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Abstract

We consider the generalized Segal-Bargmann transform, defined in terms of the heat operator,
for a noncompact symmetric space of the complex type. For radial functions, we show that the
Segal-Bargmann transform is a unitary map onto a cemﬁira;pace of meromorphic functions.

For general functions, we give an inversion formula for the Segal-Bargmann transform, involving
integration against an “unwrapped” version of the heat kernel for the dual compact symmetric
space. Both results involve delicate cancellations of singularities.
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1. Introduction

The Segal-Bargmann transform f&¢ [Se2,Se3,Se4,Ba] is a widely used tool in
mathematical physics and harmonic analysis. The transform is a unitaryCmapm
L2(R%) ontoHL2(C?, v,), wherey, is a certain Gaussian measure©h (depending on
a positive parameter and where#{L? denotes the space of holomorphic functions that
are square integrable with respect to the indicated measure. (See Section 2 for details.)
From the point of view of harmonic analysis, one can think of the Segal-Bargmann
transform as combining information about a functigitx) on R¢ with information
about the Fourier transfornf(é) into a single holomorphic functiodC; f)(x + i&).
From the point of view of quantum mechanics for a particle movingtfh one can
think of the Segal-Bargmann transform as a unitary map between the “position Hilbert
space” L2(R?) and the “phase space Hilbert spacdd’L2(C?, v;). In this setting, the
parameters can be interpreted as Planck’s constant. Conceptually, the advantage of
applying the Segal-Bargmann transform is that it gives a description of the state of the
particle that is closer to the underlying classical mechanics, because we now have a
function on the classical phase space rather than on the classical configuration space.
See Section 2, [Fo,H4], for more information about the Segal-Bargmann transform for
R? and its uses.
In the paper [H1], Hall introduced a generalization of the Segal-Bargmann transform
in which the configuration spac&? is replaced by a connected compact Lie group
K and the phase spad®’ is replaced by the complexificatiokc of K. (See also
the expository papers [H4,H6,H9].) The complex grakip can also be identified in a
natural way with the cotangent bundié (K'), which is the usual phase space associated
to the configuration spac&. A main result of Hall [H1] is a unitary mag; from
L2(K) onto HL%(Kc, v;), wherev, is a certain heat kernel measure on the complex
group K¢c. The transform itself is given by applying the timeheat operator to a
function f in L2(K) and then analytically continuing the result frok to K¢. The
paper [H2] then gave an inversion formula f6f in which to recover the functiorf
on K one integrates the holomorphic functiéh f over each fiber i (K) =~ K¢ with
respect to a suitable heat kernel measure. See also [KTX] for a study of the Segal—
Bargmann transform, defined in terms of the heat operator, on the Heisenberg group.
The motivation for the generalized Segal-Bargmann transformkfowas work of
Gross in stochastic analysis, specifically the Gross ergodicity theorem [Gr] for the loop
group overK. See [GM,H6,H8,HS] for connections between the generalized Segal—
Bargmann transform and stochastic analysis. The generalized Segal-Bargmann trans-
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form has also been used in the theory of loop quantum gr@&itpasl,Das2,Th,TW1,
TW2]. It has a close connection to the canonical quantizatioilef 1)-dimensional
Yang—Mills theory [DH,H5,Wr]. It can be understood from the point of view of geo-
metric quantization [FMMN1,FMMN2,H7]. Most recently, it has been used in studying
nonabelian theta functions and the conformal blocks in WZW conformal field theory
[FMN1,FMN2]. (See also [Ty].) See the paper [H6] for a survey of the generalized
Segal-Bargmann transform and related notions.

In the paper [St], Stenzel extended the results of [H1,H2] from the case of compact
Lie groups to the case of general compact symmetric spaces. We give here a schematic
description of Stenzel’s results; see Section 5 for detailX I§ a compact symmetric
space, there is a natural “complexificatioXc of X. There is a natural diffeomor-
phism between the cotangent bundlé(X) and the complexificatiorXc. Under this
diffeomorphism, each fiber iT*(X) maps to a set insid&¢ that can be identified
with the dual noncompact symmetric space Xo (For example, ifX is the d-sphere
§¢, then each fiber iff*(S?) gets identified with hyperbolid-space.) Thus the com-
plexified symmetric spac& ¢ is something like a product of the compact symmetric
spaceX and the dual noncompact symmetric space. Since each fib&i ()=~ X¢
is identified with this noncompact symmetric space, we can put on each fibbedte
kernel measurdor that noncompact symmetric space (based at the origin in the fiber).

The Segal-Bargmann transform now consists of applying the titmat operator to
a function inL2(X) and analytically continuing the resulting function Xa-. The first
main result is an inversion formula: to recover a function from its Segal-Bargmann
transform, one simply integrates the Segal-Bargmann transform over each fiber in
T*(X)~X¢c with respect to the appropriate heat kernel measure. The second main
result is an isometry formula: the? norm of the original function can be computed by
integrating the absolute-value squared of the Segal-Bargmann transform, first over each
fiber using the heat kernel measure and then over the base with using the Riemannian
volume measure. See Theorem 10 in Section 5 for details. See Section 3.4 of [H6]
for more information on the transform for general compact symmetric spaces and
[H9,HM1,HM2,KR1,KR2] for more on the special case in whighis a d-sphere.

Since we now have a Segal-Bargmann transform for the Euclidean symmetric space
R? and for compact symmetric spaces, it is natural to consider also the case of non-
compact symmetric spaces. Indeed, since the duality relationship between compact and
noncompact symmetric spaces is a symmetric one, it might seem at first glance as if one
might be able to simply reverse the roles of the compact and the noncompact spaces
to obtain a transform starting on a noncompact symmetric space. Unfortunately, further
consideration reveals significant difficulties with this idea. FirstXifis a noncompact
symmetric space, then the fibers 1 (X) are not compact and therefore cannot be
identified with the compact dual t&. (For example, ifX is hyperbolicd-space, then
the fibers inT*(X) are diffeomorphic tdR¢ and not toS?.) Second, if one applies the
time+ heat operator to a function on a noncompact symmetric spae@d then tries
to analytically continue, one encounters singularities that do not occur in the compact
case.

The present paper is a first step in overcoming these difficulties. (See the end of this
section for other recent work in this direction.) We consider noncompact symmetric
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spaces of the “complex” type, namely, those that can be describét/ &s where G

is a connecteccomplexsemisimple group and& is a maximal compact subgroup of

G. (The simplest example is hyperbolic 3-space.) The complex case is nothing but the
noncompact dual of the compact group case. For noncompact symmetric spaces of the
complex type, we obtain two main results.

Our first main result is an isometry formula for the Segal-Bargmann transform on the
space of radial functions. We state this briefly here; see Se8tfon details. Consider a
function f in L2(G/K) (G complex) that is “radial” in the symmetric space sense, that
is, invariant under the left action & on G/K. Let F = ¢'*/2f and consider the map

X — F(X), Xenp, 1)

where the Lie algebrg of G is decomposed in the usual way @s= f + p. We show
that map 1) has ameromorphic(but usually not holomorphic) extension from to
pc = p + ip. The main result of Section 3 is that there exist a constaand a
holomorphic functions on pe such that for all radialf in L2(G/K) we have

2 —|Y 2/t
/ 1702 dx = e'ff/ ‘F(eXJ”Y)‘ 16(X + i) e—d/dedY, F =27 (2)
G/K Pe (mtt)

There is a “cancellation of singularities” occurring here: although in most cases the
function F(eX+Y) is singular at certain points, the singularities occur only at points
whered(X +iY) is zero. Thus, the singularities iA(eXY) are canceled by the zeros
in the density of the measure occurring on the right-hand sid@)ofRurthermore, by
considering radial functions, we are introducing a distinguished basepoint (the identity
coset). Thus, in the radial case, we are able to use the complexified tangent space at
the basepoint (namelyg) as our “complexification” ofG/K, and we simply do not
attempt to identifypc with 7*(G/K). Of course, because we are treating the identity
coset differently from other points, this approach is m®tinvariant and is not the
correct approach for the general (nonradial) case.

Our second main result is an inversion formula for the Segal-Bargmann transform
of general (not necessarily radial) functions. We state this briefly here; see Section 4
for details. We continue to assume th@tis a connectedcomplexsemisimple group
and K a maximal compact subgroup. For each pairin G/K, we have the geometric
exponential map exptaking the tangent spac&,(G/K) into G/K. Let f be in
L%(G/K) and letF = ¢'A/2f. Then, for eachx € G/K, the function

X — F(exp, X), X eT(G/K), 3)
admits an analytic continuation to some ball around zero. For eeelG /K, define

2
VP2

__ ct]2 . .
L(x,R)=c¢e /YE{,X;GIQK) F(exp, LY)5(LY)—(2m)d/2

dy
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for all sufficiently smallR. (Here the constant and the functiond are the same as
in the isometry formula32).)

Our main result is that for eachin G/K, L(x, R) admits a real-analytic continuation
in R to (0, 00) and, if f is sufficiently regular,

fx)= Rlim L(x, R).

We may write this informally as

2
oY P /2

)i dy, 4)

fx) =

13 I
R— o0

im "e”/Z/ F(exp, iY)d(iY)
IYI<R

where the expression “lifL. " means that we interpret the right-hand side dj (
literally for small R and then extend to larg® by means of analytic continuation.

As in the isometry formula for radial functions, there is a cancellation of singularities
here that allowsL(x, R) to extend analytically to(0, co), even thoughF (exp, iY)
itself may have singularities for largE. Because of the rotationally invariant nature
of the integral in (4), the integral only “sees” the part of the functitexp, iY) that
is rotationally invariant. Taking the rotationally invariant part eliminates some of the
singularities in F(exp, iY). The remaining singularities are canceled by the zeros in
the functiondé(iy).

The measure against which we are integratiigxp, iY) in (4), namely,

—|Y?/2t

o ct)]25,:
d()‘,(Y)—e 5([Y)W

dy

is closely related to the heat kernel measure on dbepactsymmetric space dual
to G/K. Specifically, it is an “unwrapped” version of that heat kernel measure, in a
precise sense described in Sectin

The papers [H2,St] use the inversion formula for the Segal-Bargmann transform (for
compact groups and compact symmetric spaces, respectively) to deduce the isometry
formula. Since we now have an inversion formula for the Segal-Bargmann transform
for noncompact symmetric spaces of the complex type, it is reasonable to hope to
obtain an isometry formula as well, following the line of reasoning in [H2,St]. The
hoped-for isometry formula in the complex case would involve integrating over
a tube of radiusk (with respect to the appropriate measure) and then analytically
continuing with respect tak. Since, however, there are many technicalities to attend
to in carrying out this idea, we defer this project to a future paper. (See [H9] for an
additional discussion of this matter.)

Meanwhile, it would be desirable to extend the results of this paper to other sym-
metric spaces of the noncompact type. Unfortunately, the singularities that occur in
general are worse than in the complex case and are not as easily canceled out. We
discuss the prospects for other symmetric spaces in Section 6.
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We conclude this introduction by comparing our work here to other types of Segal—
Bargmann transform for noncompact symmetric spaces. First, Olafsson and @ed
have introduced another sort of Segal-Bargmann transform for noncompact symmetric
spaces, based on the “restriction principle.” This has been developed in [DOZ1,DOZ2]
and used to study Laplace transforms and various classes of orthogonal polynomials
connected to noncompact symmetric spaces. This transform does not involve the heat
operator and is thus not directly comparable to the Segal-Bargmann transform in this
paper.

Meanwhile, Krétz, Olafsson, and Stanton (see [KS1,KS2,KOS]) have considered the
Segal-Bargmann transform for a general symmetric spgdé of the noncompact type
(not necessarily of the complex type), defined in the same way as here, in terms of the
heat equation. In [KS2], Krétz and Stanton identify the maximal domain inGiggK ¢
to which a function of the forme’®/2f can be analytically continued. Then in [KOS],
Krotz, Olafsson, and Stanton give an isometry result identifying the imade @/ K)
under the Segal-Bargmann transform in terms of certain orbital integrals. There is also
a cancellation of singularities in their approach, in that the pseudodifferential operator
D in Theorem 3.3 of [KOS] is used to extend the orbital integrals into the range where
the function involved becomes singular. It remains to be worked out how the results
of [KOS] relate, in the complex case, to the isometry result suggested by the results
we obtain in this paper.

2. Review of theR? case

We give here a very brief review of results concerning the Segal-Bargmann transform
for R?. We do this partly to put into perspective the results for noncompact symmetric
spaces and partly because we will use ftferesults in our analysis of the symmetric
space case. See also Section 5 for a description of Stenzel’s results for the case of
compact symmetric spaces.

In the RY case, we consider the “invariant” form of the Segal-Bargmann transform,
which uses slightly different normalization conventions from Segal [Se4] or Bargmann
[Ba]. (See [H4] or [H3] for a comparison of normalizations.) The transform is the map
C, from L2(R?) into the spaceH(C?) of holomorphic functions orC? given by

€11@ = [ @ e fyax, zect.
Rl

Here (z — x)% = (z1 — x1)? + - - + (za — x4)? andt is an arbitrary positive parameter.
It is not hard to show that the integral is convergent forzafl C¢ and the result is a
holomorphic function ofz.

Recognizing that the functiof2rr)~4/2e=@=9%2 is (for z in R?) the heat kernel
for R?, we may also describ€, f as

C, f = analytic continuation o&'2/2f.
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Here the analytic continuation is from? to C? with  fixed. We take the Laplacian
A= zaz/ax,f to be a negative operator, so thaf/2 is the forward heat operator.

Theorem 1 (Segal-Bargmann Let f be in L?(R%) and let F = C; f. Then we have
the following results

1. Theinversion formula.lf f is sufficiently regular we have

L
1w = [ Fotin s dy ©)
with absolute convergence of the integral for all x
2. Theisometry formula.For all f in L?(RY) we have
2 2 !
sl as= [ [ 1 iR s dyax, ©)

3. Thesurjectivity theoremFor any holomorphic function F ofi? such that the integral
on the right-hand side of6) is finite, there exists a unique f il? with F = C, f.

The reason for the “sufficiently regular’ assumption in the inversion formula is to
guarantee the convergence of the integral on the right-hand side of (5). It suffices to
assume thayf hasn derivatives inL2(R?%), with n > d/2. (See Section 2.1 of [H9].)

The isometry and surjectivity formulas are obtained by adapting results of Segal
[Se4] or Bargmann [Ba] to our normalization of the transform. The inversion formula
is elementary (e.g. [H9]) but does not seem to be as well known as it should be. The
inversion formula is implicit in Theorem 3 of [Sel] and is essentially the same as
the inversion formula for theS-transform in [Ku, Theorem 4.3]. In quantum mechan-
ical language, the inversion formula says that the “position wave functfg@®’) can
be obtained from the “phase space wave functi@i(x + iy) by integrating out the
momentum variables (with respect to a suitable measure).

It should be noted that becaus&x +iy) is holomorphic, there can be many different
inversion formulas, that is, many different integrals involvifgx + iy) all of which
yield the value f(x). For example, we may think of the heat operator as a unitary
map from L2(R?) to the Hilbert space of holomorphic functions for which the right-
hand side of (6) is finite. Then we may obtain one inversion formula by noting that
the adjoint of a unitary map is its inverse. The resulting “inverse = adjoint” formula
is sometimes described as “the” inversion formula for the Segal-Bargmann transform.
Nevertheless, the inversion formula in (5)rist the one obtained by this method.

In light of what we are going to prove in Section 3, it is worth pointing out that we
could replace “holomorphic” with “meromorphic” in the statement of Theorem 1. That
is, we could describg as the meromorphic extension &f/2f from R¢ to C? (if F
is holomorphic then it is certainly meromorphic), and we could replace the surjectivity
theorem by saying that if" is any meromorphic function for which the integral on the
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right-hand side of§) is finite arises as the meromorphic extensiore’df2 f for some

fin L2(RY). After all, since the density in (6) is strictly positive everywhere, such an

F would have to be locally square-integrable with respect to Lebesgue measure, and
it is not hard to show that a meromorphic function with this property must actually
be holomorphic. (This can be seen from the Weierstrass Preparation Theorem [GH, p.
8].) That is, under the assumption that the right-hand side of (6) is finite, meromorphic
and holomorphic are equivalent.

3. Isometry for radial functions

In this section we describe an isometric version of the Segal-Bargmann transform
for “radial” functions on a noncompact symmetric spakeof the “complex type”
(e.g., hyperbolic 3-space). We give two different forms of this result. The first involves
integration over the complexified tangent space to the symmetric space at the basepoint.
The second involves integration over the complexified tangent space to the maximal
flat at the basepoint. Both results characterize the image under the Segal-Bargmann
transform of the radial subspace @f(X) as a certain holomorphid.? space of
meromorphicfunctions. In Section 6, we discuss the prospects for extending these
results to nonradial function and to other symmetric spaces of the noncompact type.

If f is a function on a noncompact symmetric spate= G/K, then we wish to
define the Segal-Bargmann transform fto be some sort of analytic continuation
of the function F := ¢'2/2f. The challenge in the noncompact case is to figure out
precisely what sort of analytic continuation is the right one. One could try to analytically
continue toG¢ /K¢, but examples show that does not in general admit an analytic
continuation toG¢/K¢. Alternatively, one could consider the maximal dom&nto
which functions of the formF = ¢’2/2f actually have an analytic continuation. This
domain was identified by Krétz and Stanton [KS2, Theorem 6.1] as the Akhiezer—
Gindikin “crown domain” in G¢c/Kc. Unfortunately, it seems that there can be no
measureu on Q such that the map sending to the analytic continuation of is an
isometry of L2(G/K) into L?(Q, u). (See the discussion in [KOS, Remark 3.1].) Thus,
to get an isometry result of the sort that we have in fifecase and the compact case,
we must venture beyond the domdhinto the region whereF has singularities and
find a way to deal with those singularities.

In this section, we assume that the symmetric space is of the complex type and
that f (and thus alsoF) is radial. We then writeF in exponential coordinates at
the basepoint, which make& a function on the tangent space at the basepoint. We
show thatF admits ameromorphicextension to the complexified tangent space at the
basepoint. This meromorphic extension Bfis then square-integrable with respect to
a suitable measure; the zeros in the density of the measure cancel the singularities in
F. We obtain in this way an isometry of the radial part bf(X) onto a certainL?
space of meromorphic functions.

In the next section, we consider the more complicated case of nonradial functions.
We obtain there an inversion formula involving a more subtle type of cancellation of
singularities.
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The set-up is as follows. We leF be a connected@omplexsemisimple group and
K a maximal compact subgroup ¢f. Since G is complex,K will be a compact real
form of G. We decomposeg asg = f + p, wherep = if. We then choose an inner
product onp that is invariant under the adjoint action &f. We consider the manifold
G/K and we think of the tangent space at the identity coset t& as the space.
There is then a uniqu&-invariant Riemannian structure afi/K whose value at the
identity is the given inner product op. Then G/K is a Riemannian symmetric space
of the “complex type.”

We emphasize that the word “complex” here doe$ mean thatG/K is a complex
manifold but rather thaG is a complex Lie group. The complex structure énwill
play no direct role in any definitions or proofs; for example, we will never consider
holomorphic functions orG. Nevertheless, the complex case is quite special among all
symmetric spaces of the noncompact type (i.e., compared to spaces of th& fafm
with G real semisimple andk maximal compact). What is special about the complex
case is not the complex structure per se, but rather the structure of the root system
for G/K in this case: it is a reduced root system in which all roots have multiplicity
2. Still, it is easier to say “complex” than to say “reduced root system with all roots
having multiplicity 2"! The simplest example of a nhoncompact symmetric space of the
complex type is hyperbolic 3-space, and this is the only hyperbolic space that is of the
complex type.

We will make use of special intertwining formulas for the Laplacian that hold only in
the complex case. (See the proof of Theor2iior a discussion of why the intertwining
formulas hold only in this case.) Nevertheless, there is hope for obtaining similar but
less explicit results for other symmetric spaces of the nhoncompact type. See Section 6
for a discussion.

We consider the geometric exponential mapping otk at the identity coset. This
coincides with the group-theoretical exponential mapping in the sense that if we identify
the tangent space at the identity coset withthen the geometric exponential &f € p
is just the coset containing the exponentialXbfn the Lie-group sense. In this section,
we will use the notatioreX to denote the geometric exponential at the identity coset
of a vectorX in p. We let § be the square root of the Jacobian of the exponential
mapping at the identity coset. This is the positive function satisfying

f(x)dx = / fe(X)?dx, @)
p

G/K

wheredx is the Riemannian volume measure 67K and whered X is the Lebesgue
measure onp (normalized by the inner product). Explicitly, is the unique AdK-
invariant function onp whose restriction to a maximal commutative subspacis
given by

inha(H
S(H) = ]_[ S'nTZ()) (8)
aeRt
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Here R is the set of (restricted) roots fof/K (relative to a) and R™ is the set

of positive roots relative to some fixed Weyl chamberanExpression § may be
obtained by specializing results [He3, Theorem 1V.4.1] for general symmetric spaces
of the noncompact type to the complex case, in whatlhroots have multiplicity two
(Compare Eqg. (14) in Section V.5 of [Hel].)

We consider functions orG/K that are “radial” in the symmetric space sense,
meaning invariant under the left action &. (These functions are not necessarily
functions of the distance from the identity coset, except in the rank-one case.) We give
two isometry results, one involving integration ovef := p + ip and one involving
integration overac := a + ia.

Theorem 2. Let f be a radial function i.2(G/K) (G complexand letF = ¢'A¢/k/2 f
Then the function

X > F@EX), Xep 9)
has a meromorphic extension fromto pc and this meromorphic extension satisfies

—1Y 2/t

12 e
()2 dx = C'/ FX ) 18X +iY)|]? ——— dY dX. 10
[ rera=e [ e s ime Sy (10)

Here c is the norm-squared of half the sumith multiplicitie of the positive roots
for G/K, andd = dim(G/K).

Conversely, suppos® is a meromorphic function op that is invariant under the
adjoint action of K and that satisfies

—|Y %/t

e”f DX + V)2 16X +iV)2 < dY dX < oo. (11)
Pc

(nt)d/z

Then there exists a unique radial function f #f(G/K) such that
D(X) = ('A0rx/2 f)(eX)

for all X € p.

On the right-hand side of1(), the expressiorF (eX*™?Y) means the meromorphic
extension of the functioX — F(e¥), evaluated at the poink +iY. The proof will
show that F(eX+¥)§(X + iY) is holomorphic (not just meromorphic) opc. This
means that although (¢X*¥) will in most cases have singularities, these singularities
can be canceled out by multiplying by X +iY). This cancellation of singularities is
the reason that the integral on the right-hand side of (10) is éweally finite. Note
that in contrast to thé&®? case (where the density of the relevant measure is nowhere
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zero), there exist here meromorphic functiafishat are not holomorphic and yet are
square-integrable with respect to the measureli®).(Theorem 2 holds also for the
Euclidean symmetric spad@’, where in that caseX*Y = X +iY, c =0, andd =1,
so that we have (6) in the case whefehappens to be radial.

Observe that iff is radial, thenF = ¢/2/2 f is also radial. Thug is determined by
its values on a “maximal flat’/A := expa, wherea is any fixed maximal commutative
subspace op. Thus it is reasonable to hope that we could replace the right-hand side
of (10) with an expression involving integration only ovef. Our next result is of
this sort. We fix a Weyl chamber ia and letR™ be the positive roots relative to this
chamber. We ley; be the function om given by

n(H) =30(H) [| «H) = [] sinha(#).

aeRT aeRT
This function has an analytic continuation dé@, also denoted;.

Theorem 3. Let f be a radial function in.2(G/K) (G complexand letF = ¢'Ac/x/2 .
Then the function

H— F("), Hea
has a meromorphic extension t@ and this meromorphic extension satisfies

2
oY1/

(nt)r/Z

, 2
/ |f(0)?dx = Be“/ ‘F(eH'HY)’ In(H +iY)|? dY dH, (12)
G/K ac

wherer = dima is the rank ofG/K and c is as in Theorer2. Here B is a constant
independent of f and t

Conversely, supposé is a meromorphic function on¢ that is invariant under the
action of the Weyl group and that satisfies

—|Y %/t
Bec’/ |O(H +iY) | |n(H +iY)|? e—z dY dH < oo. (13)
ac (nt)l/

Then there exists a unique radial function f if(G/K) such that
O(H) = (e"8/%/2 f)(e™)

for all H € a.

In the dual compact case, an analogous result was established by Florentino et al.
[FMN2, Theorem 2.2] and is described in Theorem 12 in Section 5.
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Note that the functionF (eX+¥) is invariant under the adjoint action &¢ on pc.
Since almost every point ipe can be mapped intac by the adjoint action ofK¢,
it should be possible to show directly that the right-hand sidel@) s equal to the
right-hand side of (10). Something similar to this is done in the compact group case
in [FMN2, Theorem 2.3]. However, we will follow a different approach here using
intertwining formulas.

Proof of Theorem 2. For radial functions in the complex case we have a very special
“intertwining formula” relating the non-Euclidean Laplaciax;, x for G/K and the
Euclidean Laplaciad, for p. Let us temporarily identifyp and G/K by means of the
exponential mapping, so that it makes sense to apply hetlx and A, to the same
function. Then the intertwining formula states that (for radial functions in the complex
case)

1
Ag/k [ = B[Ap —cl(0f), (14)

wherec is the norm-squared of half the sum (with multiplicities) of the positive roots
for G/K. (See Proposition V.5.1 ifHel] and the calculations in the complex case on
p. 484.)

One way to prove identity (14) is to first verify it for spherical functions, which are
known explicitly in the complex case, and then build up general radial functions from
the spherical functions. A more geometric approach is to work with the bilinear form
associated to the Laplacian, namely,

D(f. g) :=[ f()Ag(x)dx = —f Vi) vgx)dx, (15)
G/K G/K

where f and g are, say, smooth real-valued functions of compact supporf. dhd g
are radial, then at each point f and syg will be tangent to the maximal flat, since
the tangent space to a geneikGorbit is the orthogonal complement of the tangent
space to the flat. From this, it is not hard to see thatBhbelideangradients off and
g, viewed as functions op by means of the exponential mapping, coincide with the
non-Euclidean gradients.
Thinking of 57 f and /¢ as Euclidean gradients, let us multiply and divide %)
by the Jacobian of the exponential mapping, thus turning the integral into onepover
with respect to Lebesgue measure. If we then do a Euclidean integration by parts on
we will get one term involving the Laplacian far and one term involving derivatives
of the Jacobiany® of the exponential mapping. With a bit of manipulation, this leads
to an expression of the same form as (14), except with the constaaglaced by the
functionQ := A, (9)/d. (See Proposition V.5.1 in [Hel] or Theorem 11.3.15 in [He2].)
Now, up to this point, the argument is valid for an arbitrary symmetric space of the
noncompact type. What is special about the complex case is that in this case [Hel,
p. 484], we have that\,(6) = cd, so thatQ is a constant. It turns out that having



350 B.C. Hall, J.J. Mitchell/Journal of Functional Analysis 227 (2005) 338-371

Ap(0) be a constant multiple o is equivalent to havingAG/K(é‘l) be a constant
multiple (with the opposite sign) of L. It is shown in detail in[HSt, Section 2] that
this last condition holds precisely when we have a reduced root system with all roots
of multiplicity 2, that is, precisely in the complex case.

Meanwhile, formally exponentiating (14) would give

1 _.
eYAG/](/Zf — 5 e*(,l‘/zetAp/Z(éf). (16)

Indeed, 16) holds for all radial functionsf in L2(G/K), in which casedf is an
Ad-K -invariant function inL2(p). It is not hard to prove that (16) follows from (14),
once we have established that in the Hilbert spacd.dfradial functions (on either
G/K or p), the Laplacian is essentially self-adjoint 6i¥° radial functions of compact
support. To prove the essential self-adjointness, we start with the well-known essential
self-adjointness of the Laplacian @ff°, as an operator on the full?> space. We then
note that the projection onto the radial subspace (again, on &th&ror p) commutes
with the Laplacian and preserves the spac&®f functions of compact support. From
this, essential self-adjointness @t radial functions of compact support follows by
elementary functional analysis.

Let us rewrite (16) as

eZAv/z(éf) — ecl/25erA(;/K/2f (17)

and then apply théuclideanSegal-Bargmann transform fer to the functiono f in
L%(p). The properties of this transform tell us thef*/2(5 ) has an entire analytic
continuation topc and that

2 Y2/t

2 _ 1Ay )2 . ¢
/p|5(x>f(x>| dX_/pC )e b (5f)(X~|—zY)’ Gz AX Y. (18)

Eq. (17) then tells us thade’26/x/2 f also has an analytic continuation ¢ and that

—Y 2/t
/ 160X) F(X)2dX = e / ‘5()( FiY) (e Bork2 py(x 4 iY)‘Z ¢ _axav.
p Pc

(19)

Since the functionde’2c/k/2f has a holomorphic extension tope, the function
¢'A6/k/2 f has ameromorphicextension tope.

Let us now undo the identification gf with G/K in (19). The functionsf and
e'Ac/k/2 f are radial functions orG/K. To turn these functions into functions gn
we compose with the exponential mapping. So we now wfiteX) on the left-hand
side of (19) and(e’2c/k/2 £)(eX+i¥) on the right-hand side. We then apply (7) to the
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left-hand side of 19) to obtain

2 o~ 1Y1%/2

Gz X Y.

f |f )P dx = e / (50X + 1) (e Aork /2 ) X4
G/K Pe

This establishes the first part of the theorem.
For the second part of the theorem, suppose dhas meromorphic onpe, radial
(that is, invariant under the adjoint action &f on p¢), and satisfies

—1Y 1/t

't . 2 . 2 €
e /pc|<D(X+zY)| 16X +iY)| WdeX<oo.

Then the function®dé is meromorphic onpe and square-integrable with respect to a
measure with a strictly positive density. This, as pointed out in Se@jdmplies that
@6 is actually holomorphic orpe. Then by the surjectivity of the Segal-Bargmann
transform forp, there exists a unique functignin L2(p) with e’2+/2g = ®5. Since the
Segal-Bargmann transform commutes with the actiorKofg must also be invariant
under the adjoint action oK. If we let f be the unique function o6//K such that

ct/2
) g(X)
fe?) = T
then f is radial and inL?(G/K). By (16) we have thae'A6/k/2f = ¢'40/2(g) = @ on
p. This establishes the existence of the functipnn the second part of the theorem.

The uniqueness of thig follows from the injectivity of the operatoe’2c/x/2 on
L%(G/K). O

Proof of Theorem 3. The argument is similar to that in the preceding proof, except that
in this case we use an “intertwining formula” that relates the non-Euclidean Laplacian
on G/K to the Euclidean Laplacian om This formula says that (for radial functions

f in the complex case) we have

1
Aok Py = 3 1Ba =l fo) (20)

where ¢ is the same constant as il4) and wheref, is the restriction off to a.
(See [He2, Proposition 11.3.10].) An important difference between this formula and (14)
above is that the function f, is Weyl-anti-invariant, whereas the functiohf in (14)

is Ad-K -invariant. Exponentiating (20) gives that

1
GO = RN 2 ) @)
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and so
etA“/z(Hfa) _ ecr/ZneZAc/K/Zf_ (22)

From properties of the Segal-Bargmann transformafere then see that'2/2(j; f,)
has a holomorphic extension t¢ and that

2 e*Ile/t
[ sanian = [ |esramecsin s axar. @)
a ac (nl)'/z
wherer = dima. Using @2) then gives
_ A 2 oIVt
/m(H)f(H)lde - e”/ (e'Daik 12 £y (X +iY)17(X+iY)‘ de dy.
a ac T

We now recognize the left-hand side as being—up to an overall constantz2therm
of f over G/K, written using {) and then generalized polar coordinates gofHe2,
Theorem 1.5.17]. We thus obtain the first part of the theorem. The unspecified constant
B in Theorem 3 comes from the constantn Theorem 1.5.17 of [HeZ2].
For the second part of the theorem, assume dhas meromorphic, Weyl-invariant,
and satisfies (13). Then, as in the proof of Theorend2,is holomorphic. In addition,
@y is Weyl-anti-invariant. There then exists a Weyl-anti-invariant functigrin L2(a)
with ¢’2/2g = ®y. We now let f be the function onA := expa satisfying

X\ ect/Zg(X)
T ==

Then f is Weyl-invariant onA and has a unique radial extension@ K. In light of
the comments in the preceding paragraph, this extensiofi isfsquare-integrable over
G/K. Then Q1) tells us thae'de/k/2f = ®. 0O

4. Inversion formula

In this section, we continue to consider symmetric spaggk of the complex type.
However, we now consider functions on G/K that are not necessarily radial. We let
F = ¢'4/k/2 f and we want to define the Segal-Bargmann transform as some sort of
analytic continuation ofF. In the radial case, we wrot& in exponential coordinates
at the basepoint and then meromorphically extenfielom p to p. In the nonradial
case, this approach is not appropriate, because we no longer have a distinguished
basepoint. Instead we will analytically continude to a neighborhood of5/K inside
Ge/Kc.
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For eachx in G/K, we have the geometric exponential map ex@,(G/K) —
G/K. It is not hard to show that this can be analytically continued to a holomor-
phic map, also denoted expmapping the complexified tangent spat&G/K)c into
Gc/Kc. We now consider tube$®(G/K) in the tangent bundle ofi/K,

TR(G/K) ={(x,Y) e T(G/K)||Y| < R}.
Then we letUg be the set inGg/Kc given by
Ug = {expx(iY) ‘(x, Y) e TR(G/K) }

Here, exp(iY) refers to the analytic continuation of the exponential map.aiin the
RY case, exp(iy) would be nothing butc 4 iy.)

It can be shown that for all sufficiently small, Ur is an open set itG¢/Kc and
the map(x, Y) — exp,(iY) is a diffeomorphism off R(G/K) onto Ug. The complex
structure onTR(G/K) obtained by identification with/ is the “adapted complex
structure” of[GS1,GS2,LS,Sz1]. Furthermore, Krétz and Stanton have shown that for
any f in L2(G/K), the function F = ¢'2¢/x/2f has an analytic continuation to,
for all sufficiently smallR [KS2, Theorem 6.1]. (These results actually hold for arbi-
trary symmetric spaces of the nhoncompact type, not necessarily of the complex type.)
We think of the analytic continuation of to Uz as the Segal-Bargmann transform
of f.

Our goal in this section is to give an inversion formula that recovérfom the
analytic continuation off. In analogy to theR? case and the case of compact sym-
metric spaces, this should be done by integrafhgver the fibers inUz ~TR(G/K).
Something similar to this is done by Leichtham et al. [LGS], in a very general setting.
However, in [LGS, Theorem 0.3] there is a term involving integration over the bound-
ary of the tube of radiusk. This boundary term involveg’/2f, for all s < ¢, and
an integration with respect te. This term is undesirable for us because we wish to
think of ¢ as fixed. In the case of compact symmetric spaces, Stenzel [St] showed that
the boundary term in [LGS] could be removed by letting the radtugend to infinity,
thus leading to the inversion formula described in Section 5.

Now, our results here will not be based on the work of [LGS]. Nevertheless, Leicht-
nam et al. [LGS] and Stenzel [St] suggest that it is not possible to get an inversion
formula of the sort we want by working with one fixed fini# rather, we need to
let R tend to infinity. Unfortunately, (1) the map, Y) — exp,(iY) ceases to be a
diffeomorphism of® (G /K) with Uy, for large R, and (2) the functionF = ¢!Ac/x/2 f
does not in general have a holomorphic (or even meromorphic) extensioty tfor
large R. For noncompact symmetric spaces of the complex type, we will neverthe-
less find a way to letR tend to infinity, by means of a cancellation of singularities.
This leads to an inversion formula that is analogous to what we have in the com-
pact and Euclidean cases. These results also lead to a natural conjecture of what the
isometry formula should be in this setting, something we hope to address in a future
paper.
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4.1. Inversion for radial functions at identity coset

Suppose thaff is a radial function inL?(G/K). Then we may use the intertwining
formula @7) and the inversion formula (5) in Theorem 1 to obtain the following.
As in the previous section, we let denote the square root of the Jacobian of the
exponential mapping foG/K and we letc denote the norm-squared of half the sum
(with multiplicities) of the positive roots folG/K.

Theorem 4. Let f be a sufficiently regular radial function ii?(G/K) (G complex
and let F = ¢'A¢/k/2 . Then

—|Y|?/2t

@y dY, (24)

f(x0) = e“/? / F(e'")o(iY)
p

with absolute convergence of the integral. Hage= ¢V is the identity coset irG/K.

Specifically, sufficiently regular may be taken to mean tliahasn» derivatives in
L?(X) (with respect to the Riemannian volume measure) for semed /2. Note that
the proof of Theoren2 shows that the functioX — F(eX)3(X) has an entire analytic
continuation topc. Thus the expressiofF (e!¥)5(iY) is well defined and nonsingular
on all of p.

At first glance, it may seem as if this inversion formula is not very useful, since it
applies only to radial functions and then gives only the valug @it the identity coset.
Nevertheless, we will see in the next subsection that this result leads to a much more
general inversion formula that applies to not-necessarily-radial functions at arbitrary
points.

Let us think about how this result compares to the inversion formula that holds for
the compact symmetric spadé/K that is dual toG/K (where, sinceG/K is of the
complex type,U/K is isometric to a compact Lie group). In (24), the meromorphically
continued functionF (¢!¥) is being integrated against the signed measure given by

2
o IYI2/2

. ct)25.:
d()—t(Y) =e 5(l Y)W

dy, Yep. (25)

By analogy with the compact case (Theord@ in the special form of Theorem 11),
we would expect that the (signed) measugeshould be the heat kernel measure at
the identity coset for thecompactsymmetric spacd//K dual to G/K, written in
exponential coordinates. Clearly, this cannot be precisely true, first, because one does
not have global exponential coordinates on the compact symmetric space and, second,
because the density of the measure in (25) assumes negative values, whereas the heat
kernel measure is a positive measure.

Nevertheless, the signed measure in (25) turns out to be very closely related to the
heat kernel measure f@r/ K. Specifically, thepush-forwardof the measure (25) under
the exponential mapping fd//K is precisely the heat kernel measure (at the identity
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coset) forU/K. Thus @5) itself may be thought of as an “unwrapped” version of
the heat kernel fotU/K, where we think of the exponential map as “wrapping” the
tangent space (in a many-to-one way) arodndk. What is going on is that the heat
kernel at a point in U/K may be expressed as a sum of contributions from all of the
geodesics connecting the identity cosetctorhe quantity in (25) is what we obtain by
breaking apart those contributions, thus obtaining something on the space of geodesics,
that is, on the tangent space at the identity coset. Although some geodesics make a
negative contribution to the heat kernel, the heat kernel itself (obtained by summing
over all geodesics) is positive at every point.

Theorem 5. We may identifyp with the tangent space at the identity cosetlgk

in such a way that the following hold$he push-forward of the signed measutein
(25) under the exponential mapping fdf/K coincides with the heat kernel measure
for U/K at the identity coset

Let us now recall the construction [He3, Section V.2]fK and explain how is
identified with the tangent space /K at the identity coset. LeG¢ be the unique
simply connected Lie group whose Lie algebragis. Let G be the connected Lie
subgroup ofG¢ whose Lie algebra ig. For notational simplicity, let us assume that
the inclusion ofg into gc induces an isomorphism af with G. (Every symmetric
space of the noncompact type can be realized;aX with G having this property.)

Let U be the connected Lie subgroup 6fc whose Lie algebra isu=f+ip. Then
the connected Lie subgroup &f with Lie algebrat is simply the groupk.

We consider the quotient manifolf/K and we identify the tangent space at the
identity coset inU/K with p, :=ip. If we use the multiplication by map to identify
p with p,, then we may transport the inner product ento p,. There is then a
unique U-invariant Riemannian metric oty/K coinciding with this inner product at
the identity coset. With this Riemannian metrid/K becomes a simply connected
symmetric space of the compact type, and is called the “dual” of the symmetric space
G/K of the noncompact type. The duality construction is valid starting with any
symmetric space of the noncompact type, producing a symmetric space of the compact
type (and a very similar procedure goes from compact type to noncompact type). If
one begins with a noncompact symmetric space of the complex type, the dual compact
symmetric space will be isometric to a compact Lie group with a bi-invariant measure.

Proof of Theorem 4. Let us again identifyG/K with p by means of the exponential
mapping at the identity coset. Suppogeis a radial function square-integrable with
respect to the Riemannian volume measure GofK. Then 6 f is a radial function
square-integrable with respect to the Lebesgue measune #ccording to (17) in the
previous section, we have

elAp/Z(éf) — 6‘61/256‘1A(;/K/2f. (26)

If 0f is “sufficiently regular,” then we may apply the inversion formula for the Eu-
clidean Segal-Bargmann transfornd)((n Theorem 1) to the functiod f. Noting that



356 B.C. Hall, J.J. Mitchell/Journal of Functional Analysis 227 (2005) 338-371
0(0) = 1, applying the inversion at the origin gives

2
oIV

f(0) = (3£)(0) = e/? / F@Y)o@iY) dy,

» (2nt)d/2

with absolute convergence of the integral, whdreis the meromorphic extension
of e'2c/k/2f. To undo the identification ofG/K with p, we simply replacef(0)
with (%) and F(Y) with F(¢!Y). This establishes Theored, provided thats f is
“sufficiently regular.”

To address the regularity condition, we recall the intertwining formula (14). From this
formula it is not hard to show that if is radial and in the domain af/ —AG/K)”/Z
for somen, then 6f is in the domain of(cl — Ap)"/z. However, the domain of
(cI—AG/K)"/2 is precisely the Sobolev space of functions@nkK havingn derivatives
in L2. Thus if f is in this Sobolev space with > d/2, 6 f will be in the corresponding
Sobolev space op andd f will indeed be “sufficiently regular” in the sense of [H9,
Section 2.1]. O

Proof of Theorem 5. We make use of the formula for the heat kernel function (at the
identity) on a compact Lie group, as originally obtained by Eskin [E] and rediscovered
by Urakawa [U]. We continue to use symmetric space notationUfpK, rather than
switching to group notation. Nevertheless, the following formula is validy in the
case thatU/K is isometric to a compact Lie group (which is precisely wi@nK is
of the complex type). We think af, := ip as the tangent space /K at the identity
coset and we write? for the exponential (in the geometric sense)Yok p,. For any
maximal commutative subspaeeof p, the spacen, :=ia is a maximal commutative
subspace op, (and every maximal commutative subspacepgfarises in this way).
Given a fixed such subspaag, the setA, = exp(a,) is a maximal flat inU/K and A,
is isometric to a flat Euclidean torus. LEtC a, denote the kernel of the exponential
mapping fora,, so thatI' is a lattice ina,.

We now let p, denote the fundamental solution at the identity coset to the heat
equationdu /0t = 1Au on U/K. The heat kernel formula asserts that for any maximal
commutative subspace, of p, we have

ect/Z B B 2
p, (e = 2yl Z JTY2(H 4 p)e HEW2 g e, 27)
yell

The function p, is the heat kernefunction that is, the density of the heat kernel
measure(at the identity coset) with respect to the (un-normalized) Riemannian volume
measure or//K.

In this formula,d = dim(U/K) and ¢ is the norm squared of half the sum (with
multiplicities) of the positive roots folU/K. Since (it is easily seen) the roots and
multiplicities for U/K are the same as fat /K, this definition ofc agrees with the
one made earlier in this section. Meanwhile, the functjons the Jacobian of the
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exponential mapping fot//K, j2 is the uniquesmoothsquare root of; that is
positive near the origin, ang—/2 is the reciprocal ofj/2. Explicitly, for H in a, we
have

172 B sina(H)
J <H>—y]€‘R[+ ) (28)

where R is a set of positive roots fob//K. Note that;j1/? takes on both positive and
negative values; the nonnegative square rooy @ not a smooth function. Properly,
formula @7) is valid only for H such thatj(H) is nonzero, in which casg¢(H + y)
will be nonzero for ally € I'. However, sincep, is continuous, we may then extend
the right-hand side by continuity to alf € a,.

Since the roots fol//K are the same as fat/K (under the obvious identification
of p, with p), comparing formula (8) with (28) gives that

JY2(v) = 5GiY) (29)

forall Y in px~p,.

Formula @7) is not quite what is given in [E] or [U], but can be deduced from those
papers. Our formula differs from the one in Urakawa by some factors of 2 having to
do with group notation versus symmetric space notation, some additional factors of 2
having to do with different normalizations of the heat equation, and an overall constant
coming from different normalizations of the measure K .

Now, a “generic” point inU/K (in a sense to be specified later) is contained in a
unique maximal flatA,. If x is contained in a unique maximal flat, and if ¥ = x
for someY in p,, then we must havg € a,. (If ¥ were not ina,, thenY would
be contained in some maximal commutative subspacg a, and thenx would be in
the maximal flatB, # A,.) Fix such a pointx and pick oneH in a, with e/ = x.

Then the elements of the fori= H + v, with y in I', represengll the points inp,
with ¢¥ = x. This means that for a generic point= ¢, the sum in (27) may be
thought of as a sum over all the geodesics connecting the identity cosetltove
also make use of (29), we may rewrite (27) as

ect/Z

—Ll/ _ 2
(2mr)d/2 Yoo stayye M, 0

{rep,le¥=x}

p[(x) =

wheneverx in U/K is contained in a unique maximal flat.

We are now in a position to understand why Theorgrholds. If we push forward
the signed measure s, in (25), we will get a factor of 1j(Y) (= 1/6%(iY)) from
the change of variables formula, which will change thén (25) to 9. The density
of the pushed-forward measure at a generic peimt U/K will then be a sum over
{Y|e¥ = x} of the density in (25) multiplied by /(i Y), which is precisely what we
have in (30). This is what Theorem 5 asserts.
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To make the argument in the preceding paragraphs into a real proof, we need to
attend to a few technicalities, including an appropriate notion of “generic.” We call an
elementY of p, singular if there exist a maximal commutative subspaceontaining
Y, a roota for a, and an integern such thatu(Y) = nz; we call Y regular otherwise.

We call an element of U/K singular if x can be expressed as= ¢’ for some
singular elementY € p,; we call x regular otherwise. It can be shown that is
regular whenever is regular (this is not immediately evident from the definitions). In
both p, and U/K, the singular elements form a closed set of measure zero. Thus in
pushing forward the signed measure we may simply ignore the singular points and
regard the exponential mapping as taking the open set of regular elementsoimo

the open set of regular elements ify K. (See Sections VII.2 and VII.5 dHe3].)

If x is regular andx = e¥, then (by definition)Y is regular and it follows that
j(Y) is nonzero. Furthermore, if is regular then (it can be shown) is contained
in a unique maximal flat. Thus (30) is valid for all regular elements. Furthermore, it
is easily seen that the functiop(Y) = J(iY) has constant sign on each connected
component of the set of regular elementspin Finally, we note that the exponential
mapping is a local diffeomorphism near each regular elemenpt okince the Jacobian
of the exponential mapping is nonzero at regular points. From all of this, it is not hard
to use a partition of unity to show that the argument given above is corrett.

4.2. Inversion for general functions

At each pointx in G/K, we have the geometric exponential mapping, expapping
the tangent spac@&,(G/K) into G/K. We have also the square root of the Jacobian
of the exponential mapping for expdenoteds,. Now, the action ofG gives a linear
isometric identification of7 (G/K) with T,,(G/K)=p. This identification is unique
up to the adjoint action ok on p. Under any such identification, the function will
coincide with the functiord = J,, considered in the previous section. Thus, in a slight
abuse of notation, we laei stand for the square root of the Jacobian of .esp any
point x. For example, in the case of three-dimensional hyperbolic space (with the usual
normalization of the metric), we haw¥ X) = sinh|X|/|X]| (for all x). For anyx, the
function 6 has an entire analytic continuation to the complexified tangent space at

Theorem 6. Let f be inL2(G/K) (G complex and let F = ¢'A6/k/2f_ Then define

2
Y12

72 dy, (31)

L(x,R) = e”/Z/ F(exp,(iY))d(iY)

YI<
for all sufficiently small R

Then for eachr, L(x, R) admits a real-analytic continuation in R t@, co). Fur-
thermore, if f is sufficiently regular, then

fx)= Rlim L(x,R) (32)
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for all x in G/K. Thus we may write, informally,

2
o IY 1221

f(X): WdY,

im "eC’/Z/ F(exp, iY)o(iY) (33)
YI<R

" I
R—o00

with the understanding that the right-hand side is to be interpreted literally for small
R and by analytic continuation in R for large R.

As in the radial case, “sufficiently regular” may be interpreted to mean fhhgas
n derivatives inL?(G/K), for somen with n > d/2.

Formula @3) should be thought of as the noncompact dual to the compact group
formula (37) in Theorem 11. Specifically (as in (29);Y) is nothing but the square
root of the Jacobian of the exponential mapping for the dual compact symmetric space
U/K, so that this factor in (33) is dual to the factor pfY)Y/? in (37). The positive
constantc has the same value in (33) as in (37) (because the roots and multiplicities
for G/K and U/K are the same); the change froen</? in (37) to ¢/ in (33)
is part of the duality. (For example, the exponential factors are related to the scalar
curvature, which is negative iv/K and positive inU/K.)

Let us think about whyL (x, R) admits an analytic continuation iR, despite the
singularities that develop i (exp,(iY)) whenY is not small. The key observation is
that the signed measure in the definitionZafc, R) (denoteds; in (25)) is radial. Thus
the integral in (31) only “sees” the part df(exp,(iY)) that is radial as a function
of Y. Taking the radial part ofF (exp,(iY)) eliminates many of the singularities. The
singularities that remain in the radial part &f(exp,(iY)) are then of a “universal”
nature, coming essentially from the singularities in the analytically continued spherical
functions for G/K. These remaining singularities are canceled by the zeros in the
function 6(iY). See Section 5 of the expository paper [H9] for further discussion of
the cancellation of singularities.

Proof. For anyx in G/K, we let K, denote the subgroup @ that stabilizesc. (This
group is conjugate irG to K.) For any continuous functiog on G/K, we let $*)
denote the “radial part op relative tox,” given by

¢”Nw==ﬁ:¢w~wdh

wheredk is the normalized Haar measure @ .

We wish to reduce the inversion formula in Theoreénto the radial case in
Theorem 4. Of course, there is nothing special about the identity coset in Theorem 4;
the same result applies to functions that are radial with respect to anypainG /K.

Now, note that

O = fx)
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and that (since the heat operator commutes with the actioki,df

elAG/K/Z(f(X)) — (eIAG/K/Zf)(X) — O

Furthermore, iff is sufficiently regular, then so ig™.
Thus, by Theoren# (extended to functions that are radial arowjdwe have

fo) =@
oY/

(2mt)d/2 ay

= / e BGIKI2( ) (exp, (1Y) Y)
T:(G/K)

2
o IY12/2t

@il dY. (34)

- f F® (exp, (iY))d(iY)
T.(G/K)

Note that the functionX — F<’f)(exgc(X))5(X) has an entire analytic continuation to
T.(G/K)¢c and thereforeF(x)(expx(iY))é(iY) is nonsingular for ally.

Now, the action ofK, commutes with exp and with analytic continuation from
T.(G/K) to T,(G/K)¢. Thus

x

From this and the fact thai(;Y) and |Y|? are radial functions off, we obtain the
following: We may replaceF (exp, (iY)) in (31) with F®) (exp, (iY)) without affecting

the value of the integral. This establishes the existence of the analytic continuation in
R of L(x, R): The analytic continuation is given by

—|Y 2/

_ o et)? @) YNSGY)
L(x,R)=e / F (expx(zY))é(lY)(Znt)d/de

YI<R

for all R. (This expression is easily seen to be analytikif Letting R tend to infinity
gives the inversion formula3e), by (34). O

5. Review of the compact case

In order to put our results for noncompact symmetric spaces of the complex type into
perspective, we review here the main results from the compact case. We describe first
the results of Stenzel [St] for general compact symmetric spaces. Then we describe
how those results simplify in the case of a compact Lie group, recovering results
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of [H1,H2]. Finally, we describe a recent result of Florentino et al. [FMNZ2] for radial
functions in the compact group case. Our isometry formula for radial functions in the
complex case (especially Theorem 3) should be compared to the result of Florentino et
al. [FMNZ2], as described in our Section 5.3. Our inversion formula for general functions
(Theorem 6) should be compared to the inversion formula in the compact group case,
as described in (37) of Theorem 11.

For additional information on the Segal-Bargmann transform for compact groups and
compact symmetric spaces, see the expository papers [H6,H9]. See also [HM1,HM2]
for more on the special case of spheres.

We make use here of standard results about compact symmetric spaces (see, for
example, [He3]) as well as results from Section 2 of [St] (or Section 8 of [LGS]).

5.1. The general compact case

We consider a compact symmetric spake assumed for simplicity to be simply
connected. Suppose that is a compact, simply connected Lie group (necessarily
semisimple) and that is an involution of U. Let K be the subgroup of/ consisting
of the elements fixed by. Then K is automatically a closed, connected subgroup of
U. Consider the quotient manifold := U/K, together with any Riemannian metric
on U/K that is invariant under the action &f. ThenX is a simply connected compact
symmetric space, and every simply connected compact symmetric space arises in this
way. We will assume (without loss of generality) thét acts in a locally effective
way on X, that is, that the set of € U for which u acts trivially on X is discrete.
Under this assumption, th& and ¢ are unique up to isomorphism for a given
and U is isomorphic to the universal cover of the identity component of the isometry
group of X.

We consider the complexification of the grotf denotedUc. Since we assumé&
is simply connected/ is just the unique simply connected group whose Lie algebra
is uc := u+iu (whereu is the Lie algebra ol/), andU sits insideUc as a maximal
compact subgroup. We also l&lc denote the connected Lie subgroup l&f whose
Lie algebra istc := t + if (wheref is the Lie algebra ofK). Then K¢ is always a
closed subgroup ot/c. We may introduce the “complexification” af//K, namely,
the complex manifold

Xc :=Uc/Kc.

It can be shown thakc N U = K; as a result, the inclusion df into Ug induces an
inclusion of U/K into Uc/Kc.

We write g - x for the action of an elemerg in Ugc on a pointx in Ug/K¢c and
we let xg denote the identity coset it /K C Uc/Kc.

Definition 7. The Segal-Bargmann transform for/K is the map

C,: L2(U/K) - H(U¢c/K¢)
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given by
C, f = analytic continuation o&'2/2f.

Here ¢'A/2 is the times forward heat operator and the analytic continuation is from
U/K to Uc/K¢c with ¢ fixed.

It follows from [H1, Section 4] (applied td& -invariant functions orl/) that for any
fin L2(U/K) (with respect to the Riemannian volume measw&Y?2f has a unique
analytic continuation frontU/K to Uc/Kc.

At each pointx in U/K, we have the geometric exponential map

exp, : T, (U/K) - U/K.

(If y is the unique geodesic with(0) = x and $(0) = Y, then exp(¥Y) = y(1).)
For eachx, the map exp can be analytically continued to a holomorphic map of the
complexified tangent spack (U/K)c into Uc/Kc.

Proposition 8 (Identification of 7'(X) with X¢). The map® : T(U/K) — Uc/Kc
given by

O(x,Y) =exp,(iY), xeU/K, Y e T (U/K)

is a diffeomorphism. On right-hand side of the above formebep, (1Y) refers to the
analytic continuation of geometric exponential map

From the point of view of quantization, we should really identifir /K¢ with
the cotangent bundler*(U/K). However, sincelU/K is a Riemannian manifold we
naturally and permanently identif§*(U/K) with the tangent bundl (U/K). In the
R¢ case, exp(iy) would be nothing butc + iy.

The Lie algebrau of U decomposes as = f + p, wherep is the —1 eigenspace
for the action of the involutiors on u. For anyx in U/K we define

K, =Ad,(K),
fx :Adu(f)y
px :Adll(p)v

whereu is any element ot/ such thatu-xo = x. We identify p = p,, with the tangent
space toU/K at xo; more generally, we identifyp, with the tangent space at to
U/K. With this identification, we have

exp, (Y)=e¢"-x, xeUJK, Y ep,,

wheree' € U is the exponential ot in the Lie group sense.
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Now, for eachx € U/K, define a subspacg, of uc by
9y = o+ ipx'

Theng, is a Lie subalgebra ofic. We let G, denote the connected Lie subgroup of
Uc whose Lie algebra ig,. Note thate’" belongs toG, for any Y in p,. Thus, the
image under® of 7, (U/K) is contained in the&5 -orbit of x. In fact, ®(7,(U/K)) is
precisely theG,-orbit of x, and the stabilizer inG, of x is preciselyK,. We record
this result in the following.

Proposition 9 (Identification of the fibejs For any x € U/K, the image inside
Uc/Kc of Ty (U/K)=p, under ® is precisely the orbit of x undet,. Thus the
image of 7, (U/K) may be identified naturally witlt, /K.

Now, eachG, is conjugate under the action &f to G := G,,. Thus each quotient
spaceG, /K, may be identified withG/K. This identification depends on the choice
of an element: of U mappingxp to x and is therefore unique only up to the action
of K on G/K. The spaceG/K, with an appropriately chose@-invariant Riemannian
metric, is thedual noncompact symmetric spate U/K. Thus we see that the map
® leads naturally to an identification (unique up to the actionkgfof each fiber in
T(U/K) with the noncompact symmetric space' K.

Another way to think about the appearance of the geometiy /& in the problem is
from the following result of Leichtham, Golse, and Stenzel. If we analytically continue
the metric tensor froml//K to Uc/Kc and then restrict to the image @ (U/K)
under®. The result is thenegative ofa Riemannian metric and the image®f(U/K),
with the resulting Riemannian metric, is isometricGg K. (See[LGS, Proposition 1.17
and Theorem 8.5].)

On each fiberT,(U/K)=~G/K we may then introduce thkeat kernel measuréat
the identity coset). This measure is given by the Riemannian volume measug¢ Kor
multiplied by theheat kernel functiondenotedv,. Under the identification of (U/K)
with G/K, the Riemannian volume measure 6K corresponds to Lebesgue measure
on 7T, (U/K) multiplied by an explicitly computable Jacobian functigpnThus the heat
kernel measure of, (U/K) is the measure,(Y)j(Y)dY, wheredY denotes Lebesgue
measure.

We are now ready to state the main results of Stenzel's paper [St].

Theorem 10 (Stenzél Let f be inL2(U/K) and let F = ¢/2/2f. Then we have the
following results

1. Theinversion formula.lf f is sufficiently regular we have
fo= [ FeRaumimay. (35)
I (U/K)

with absolute convergence of the integral for all x
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2. Theisometry formula.For all f in LZ(U/K) we have
f | f ()2 dx =/ f |F(exg(iY)){2th(ZY)j(zY)zd dYdx, (36)
U/K U/K JT(U/K)

whered = dim(U/K).

3. Thesurjectivity theoremFor any holomorphic function F ob/g /K¢ =T (U/K) such
that the integral on the right-hand side ¢86) is finite there exists a unique f in
L?(U/K) with F = C, f.

Note that in (35) we have;(Y)j(Y), whereas in (36) we havey (2Y);j(2Y). The
smoothness assumption gf in the inversion formula is necessary to guarantee the
convergence in the inversion formula (35). (The optimal smoothness conditions are not
known in general; Stenzel actually assumes tfiais C*°.) As in the R" case, the
inversion formula in (35) isnot the one obtained by viewing the heat operator as a
unitary map (as in the isometry formula) and then taking the adjoint.

The special case of Theorem 10 in whithyK is a compact Lie group was estab-
lished in [H1,H2]. (The compact group case is the one in whitlis H x H and K
is the diagonal copy ofi inside H x H, where H is a simply connected compact Lie
group.) See also [HM1,KR2] for an elementary proof of the isometry formula in the
case ofX = 57,

The proof of the inversion formula hinges on the duality between the compact sym-
metric spacelU/K and noncompact symmetric spac® K. Specifically, for a holo-
morphic function F on Uc/Kc =T (U/K) we have that applying the Laplacian for
G./K, in each fiber and then restricting to the base gives the negative of the result of
first restricting F to the base and then applying the Laplacian IofK. So, roughly,
the Laplacian in the fiber is the negative of the Laplacian on the base, on holomor-
phic functions. (Compare the result @ that d2/dy? is the negative of/2/dx? when
applied to a holomorphic function.) The argument is then that applyingfaheard
heat equation in the fibers (by integrating against the heat kernel) has the effect of
computing thebackwardheat equation in the base. The proof of the isometry formula
may then be reduced to the inversion formula; in the process of this reduction, the
change fromv,(Y);j(Y) to v (2Y)j(2Y) occurs naturally.

5.2. The compact group case

Although the Jacobian function is explicitly computable for any symmetric space,
the heat kernel, is not. Nevertheless, iX is isometric to a simply connected compact
Lie group with a bi-invariant metric, then the dual noncompact symmetric space is of
the complex type and in this case there is an explicit formulavfodue to Gangolli
[Ga, Proposition 3.2]. Expressed in terms of the heat kemehsure this formula
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becomes

—Y]
. N . e
v(Y)j(Y)dY = e~ j(x)Y/? -

where dY is Lebesgue measure on the fibér,= dim({U/K) = dim(G/K), and ¢

is the norm-squared of half the sum of the positive roots Xofthinking of X as a
symmetric space and counting the roots with their multiplicities). In the expression for
the heat kernefunction we would have;j (Y)~1/2 instead of j(Y)¥/2. Thus we obtain

the following.

Theorem 11. In the compact group case¢he inversion formulatake the form

2 1/26_|Y|2/2t
=e F(exp,(iY))j(Y 37
foo =e /wm (OXp. (1) (125 37)
and theisometry formulatakes the form

YR/t

' 24:*“/ / F )| j2r)Y/? dy dx. (38
/U/KU(X)| e U/K T,‘(U/K)| (xR J @1 (mt)4/? * (38)

As in the general case37) holds for sufficiently regulay in L2(U/K) and (38)
holds for all f in L2(U/K).

If we specialize further to the case in which is the unit spheres® inside R* (so
that X is isometric to the compact group &2)) and put in the explicit expression for
j(Y), the inversion formula becomes

sinh|y| e~ Y1272

fx) = e_’/Z/ F(exp, (iY)) ——
T(5%)

> dY 39
Y| (2mn32 " (39)

and this isometry formula becomes

2. _osinh|2y| e P/t
/S3|f(x)| dx =e /S3/TX(SS)|F(expx(zY))| o @ dy. (40)

5.3. Radial functions in the compact group case

In the compact group case, Florentino, Mour&o, and Nunes have obtained a special
form of the isometry theorem for radial functions. In this case, the radial functions (in
the symmetric space sense) are simply the class functions on the compact group. Our
Theorem3 is just the noncompact dual to Theorem 2.2 of [FMNZ2]. There does not
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appear to be an analog of our Theor@rin the compact group case, because there
the exponential mapping is not a global diffeomorphism.

We continue to use symmetric space notation rather than switching to compact group
notation. Leta be a maximal commutative subspaceyoind letA = exp, (a). Then
A is a “maximal flat” in X and is isometric to a flat Euclidean torus. Every point
x in U/K can be mapped by the left action &f into A. Thus a radial function is
determined by its values oA.

Becausen is commutative, we can simultaneously identify the tangent space at every
point in A with a. We now define the “complexificationAc of A to be the image
under® of T(A) C T(X), where® is the map in Proposition 8. That is to say, we
define

Ac = {exp,(iY) € Xcla € A, Y € a}.

The restriction of® to T(A) is a diffeomorphism off' (A) with Ac. (If we identify
X with a compact Lie grou, then A is a maximal torusl” inside H and Ac is the
complexification of7 inside Hg.)

It is convenient to multiply the Riemannian volume measuresXoand A by nor-
malizing factors, so that the total volume of each manifold is equal to 1. If we used
instead the un-normalized Riemannian volume measures, there would be an additional
normalization constant in Theored®, as in Theorem 3. We now let be the Weyl
denominator function om. This is the smooth, real-valued function, unique up to an
overall sign, with the property that

_ 1 2
/X P ds = o /A Fl@n(a?da,

for all continuous radial functiong on X. Here |W| is the order of the Weyl group
for X, anddx andda are the normalized volume measuresXrand A, respectively.
The functionn has an entire analytic continuation fromto Ac, also denoted;.

We are now ready to state Theorem 2.2[BfNZ2], using slightly different notation.

Theorem 12 (Florentino, Mourdo, and Nungs Suppose X is isometric to a compact
Lie group with a bi-invariant metric. If f is any radial function ih?(X), let F denote
the analytic continuation toX¢ of ¢/A/2f. Then

[ rer ax = / | @R[ e, i) ),/2 Cdvda.  (a)

W]

Here r is the dimension of, the constant c is the same as (87) and (38), |W| is
the order of the Weyl groypand dx and da are the normalized Riemannian volume
measures on X and,Aespectively
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Furthermore if F is any Weyl-invariant holomorphic function a#¢ for which the
integral on the right-hand side @#1)is finite then there exists a unique radial function
fin L2(X) such thatF = ¢'A/2f on A

Consider, for example, the case in whighis the unit spheres® in R*, in which
caseXc is the complexified sphere

S(% :=[ze@4‘z%+z§+z§+z§=1}.

Fix the basepoinko := (1,0, 0, 0). In that case, a “radial” function o2 is one that
is invariant under the rotations that fixy. If we take a to be the one-dimensional
subspace oTTxO(S3) spanned by the vectan, = (0, 1, 0, 0), then A is the set

A = {(cosb, sin0, 0, 0)| 0 € R} (42)

and Ac is the set of points insg of the same form as in4@), except withd in C.

In the $2 case,|W| =2, ¢ = 1, the Weyl denominator is 2sth and the normalized
measure oA is d0/2r. Thus (41) becomes

—t 2n  poo
[rerar="5 " [ "|F (o0 -+iy).5in0 +i.0.0]
§3 2 Jo —00
e 0

2sin(0 + iy)|? ——— dy —.
x[2sin(0 +iy)| w2 Y 2

(43)

6. Concluding remarks

In this paper we have established an isometry formula (in two different versions)
for the Segal-Bargmann transform of radial functions and an inversion formula for
the Segal-Bargmann transform of general functions, both in the case of a honcompact
symmetric space of the complex type. Both the isometry formula and the inversion
formula require a cancellation of singularities, but otherwise they closely parallel the
results from the compact group case. Specifically, TheoBeim the complex case is
very similar to Theorem 12 in the compact group case and Theorem 6 in the complex
case is very similar to the inversion formula in Theorem 11 in the compact group case.
Besides the cancellation of singularities, the main difference between the formulas in
the two cases is the interchange of hyperbolic sine with ordinary sine. It is natural,
then, to look ahead and consider the prospects for obtaining results in the nhoncompact
setting parallelingall of the results we have for compact symmetric spaces. This would
entail extending the isometry result to nonradial functions and then extending both the
isometry and the inversion results to other noncompact symmetric spaces, beyond those



368 B.C. Hall, J.J. Mitchell/Journal of Functional Analysis 227 (2005) 338-371

of the complex type. IMH2] in the compact group case and in [St] in the general
compact symmetric space case, the inversion formula is proved first and the isometry
formula obtained from it. As a result, we fully expect that the inversion formula we
prove here will lead to an isometry formula for not-necessarily radial functions in the
complex case. A precise statement of the result we have in mind is given in [H9] in
the case of hyperbolic 3-space.

Meanwhile, we have recently received a preprint by Krotz et al. [KOS] that estab-
lishes an isometry formula for general functions (not necessarily radial) on general
symmetric spaces of the noncompact type (not necessarily of the complex type). How-
ever, this isometry formula does not, at least on the surface, seem parallel to the
compact case. In particular, in the complex case, this isometry formulanbbesduce
to the one we have in mind, at least not without some substantial manipulation of
the formula in [KOS, Theorem 3.3]. Nevertheless, the result of [KOS] is a big step
toward understanding the situation for general symmetric spaces of the noncompact
type. There may well be a connection, in the complex case, between the results of
[KOS] and the isometry formula we have in mind, but this remains to be worked out.
If the isometry formula can be understood better for general noncompact symmetric
spaces, this understanding may pave the way for progress on the inversion formula as
well.

Note that in the case of compact symmetric spaces, the results take on a particu-
larly simple and explicit form in the compact group case. (Compare Theorem 10 to
Theorem 11.) Our results in this paper are for the noncompact symmetric spaces of
the complex type; this case is just the dual of the compact group case. Thus, one
cannot expect the same level of explicitness for noncompact symmetric spaces that are
not of the complex type. Instead, we may hope for results that involve some suitably
“unwrapped” version of the heat kernel measure on the dual compact symmetric space,
where in general there will not be an explicit formula for this unwrapped heat kernel.
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