is the Jacobian of the



B.C. Hall, J.J. Mitchell / Journal of Functional Analysis 227 (2005) 338–371 357

exponential mapping forU/K, j1/2 is the uniquesmooth square root ofj that is
positive near the origin, andj−1/2 is the reciprocal ofj1/2. Explicitly, for H in a∗ we
have

j1/2(H) =
∏

�∈R+

sin�(H)

�(H)
, (28)

whereR+ is a set of positive roots forU/K. Note thatj1/2 takes on both positive and
negative values; the nonnegative square root ofj is not a smooth function. Properly,
formula (27) is valid only forH such thatj (H) is nonzero, in which casej (H + 
)
will be nonzero for all
 ∈ �. However, since	t is continuous, we may then extend
the right-hand side by continuity to allH ∈ a∗.

Since the roots forU/K are the same as forG/K (under the obvious identification
of p∗ with p), comparing formula (8) with (28) gives that

j1/2(Y ) = �(iY ) (29)

for all Y in p�p∗.
Formula (27) is not quite what is given in [E] or [U], but can be deduced from those

papers. Our formula differs from the one in Urakawa by some factors of 2 having to
do with group notation versus symmetric space notation, some additional factors of 2
having to do with different normalizations of the heat equation, and an overall constant
coming from different normalizations of the measure onU/K.

Now, a “generic” point inU/K (in a sense to be specified later) is contained in a
uniquemaximal flatA∗. If x is contained in a unique maximal flatA∗ and if eY = x

for someY in p∗, then we must haveY ∈ a∗. (If Y were not ina∗, then Y would
be contained in some maximal commutative subspaceb∗ �= a∗ and thenx would be in
the maximal flatB∗ �= A∗.) Fix such a pointx and pick oneH in a∗ with eH = x.

Then the elements of the formY = H + 
, with 
 in �, representall the points inp∗
with eY = x. This means that for a generic pointx = eH , the sum in (27) may be
thought of as a sum over all the geodesics connecting the identity coset tox. If we
also make use of (29), we may rewrite (27) as

	t (x) = ect/2

(2�t)d/2

∑
{Y∈p∗|eY=x}

�−1(iY )e−|Y |2/2t , (30)

wheneverx in U/K is contained in a unique maximal flat.
We are now in a position to understand why Theorem5 holds. If we push forward

the signed measure in�t in (25), we will get a factor of 1/j (Y ) (= 1/�2(iY )) from
the change of variables formula, which will change the� in (25) to �−1. The density
of the pushed-forward measure at a generic pointx in U/K will then be a sum over{
Y |eY = x

}
of the density in (25) multiplied by 1/�(iY ), which is precisely what we

have in (30). This is what Theorem 5 asserts.
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To make the argument in the preceding paragraphs into a real proof, we need to
attend to a few technicalities, including an appropriate notion of “generic.” We call an
elementY of p∗ singular if there exist a maximal commutative subspacea containing
Y, a root � for a, and an integern such that�(Y ) = n�; we call Y regular otherwise.
We call an elementx of U/K singular if x can be expressed asx = eY for some
singular elementY ∈ p∗; we call x regular otherwise. It can be shown thateY is
regular wheneverY is regular (this is not immediately evident from the definitions). In
both p∗ andU/K, the singular elements form a closed set of measure zero. Thus in
pushing forward the signed measure�t , we may simply ignore the singular points and
regard the exponential mapping as taking the open set of regular elements inp∗ onto
the open set of regular elements inU/K. (See Sections VII.2 and VII.5 of[He3].)

If x is regular andx = eY , then (by definition)Y is regular and it follows that
j (Y ) is nonzero. Furthermore, ifx is regular then (it can be shown)x is contained
in a unique maximal flat. Thus (30) is valid for all regular elements. Furthermore, it
is easily seen that the functionj (Y ) = �(iY ) has constant sign on each connected
component of the set of regular elements inp∗. Finally, we note that the exponential
mapping is a local diffeomorphism near each regular element ofp∗, since the Jacobian
of the exponential mapping is nonzero at regular points. From all of this, it is not hard
to use a partition of unity to show that the argument given above is correct.�

4.2. Inversion for general functions

At each pointx in G/K, we have the geometric exponential mapping, expx, mapping
the tangent spaceTx(G/K) into G/K. We have also the square root of the Jacobian
of the exponential mapping for expx, denoted�x. Now, the action ofG gives a linear
isometric identification ofTx(G/K) with Tx0(G/K)�p. This identification is unique
up to the adjoint action ofK on p. Under any such identification, the function�x will
coincide with the function� = �x0 considered in the previous section. Thus, in a slight
abuse of notation, we let� stand for the square root of the Jacobian of expx at any
point x. For example, in the case of three-dimensional hyperbolic space (with the usual
normalization of the metric), we have�(X) = sinh|X| / |X| (for all x). For anyx, the
function � has an entire analytic continuation to the complexified tangent space atx.

Theorem 6. Let f be inL2(G/K) (G complex) and letF = et�G/K/2f . Then define

L(x,R) = ect/2
∫

|Y |�R

F(expx(iY ))�(iY )
e−|Y |2/2t

(2�t)d/2
dY, (31)

for all sufficiently small R.
Then for eachx, L(x,R) admits a real-analytic continuation in R to(0,∞). Fur-

thermore, if f is sufficiently regular, then

f (x) = lim
R→∞ L(x,R) (32)
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for all x in G/K. Thus we may write, informally,

f (x) = “ lim
R→∞ ”ect/2

∫
|Y |�R

F(expx iY )�(iY )
e−|Y |2/2t

(2�t)d/2
dY, (33)

with the understanding that the right-hand side is to be interpreted literally for small
R and by analytic continuation in R for large R.

As in the radial case, “sufficiently regular” may be interpreted to mean thatf has
n derivatives inL2(G/K), for somen with n > d/2.

Formula (33) should be thought of as the noncompact dual to the compact group
formula (37) in Theorem 11. Specifically (as in (29)),�(iY ) is nothing but the square
root of the Jacobian of the exponential mapping for the dual compact symmetric space
U/K, so that this factor in (33) is dual to the factor ofj (Y )1/2 in (37). The positive
constantc has the same value in (33) as in (37) (because the roots and multiplicities
for G/K and U/K are the same); the change frome−ct/2 in (37) to ect/2 in (33)
is part of the duality. (For example, the exponential factors are related to the scalar
curvature, which is negative inG/K and positive inU/K.)

Let us think about whyL(x,R) admits an analytic continuation inR, despite the
singularities that develop inF(expx(iY )) whenY is not small. The key observation is
that the signed measure in the definition ofL(x,R) (denoted�t in (25)) is radial. Thus
the integral in (31) only “sees” the part ofF(expx(iY )) that is radial as a function
of Y. Taking the radial part ofF(expx(iY )) eliminates many of the singularities. The
singularities that remain in the radial part ofF(expx(iY )) are then of a “universal”
nature, coming essentially from the singularities in the analytically continued spherical
functions for G/K. These remaining singularities are canceled by the zeros in the
function �(iY ). See Section 5 of the expository paper [H9] for further discussion of
the cancellation of singularities.

Proof. For anyx in G/K, we letKx denote the subgroup ofG that stabilizesx. (This
group is conjugate inG to K.) For any continuous function� on G/K, we let �(x)

denote the “radial part of� relative tox,” given by

�(x)(y) =
∫
Kx

�(k · y) dk,

wheredk is the normalized Haar measure onKx .
We wish to reduce the inversion formula in Theorem6 to the radial case in

Theorem 4. Of course, there is nothing special about the identity coset in Theorem 4;
the same result applies to functions that are radial with respect to any pointx in G/K.
Now, note that

f (x)(x) = f (x)
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and that (since the heat operator commutes with the action ofKx)

et�G/K/2(f (x)) = (et�G/K/2f )(x) = F (x).

Furthermore, iff is sufficiently regular, then so isf (x).
Thus, by Theorem4 (extended to functions that are radial aroundx) we have

f (x)= f (x)(x)

=
∫
Tx(G/K)

et�G/K/2(f (x))(expx(iY ))�(iY )
e−|Y |2/2t

(2�t)d/2
dY

=
∫
Tx(G/K)

F (x)(expx(iY ))�(iY )
e−|Y |2/2t

(2�t)d/2
dY. (34)

Note that the functionX → F (x)(expx(X))�(X) has an entire analytic continuation to
Tx(G/K)C and thereforeF (x)(expx(iY ))�(iY ) is nonsingular for allY .

Now, the action ofKx commutes with expx and with analytic continuation from
Tx(G/K) to Tx(G/K)C. Thus

F (x)(expx(iY )) =
∫
Kx

F (expx(iAdk(Y ))) dk.

From this and the fact that�(iY ) and |Y |2 are radial functions ofY, we obtain the
following: We may replaceF(expx(iY )) in (31) with F (x)(expx(iY )) without affecting
the value of the integral. This establishes the existence of the analytic continuation in
R of L(x,R): The analytic continuation is given by

L(x,R) = ect/2
∫

|Y |�R

F (x)(expx(iY ))�(iY )
e−|Y |2/2t

(2�t)d/2
dY

for all R. (This expression is easily seen to be analytic inR.) Letting R tend to infinity
gives the inversion formula (32), by (34). �

5. Review of the compact case

In order to put our results for noncompact symmetric spaces of the complex type into
perspective, we review here the main results from the compact case. We describe first
the results of Stenzel [St] for general compact symmetric spaces. Then we describe
how those results simplify in the case of a compact Lie group, recovering results



B.C. Hall, J.J. Mitchell / Journal of Functional Analysis 227 (2005) 338–371 361

of [H1,H2]. Finally, we describe a recent result of Florentino et al. [FMN2] for radial
functions in the compact group case. Our isometry formula for radial functions in the
complex case (especially Theorem 3) should be compared to the result of Florentino et
al. [FMN2], as described in our Section 5.3. Our inversion formula for general functions
(Theorem 6) should be compared to the inversion formula in the compact group case,
as described in (37) of Theorem 11.

For additional information on the Segal–Bargmann transform for compact groups and
compact symmetric spaces, see the expository papers [H6,H9]. See also [HM1,HM2]
for more on the special case of spheres.

We make use here of standard results about compact symmetric spaces (see, for
example, [He3]) as well as results from Section 2 of [St] (or Section 8 of [LGS]).

5.1. The general compact case

We consider a compact symmetric spaceX, assumed for simplicity to be simply
connected. Suppose thatU is a compact, simply connected Lie group (necessarily
semisimple) and that� is an involution ofU. Let K be the subgroup ofU consisting
of the elements fixed by�. ThenK is automatically a closed, connected subgroup of
U . Consider the quotient manifoldX := U/K, together with any Riemannian metric
on U/K that is invariant under the action ofU. ThenX is a simply connected compact
symmetric space, and every simply connected compact symmetric space arises in this
way. We will assume (without loss of generality) thatU acts in a locally effective
way onX, that is, that the set ofu ∈ U for which u acts trivially onX is discrete.
Under this assumption, theU and � are unique up to isomorphism for a givenX,
andU is isomorphic to the universal cover of the identity component of the isometry
group ofX.

We consider the complexification of the groupU , denotedUC. Since we assumeU
is simply connected,UC is just the unique simply connected group whose Lie algebra
is uC := u+ iu (whereu is the Lie algebra ofU ), andU sits insideUC as a maximal
compact subgroup. We also letKC denote the connected Lie subgroup ofUC whose
Lie algebra iskC := k + ik (where k is the Lie algebra ofK). ThenKC is always a
closed subgroup ofUC. We may introduce the “complexification” ofU/K, namely,
the complex manifold

XC := UC/KC.

It can be shown thatKC ∩U = K; as a result, the inclusion ofU into UC induces an
inclusion ofU/K into UC/KC.

We write g · x for the action of an elementg in UC on a pointx in UC/KC and
we let x0 denote the identity coset inU/K ⊂ UC/KC.

Definition 7. The Segal–Bargmann transform forU/K is the map

Ct : L2(U/K) → H(UC/KC)
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given by

Ctf = analytic continuation ofet�/2f.

Here et�/2 is the time-t forward heat operator and the analytic continuation is from
U/K to UC/KC with t fixed.

It follows from [H1, Section 4] (applied toK-invariant functions onU ) that for any
f in L2(U/K) (with respect to the Riemannian volume measure),et�/2f has a unique
analytic continuation fromU/K to UC/KC.

At each pointx in U/K, we have the geometric exponential map

expx : Tx(U/K) → U/K.

(If 
 is the unique geodesic with
(0) = x and 
̇(0) = Y, then expx(Y ) = 
(1).)
For eachx, the map expx can be analytically continued to a holomorphic map of the
complexified tangent spaceTx(U/K)C into UC/KC.

Proposition 8 (Identification ofT (X) with XC). The map� : T (U/K) → UC/KC

given by

�(x, Y ) = expx(iY ), x ∈ U/K, Y ∈ Tx(U/K)

is a diffeomorphism. On right-hand side of the above formula, expx(iY ) refers to the
analytic continuation of geometric exponential map.

From the point of view of quantization, we should really identifyUC/KC with
the cotangent bundleT ∗(U/K). However, sinceU/K is a Riemannian manifold we
naturally and permanently identifyT ∗(U/K) with the tangent bundleT (U/K). In the
Rd case, expx(iy) would be nothing butx + iy.

The Lie algebrau of U decomposes asu = k + p, wherep is the −1 eigenspace
for the action of the involution� on u. For anyx in U/K we define

Kx = Adu(K),

kx = Adu(k),

px = Adu(p),

whereu is any element ofU such thatu ·x0 = x. We identify p = px0
with the tangent

space toU/K at x0; more generally, we identifypx with the tangent space atx to
U/K. With this identification, we have

expx(Y ) = eY · x, x ∈ U/K, Y ∈ px,

whereeY ∈ U is the exponential ofY in the Lie group sense.
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Now, for eachx ∈ U/K, define a subspacegx of uC by

gx = kx + ipx.

Then gx is a Lie subalgebra ofuC. We let Gx denote the connected Lie subgroup of
UC whose Lie algebra isgx. Note thateiY belongs toGx for any Y in px. Thus, the
image under� of Tx(U/K) is contained in theGx-orbit of x. In fact, �(Tx(U/K)) is
precisely theGx-orbit of x, and the stabilizer inGx of x is preciselyKx. We record
this result in the following.

Proposition 9 (Identification of the fibers). For any x ∈ U/K, the image inside
UC/KC of Tx(U/K)�px under � is precisely the orbit of x underGx. Thus the
image ofTx(U/K) may be identified naturally withGx/Kx.

Now, eachGx is conjugate under the action ofU to G := Gx0. Thus each quotient
spaceGx/Kx may be identified withG/K. This identification depends on the choice
of an elementu of U mappingx0 to x and is therefore unique only up to the action
of K on G/K. The spaceG/K, with an appropriately chosenG-invariant Riemannian
metric, is thedual noncompact symmetric spaceto U/K. Thus we see that the map
� leads naturally to an identification (unique up to the action ofK) of each fiber in
T (U/K) with the noncompact symmetric spaceG/K.

Another way to think about the appearance of the geometry ofG/K in the problem is
from the following result of Leichtnam, Golse, and Stenzel. If we analytically continue
the metric tensor fromU/K to UC/KC and then restrict to the image ofTx(U/K)
under�. The result is thenegative ofa Riemannian metric and the image ofTx(U/K),
with the resulting Riemannian metric, is isometric toG/K. (See[LGS, Proposition 1.17
and Theorem 8.5].)

On each fiberTx(U/K)�G/K we may then introduce theheat kernel measure(at
the identity coset). This measure is given by the Riemannian volume measure forG/K

multiplied by theheat kernel function, denoted�t . Under the identification ofTx(U/K)
with G/K, the Riemannian volume measure onG/K corresponds to Lebesgue measure
on Tx(U/K) multiplied by an explicitly computable Jacobian functionj. Thus the heat
kernel measure onTx(U/K) is the measure�t (Y )j (Y ) dY, wheredY denotes Lebesgue
measure.

We are now ready to state the main results of Stenzel’s paper [St].

Theorem 10 (Stenzel). Let f be inL2(U/K) and let F = et�/2f . Then we have the
following results:

1. The inversion formula.If f is sufficiently regular we have

f (x) =
∫
Tx(U/K)

F (expx(iY ))�t (Y )j (Y ) dY, (35)

with absolute convergence of the integral for all x.
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2. The isometry formula.For all f in L2(U/K) we have

∫
U/K

|f (x)|2 dx =
∫
U/K

∫
Tx(U/K)

∣∣F(expx(iY ))
∣∣2 �2t (2Y)j (2Y )2

d dY dx, (36)

whered = dim(U/K).
3. Thesurjectivity theorem.For any holomorphic function F onUC/KC�T (U/K) such

that the integral on the right-hand side of(36) is finite, there exists a unique f in
L2(U/K) with F = Ctf .

Note that in (35) we have�t (Y )j (Y ), whereas in (36) we have�2t (2Y)j (2Y ). The
smoothness assumption onf in the inversion formula is necessary to guarantee the
convergence in the inversion formula (35). (The optimal smoothness conditions are not
known in general; Stenzel actually assumes thatf is C∞.) As in the Rn case, the
inversion formula in (35) isnot the one obtained by viewing the heat operator as a
unitary map (as in the isometry formula) and then taking the adjoint.

The special case of Theorem 10 in whichU/K is a compact Lie group was estab-
lished in [H1,H2]. (The compact group case is the one in whichU is H ×H andK
is the diagonal copy ofH insideH ×H, whereH is a simply connected compact Lie
group.) See also [HM1,KR2] for an elementary proof of the isometry formula in the
case ofX = Sd .

The proof of the inversion formula hinges on the duality between the compact sym-
metric spaceU/K and noncompact symmetric spaceG/K. Specifically, for a holo-
morphic functionF on UC/KC�T (U/K) we have that applying the Laplacian for
Gx/Kx in each fiber and then restricting to the base gives the negative of the result of
first restrictingF to the base and then applying the Laplacian forU/K. So, roughly,
the Laplacian in the fiber is the negative of the Laplacian on the base, on holomor-
phic functions. (Compare the result inC that d2/dy2 is the negative ofd2/dx2 when
applied to a holomorphic function.) The argument is then that applying theforward
heat equation in the fibers (by integrating against the heat kernel) has the effect of
computing thebackwardheat equation in the base. The proof of the isometry formula
may then be reduced to the inversion formula; in the process of this reduction, the
change from�t (Y )j (Y ) to �2t (2Y)j (2Y ) occurs naturally.

5.2. The compact group case

Although the Jacobian functionj is explicitly computable for any symmetric space,
the heat kernel�t is not. Nevertheless, ifX is isometric to a simply connected compact
Lie group with a bi-invariant metric, then the dual noncompact symmetric space is of
the complex type and in this case there is an explicit formula for�t due to Gangolli
[Ga, Proposition 3.2]. Expressed in terms of the heat kernelmeasure, this formula
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becomes

�t (Y )j (Y ) dY = e−ct/2j (Y )1/2e
−|Y |2/2t

(2�t)d/2
dY,

where dY is Lebesgue measure on the fiber,d = dim(U/K) = dim(G/K), and c
is the norm-squared of half the sum of the positive roots forX (thinking of X as a
symmetric space and counting the roots with their multiplicities). In the expression for
the heat kernelfunction, we would havej (Y )−1/2 instead ofj (Y )1/2. Thus we obtain
the following.

Theorem 11. In the compact group case, the inversion formulatake the form

f (x) = e−ct/2
∫
Tx(U/K)

F (expx(iY ))j (Y )
1/2e

−|Y |2/2t

(2�t)d/2
dY (37)

and theisometry formulatakes the form

∫
U/K

|f (x)|2 dx = e−ct
∫
U/K

∫
Tx(U/K)

∣∣F(expx(iY ))
∣∣2
j (2Y )1/2e

−|Y |2/t

(�t)d/2
dY dx. (38)

As in the general case, (37) holds for sufficiently regularf in L2(U/K) and (38)
holds for all f in L2(U/K).

If we specialize further to the case in whichX is the unit sphereS3 inside R4 (so
thatX is isometric to the compact group SU(2)) and put in the explicit expression for
j (Y ), the inversion formula becomes

f (x) = e−t/2
∫
Tx(S3)

F (expx(iY ))
sinh|Y |

|Y |
e−|Y |2/2t

(2�t)3/2
dY, (39)

and this isometry formula becomes

∫
S3

|f (x)|2 dx = e−t
∫
S3

∫
Tx(S3)

∣∣F(expx(iY ))
∣∣2 sinh|2Y |

|2Y |
e−|Y |2/t

(�t)3/2
dY. (40)

5.3. Radial functions in the compact group case

In the compact group case, Florentino, Mourão, and Nunes have obtained a special
form of the isometry theorem for radial functions. In this case, the radial functions (in
the symmetric space sense) are simply the class functions on the compact group. Our
Theorem3 is just the noncompact dual to Theorem 2.2 of [FMN2]. There does not
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appear to be an analog of our Theorem2 in the compact group case, because there
the exponential mapping is not a global diffeomorphism.

We continue to use symmetric space notation rather than switching to compact group
notation. Leta be a maximal commutative subspace ofp and letA = expx0

(a). Then
A is a “maximal flat” in X and is isometric to a flat Euclidean torus. Every point
x in U/K can be mapped by the left action ofK into A. Thus a radial function is
determined by its values onA.

Becausea is commutative, we can simultaneously identify the tangent space at every
point in A with a. We now define the “complexification”AC of A to be the image
under � of T (A) ⊂ T (X), where � is the map in Proposition 8. That is to say, we
define

AC = {
expa(iY ) ∈ XC

∣∣ a ∈ A, Y ∈ a} .

The restriction of� to T (A) is a diffeomorphism ofT (A) with AC. (If we identify
X with a compact Lie groupH, thenA is a maximal torusT insideH andAC is the
complexification ofT insideHC.)

It is convenient to multiply the Riemannian volume measures onX andA by nor-
malizing factors, so that the total volume of each manifold is equal to 1. If we used
instead the un-normalized Riemannian volume measures, there would be an additional
normalization constant in Theorem12, as in Theorem 3. We now let� be the Weyl
denominator function onA. This is the smooth, real-valued function, unique up to an
overall sign, with the property that

∫
X

f (x) dx = 1

|W |
∫
A

f (a)�(a)2 da,

for all continuous radial functionsf on X. Here |W | is the order of the Weyl group
for X, and dx and da are the normalized volume measures onX andA, respectively.
The function� has an entire analytic continuation fromA to AC, also denoted�.

We are now ready to state Theorem 2.2 of[FMN2], using slightly different notation.

Theorem 12 (Florentino, Mourão, and Nunes). Suppose X is isometric to a compact
Lie group with a bi-invariant metric. If f is any radial function inL2(X), let F denote
the analytic continuation toXC of et�/2f. Then

∫
X

|f (x)|2 dx = e−ct

|W |
∫
A

∫
a

∣∣F(expa(iY )
∣∣2 ∣∣�(expa(iY )

∣∣2 e
−|Y |2/t

(�t)r/2
dY da. (41)

Here r is the dimension ofa, the constant c is the same as in(37) and (38), |W | is
the order of the Weyl group, and dx and da are the normalized Riemannian volume
measures on X and A, respectively.
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Furthermore, if F is any Weyl-invariant holomorphic function onAC for which the
integral on the right-hand side of(41) is finite, then there exists a unique radial function
f in L2(X) such thatF = et�/2f on A.

Consider, for example, the case in whichX is the unit sphereS3 in R4, in which
caseXC is the complexified sphere

S3
C :=

{
z ∈ C4

∣∣∣ z2
1 + z2

2 + z2
3 + z2

4 = 1
}
.

Fix the basepointx0 := (1,0,0,0). In that case, a “radial” function onS3 is one that
is invariant under the rotations that fixx0. If we take a to be the one-dimensional
subspace ofTx0(S

3) spanned by the vectore2 = (0,1,0,0), thenA is the set

A = { (cos�, sin�,0,0)| � ∈ R} (42)

andAC is the set of points inS3
C of the same form as in (42), except with� in C.

In the S3 case,|W | = 2, c = 1, the Weyl denominator is 2 sin�, and the normalized
measure onA is d�/2�. Thus (41) becomes

∫
S3

|f (x)|2 dx = e−t

2

∫ 2�

0

∫ ∞

−∞
∣∣F [

(cos(� + iy), sin(� + iy),0,0)
]∣∣2

×|2 sin(� + iy)|2 e
−y2/t

(�t)1/2
dy

d�

2�
. (43)

6. Concluding remarks

In this paper we have established an isometry formula (in two different versions)
for the Segal–Bargmann transform of radial functions and an inversion formula for
the Segal–Bargmann transform of general functions, both in the case of a noncompact
symmetric space of the complex type. Both the isometry formula and the inversion
formula require a cancellation of singularities, but otherwise they closely parallel the
results from the compact group case. Specifically, Theorem3 in the complex case is
very similar to Theorem 12 in the compact group case and Theorem 6 in the complex
case is very similar to the inversion formula in Theorem 11 in the compact group case.
Besides the cancellation of singularities, the main difference between the formulas in
the two cases is the interchange of hyperbolic sine with ordinary sine. It is natural,
then, to look ahead and consider the prospects for obtaining results in the noncompact
setting parallelingall of the results we have for compact symmetric spaces. This would
entail extending the isometry result to nonradial functions and then extending both the
isometry and the inversion results to other noncompact symmetric spaces, beyond those
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of the complex type. In[H2] in the compact group case and in [St] in the general
compact symmetric space case, the inversion formula is proved first and the isometry
formula obtained from it. As a result, we fully expect that the inversion formula we
prove here will lead to an isometry formula for not-necessarily radial functions in the
complex case. A precise statement of the result we have in mind is given in [H9] in
the case of hyperbolic 3-space.

Meanwhile, we have recently received a preprint by Krötz et al. [KOS] that estab-
lishes an isometry formula for general functions (not necessarily radial) on general
symmetric spaces of the noncompact type (not necessarily of the complex type). How-
ever, this isometry formula does not, at least on the surface, seem parallel to the
compact case. In particular, in the complex case, this isometry formula doesnot reduce
to the one we have in mind, at least not without some substantial manipulation of
the formula in [KOS, Theorem 3.3]. Nevertheless, the result of [KOS] is a big step
toward understanding the situation for general symmetric spaces of the noncompact
type. There may well be a connection, in the complex case, between the results of
[KOS] and the isometry formula we have in mind, but this remains to be worked out.
If the isometry formula can be understood better for general noncompact symmetric
spaces, this understanding may pave the way for progress on the inversion formula as
well.

Note that in the case of compact symmetric spaces, the results take on a particu-
larly simple and explicit form in the compact group case. (Compare Theorem 10 to
Theorem 11.) Our results in this paper are for the noncompact symmetric spaces of
the complex type; this case is just the dual of the compact group case. Thus, one
cannot expect the same level of explicitness for noncompact symmetric spaces that are
not of the complex type. Instead, we may hope for results that involve some suitably
“unwrapped” version of the heat kernel measure on the dual compact symmetric space,
where in general there will not be an explicit formula for this unwrapped heat kernel.
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