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Let D be either a convex domain in R or a domain satisfying the conditions (A) and (B) considered by Lions
and Sznitman [7] and Saisho [ 11]. We estimate the rate of L” convergence for Euler and Euler-Peano schemes
for stochastic differential equations in D with normal reflection at the boundary of the form
X,=Xo+ [of(X,) AW, + [(g(X,) ds+ K,, t€R™, where W is a d-dimensional Wiener process. As a consequence
we give the rate of almost sure convergence for these schemes.
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1. Introduction

In this paper we investigate L” convergence as well as almost sure convergence of time-
discretization schemes for d-dimensional stochastic differential equation (SDE) on a
domain D with reflecting boundary condition. Given a function f: D=DUéD - R‘@RY,
Jxy={f;(x)};;-\. .« we consider the following SDE:

. . d t . 7 .
X=X+ 3 [ k0 awi [Lax) ast, M
=i Jo 0
i=1,..., d, t€R™, where W,=(W/,..., W9 is a d-dimensional Wiener process
X,=(X/...., X?) is areflecting process, on D and K,= (K] ,..., K¢) is a bounded variation
process with variation | K|, increasing only when X, €D (the precise definition will be
given in Section 2). This equation is called a Skorokhod SDE with the analogy to the one-
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dimensional case first discussed by Skorokhod [12] for D=R *. The case of reflecting
processes in a domain more general than a half-line or half-space (i.e. D=R* XR~") has
been discussed firstly in the paper by Tanaka [ 14], where D is any convex subset of R and
then by Lions and Sznitman [7] and Saisho [11], where D is a domain satisfying some
mild conditions (A) and (B) given in Section 2. In particularin [14] and [ 11] itis proven,
that if f, g are Lipschitz continuous and bounded on D i.e. there exists a constant L> 0 such
that for every x, y€ D,

WAy —f I+ 1g(x) =g | <Llx—y|, AN, lg(x)| <L, (2)

where || - || denotes the usual norm in the space of linear operators from R¢ into R?, then
there exists a unique strong solution to the SDE (1).

Let us consider an array {{t,.}} of nonnegative numbers such that in each nth row the
sequence {f,,} forms a partition on R™ with the property 0=1,,<t,, <*--, lim; _, o, = +0°
and

max(t,, —t,—)<1/n, neN. (3)

For the array {{t,.}} we define the sequence of summation rules {p"}, p":R* =»R™ by
pr =max{t,;t<t}. Forevery xe D(R*, RY) (D(R™, RY) is the space of all mappings
x:R* >R which are right continuous and admit left-hand limits) we define the sequence
{x*"} of discretizations of x, x?" =x,» =x,, for t€ [t,4, 44 1), kENU {0}, nEN. In the
present paper we assume that D is either a convex set or a general domain satisfying the
conditions (A) and (B) and we consider Euler and Euler-Peano schemes for the SDE ( 1).
More precisely, we investigate the approximations {X"} and {X"}, which are the solutions
to the appropriate SDE’s with reflecting boundary conditions

X=X, + f’f(if:_>de"+ j g(X7_) dpl +K!. 1€R* 4)
0 0
and
~ A I -~ A
Xr =X, + J"f(xyf") aw, + J g(Xm2"y ds+ K", 1eR™ . (5)
0 [¢]

It has been observed in [ 13, Corollary 10] and [ 11, pp. 473-474] that

sup | X7 —X, | - 0, geR™,

t<q
and

sup | X7 —X,| — 0, gq€R",

1<gq 4

respectively. Note that if D=R9 then X7 =X""" and (4) is a classical Euler scheme
considered firstly in Maruyama [8]. In the case D # R the equality X" = X7#" need not be
satisfied. In this case the rate of mean-square convergence in the above schemes was
considered before only if D=[R * X R~ by Chitashvili and Lazrieva [3], Kinkladze [5]
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(the scheme (4)) and Lépingle [6] (the scheme (5)). Let us observe that in this case we
can write down the explicit formulas for the solutions X" and X" Namely,

(Y —0Ainf,_ Y ifi=1,

XU = ifi=2,....d,

where
Xf) lfte [0’ tnl[ s
Ypi=<yr +;leﬁj( Ye o (Wi, —Wi )
+8(Y7 )t —tys—1) if 1€ [fue, tagail -

Similarly

i = )77" —0/\inf_‘<,)?7~l ifi=1,

N S ifi=2...d,

where

s=1¢ ¢ 1
P links tnk+11 -

X} if 1=0,
V= Vel + D Sl (VL) (W= W)
C

N<)

RoONdse s N M
) UL k) 1

In our paper we assume that D is a domain in R? with nonempty interior and we give the
rate of L? as well as almost sure convergence for the schemes (4), (5) for domain more
general than half-space.

Let D be a convex domain in R? For the Euler scheme we show that there exists a
sequence of stopping times {1,}, 7, = . + such that

Esup | X'~ =X |*=0(1/n"?"%), £>0,qeR*, peN, (6)
1<q
and
n'4¢sup [Xrm T —X"| >0, Pas,e>0,geR™. (7)
t<q

In this case for the Euler-Peano scheme we obtain

Esup |X! —X,|*=0(1/n"), q€R*,peN, (8)
t<q
and
n'2"¢sup |X"—X,| =0, F-as,e>0,qgER™. (9)

t<q

For a large class of convex domains we are able to strengthen (6) and (7). If D is a convex
subset of R? satisfying the condition (), which is automatically fulfilled if D is bounded
or d <3 (the precise definition is given in Section 2), then we prove that

Esup | X7 =X, |*=0(1/n"?"%), £>0,qeR"*, peN,

t<q
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and

n'#~¢sup | X" —X,| >0, P-as,e>0geR".

r<q

If D is a convex polyhedron, i.e. D= N Y_, D,, where D, is a closed half-space, we prove
even more, namely that

Esup | X! —X,|*=0(1/n""%), £>0,9q€R™*,peN, (10)
t<gq
and
n'?2"¢sup |X"—X,| >0, P-as.,e>0,geR". (11)

t<q

Let us mention that in the case of half-space some results of type (10) were obtained in
[3,5], while (8) was announced in [6].

Now let D be a general domain satisfying the conditions (A) and (B). For the Euler
scheme we prove that (6) and (7) are true, too. In the case of the Euler—Peano scheme we
prove that there exists an array of stopping times {{7%}} such that lim, _, .. lim sup, _, , »
P(Tr <gq)=0and

Esup |X;™ =X |*=0(1/n"), keN,qeR*, peN.

r<q
We can also find a sequence of stopping times {7,}, 7, = . + such that

n'2"fsup | X0 —X"| -0, Pas,e>0,qgeRT.

t<yq

The paper is organised as follows. In Section 2 we give some basic definitions and basic
facts about SDE’s with reflecting boundary conditions. In particular, we give L” versions
of general inequalities for reflected processes proved earlier in [13], which are our main
tool in the proofs. In Section 3 we consider the case of convex domain and in Section 4 the
general case of domains satisfying the conditions (A) and (B). Finally, the Appendix
contains some versions of Gronwall’s lemma and other technical lemmas used in the proofs.

Let us introduce now some definitions and notations used further on. For xe D(R ¥,
R?),ACR™* we denote w,A =sup, ,c 4 |% —X,/|.

wx(h’ ‘1) = Sup |xr —-xs ! >
stE[0gq]).|s—t <h

and

wi(h, g)= inf max w/[s,_. s,
(sk) 1 <k<r

where 0=1s,<s, <--- <s,=q, 85— 8, > hk=1,2,...,r. (2, F, ) is a probability space
and (.#,) a filtration on ({2, .7, &) satisfying the usual conditions. Let X be an (%)
adapted process and Tbe an (.7 ,) stopping time. We write X"and X"~ to denote the stopped
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processes X. ,,and X. . ,_, respectively. If X=(X',..., X9) is a local martingale then [X],
stands for ©¢_,[X’],, where fori=1,..., d, [X'] is a quadratic variation process of X'. If
K=(K',..., K% is a process with locally finite variation, then |K|,=X%  |K‘|, where
| K'|, is a total variation of K’ on [0, #].

2. Preliminaries

Let D be a domain in R? with nonempty interior. Define the set .#", of inward normal unit
vectors at x€adD by 4 = U, o4, ,,

N, ={rneRY |n| =1, B(x—m, r)ND=§},

where B(z, r) = {yeR% |y—z] <r},z€R r>0.
Following Tanaka [14], Lions and Sznitman [7] and Saisho [11] we introduce three
assumptions.

(B) There exist constants £>0 and 6> 0 such that for every x€ D we can find x,€ D
such that B(x,, £) CD and |x—x,| <.
(A) There exists a constant r,> 0 such that

N o=, FD forevery x€dD .

(B) There exist constants >0, 82 1 such that for every x € 3D there is a unit vector [,
with the following property:

1
de,n)> E for every n € U N,

yEB(x.8) N aD

where (-, - ) denotes the usual inner product in R,

Remark 1 [ 14,7]. (i} If the condition (A) is satisfied and dist(x, D) < ry, x & D then there
exists a unique [x],€D such that |x— [x],| =dist(x, D) and, moreover, ([x],—x)/
[[x];—x| €4

(ii) If D is a convex domain in [R¢ with nonempty interior then ro= + % and the assump-
tions (B), (A) and (B) are satisfied for d=1, 2. For d>2 there exists a sequence of
bounded convex sets {D,} satisfying the conditions (), (A) and (B) such that D, T D. In
this case (B) = (B) and we can put D,=DN {xER"; |x| <k}, kEN.

The Skorokhod deterministic problem is stated in the following manner.

Definition 1. Let ye D(R *, R?) and y, € D. We will say that a pair (x, k) eD(R *, R>)
is a solution of the Skorokhod problem associated with y if
() x,=y,+k,teR™,
(ii) x,€D,reR ™,
(iii) k is a function with bounded variation on each finite interval such that ky=0 and
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b= [Lmdkles K= [ e dlbl,
0 0
where n, €., if x,€0D and | k|, denotes the total variation of k on [0, ], r€R *.

Remark 2 {14,11,13]. If either D is convex or the condition (A) is satisfied and y is
continuous then there exists at most one solution to the Skorokhod problem associated with
y. However if we assume only the conditions (A) and (B) then the solution of the Skorokhod
problem associated with fixed discontinuous y is in general not unique (see Example 1 in

[13]).

Let ({2, ¥, ) be a probability space and let (.#,) be a filtration on ({2, .5, P#)
satisfying the usual conditions.

Definition 2. Let Y be an (%) adapted process and Y, € D. We will say that a pair (X, K)
of (&,) adapted processes solves the Skorokhod problem associated with Y if and only if
for every w€ {2, (X(w), K(w)) is a solution of the Skorokhod problem corresponding to
Y(w).

In this section we will give L” versions of some estimates for reflected processes proved
earlier in [13]. Let (X, K) be a solution to the Skorokhod problem associated with a
semimartingale Y of the form

Y,=Y,+M+V,, teR™, (12)

where M is an (.%,) adapted local martingale, Vis an (.%,) process with bounded variation,
M,=V,=0. Assume also, we have given another (.%#,) adapted process ¥ and ¥ admits the
decomposition

Y, =Y, +M,+V,, teR™*, (13)

where M is an (.%,) adapted local martingale M,=0and Vis an (%) adapted process with
bounded variation, V,=0. Let (X, K) be a solution of the Skorokhod problem corresponding
to Y.

Theorem 1. Assume D satisfies (A) and (B). Let Yy, Yo € D and let processes Y, Y fulfil
(12) and (13), respectively, where M, M are square integrable martingales and V, V are
processes with square integrable variation. If ro< +© we assume additionally | AK|,
| AK| < Lry and that there exists a constant a such that |K|., |K|..<a. Then for every
p EN there exists a constant C, depending on a and ry such that for every (F,) stopping
time o

(i) Esup |X,—X,|”<C,E(IM—M]%+|V-V|¥}.

Isa

(i) Esup |K,—K,|*<C,E([M—M)5+|V-V|¥}.

<o
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(i) Esup |K, —K,|¥<C,E((M—MY,_ +[M—M,,_ +|V=V|2}.

<o

Proof. (i) By [11, Lemma 2] forevery r€R *,

. . 1 [ . .
IX,—X,Izé{IY,—Y,IZJr r—J; |X, =X, |* d(| K|, + |K],)
0

+2J:(Y,—YY—?,+)?Y,d(KY—I€s)>}. (14)
Since | AK|, | AK| < iro,
|x,—)?,|2<2{|Y,—?,|2+ if 1X, =X, |> d(|K|, + K1)
+2J:<Y,—Y,§.—?,+K,d(ﬁ—&))}.
On the other hand by the integration by parts formula
2 [[ v T R ek - R))

=2 f (KXo —Ro . d(M,~ M)
4]

+2 f (X,_ =X, d(V,=V))+[Y=T], - |Y, -1, |2
[¢]

Hence for every stopping time Tand p € N,

Esup |X,—X,|?

<7
1 ( g
<2‘”4”"'{E(—J' IXY—XSIZd(|K|x+|K|s))
re Jo
. . . P
+27E sup f (X, =X, ,d(M,—M)))
I<T 0
I P
w2Esup | [ —% v -0 +E[Y—Y1f;}.
r<T 0

Next by the Burkholder-Davis—Gundy and Schwarz’s inequalities

14

E sup

1< T

f (X,_ —X._). d(M, —M,))
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, pl2
e [1x -5 1 a1 |
0

1/2
<C(P)(E sup | X, —X,_ IZ”) (E[M—M]2)"?,

ST

and

r

E sup

t<T

j (X, =), d(V, =V,

<Esup |X,_ =X, |?|V-V|?

$<T

1/2
<(E sup |X,- —X,.. Iz") (EV=V]2)"2.

By simple calculations
E[Y— Y1 <2?E[M—M)"+2"E[V—V]"
<2XE[M—-M].+2E|V-V|¥.
If ry < + o then there exists a constant c¢(p, a, ry) such that

1 (= . Y
(—j{ |xx—xx|2d<|1<|s+|K|s>)

Yo }

<c(p. a, ry) j X, — X1 d(|K[,+ K], .
If we denote

1/2
x=(E sup | X, —Xlz”) ,

by =(E[M—M.+E|V-V|¥)!"2,
1 T ~ n
b, = —Ef X, X% d(|K],+ K1) .

1) 0
then by the above calculations we deduce that there exists a constant C; such that
x2<Ci(b, +2b,x+b3) .

Since 0< b, x< + it is clear that x> < C>(b,+ b?) for some constant C,. To finish the
proof it is sufficient to use Lemma 1 of the Appendix. If we set in Lemma 1
Y =sup, e no| X, = X, |7, Y2 =Co(|K |, no+ | K|sno) <Cs2a+ 1 then the proof of (i) is
complete.
(i1) Is an obvious consequence of (i) and of the Burkholder-Davis—Gundy inequality.
(iii) We can deduce from (ii) by using the version of Métivier—Pellaumail inequality
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proved in Pratelli [10] and the arguments from the paper of Chaleyat-Maurel, El Karoui
and Marchal {2]. O

Corollary 1. Assume D is a convex subset in R%. Let Yy, Yo € D and let processes, Y, Y fulfil
(12) and (13), respectively, where M, M are square integrable martingales and V, Vare
processes with square integrable variation. Then the estimations (1), (ii) and (ii1) are
true, too.

Proof. It is clear that in this case the condition (A) is satisfied with r,= +. Let

n.=inf{re€R™; |X,| or |X,| >k}, keN. Then of course X, X* €D, where

D,=DnN {x€ER |x| <k}. Next due to Remark 1(ii) and Theorem 2(iii) for every k€N,
E Sup |Kc_1%s|ZP<C[7E{<M_M>I(,71/\U)7

<N

+IM—M): - + | V=V }.

(A o)—
Since C, does not depend on & and B and 7, T +, letting k1 + o we have (iii) for every
convex set in R?. Similarly

Esup |K,— K, |”

<o

= lim Esup |[KZ—K?|%

k— + 1< 7%

<C, lim E{(M7—M?Y, +[M°—M°1, +|V =V % )

k— +x
=C,E({M—MY,+ [M—M]%+|V-V|¥)
<(C, +p"E(IM=M1,+ |V-V|¥}

o

and we get (ii). Finally, the estimation (i) is an obvious consequence of (ii) and of the
Burkholder-Davis—Gundy inequality. [J

Now, let W be an (%) adapted Wiener process. We will say that the SDE (1) has a
strong solution if there exists a pair (X, K) of (.%,) adapted processes such that (X, K) is
the solution of the Skorokhod problem associated with

X+ f X)) AW, + f (X)) ds.
0 0

If for two (%) adapted solutions (X, K), (X', K’) on ({2, &, %) of the SDE (1) satisfy
P(X,K)=(X',K'); t€R "] =1 then we say that strong uniqueness holds for the SDE
(1). Similarly we will say that the SDE (5) has a strong solution if there exists a pair
(X", K™y of (7)) adapted processes such that (X", K") is the solution of the Skorokhod
problem associated with

X, + f ARy AW, + f (X" ds .
0 0
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Let (¥ ") be a discretization of (F)) i.e. F#'=F, , 1€ [ty Liss [ We will say that
the SDE (4) has a strong solution if there exists a pair (X", K”) of (% ") adapted processes
such that (X", K”) is the solution of the Skorokhod problem associated with

X, + f AR AW+ f (1) dpl.
0 0

It is easy to prove that the pair (X", K”) defined by the recurrent formula

X, ifte[0, 1,0,
X = [X;lmk—_l +f(X:'n,k—l)(W’nk - W’"-"’")
+g(X;Tn.k—1)(tnk—tn.k—l)]6 ifte[tnkvtn,k+l[ )
and
O ifte[ogtnl[7
Ry =3 Ko + X2 X0,

- {f(X_:Lk—I)(WYnA - Wrn.k—t)
T8 (X0 ) B =g )} 1€ [t Lail

is a strong solution to (4) on an interval [0, y,[, where y,=inf{t; |AW?" | +1/n=r,/L}.
If D is a convex domain then due to [ 14] strong uniqueness for the SDE (4) holds, too.

The solution (X", K") to the SDE (5) we construct also recurrently. We put X, = X,, and
then forr€ [0, ¢, ], (X", K ) is a solution to the Skorokhod problem associated with

Xo +fXo)W, +g(Xo)t

(we know that under our assumptions on a domain D the solution really exists and is
unique). If we have defined (X7, K}) for r€ [0, t,,] then for t € [1,4, 1,4 1], (X7, K]) 18
a solution to the Skorokhod problem associated with

X0 +AXE)(W,—W,) +g(X0)(1—1,) .

By construction, strong uniqueness for the SDE (5) holds for every D, which is either
convex or verifies both (A) and (B).

3. Convex domains

In this section we assume that D is a convex domain in R?. We would like to stress that in
this case, due to Corollary 1,

Esup |X,— X, | "< de”Lz”(q”-i—qz”) .
t<q
Let (X", K") be a solution of the Skorokhod problem associated with
p" p"
Xo+ [ ) awo+ [ o) a5,
0 4]

Using once more Corollary 1 and the Burkholder—Davis—Gundy inequality
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I’}
q

f g(X,) ds
0

”

J " g(X,) ds
0

. »
E sup | X7 X, |2”<C,,E{|: Jp f(Xy) dWs':I +
0
q

r<qg

2p

+

f "fX) aw,
0

P
u}
Pg

Notice that Corollary 1 implies also integrability of sup, ql}? " —X,|%, and sup,<q|)2 "
Xo |

<C(p, d)E{sup

1< py

=C(p,d, L, q)<+>.

Proposition 1. Assume D is a convex domain in RY. Then for every sequence {7,} of
stopping times

Esup [X;7™ = X3 I2”=0(E sup | X[ =X} I) geR", peN.

r<g t<gq

Proof. For every g€ R,
E sup IX;?.Tn — _)2;1‘7” - |2p
t<gq
2p

f( X =R W f (X1 )KL dp

<37 '{E sup

1<gNTn

+E sup |K]—K] |2"+g';}

1<gNmm
=3r"YHIT+Ii+ T},
where

2p

o rA
ei=E sup f FX) X ) dW, + f a(X,) —g(X"_) ds

1<gANTn

By the Burkholder-Davis—Gundy inequality

2p

eV<E sup fo'f(xs) — Xy dW, + f;g(xy>—g(xs,>ds

t1<gNn
' t 2
<E sup f FXT) —f(X87 ) AW, + f g(X™) —g(X7 ™) ds
t<gq 0 0
<C(p,d, L, g)E sup | X7 — X1~ |2

r<q

=C(p,d, L, Q)Esup | X —=XI"7~ | ¥

r<gqg
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and

2p
I''<E sup

t<gANm

fo'f(X;L) —AR1_) AW, + f g(X7_) —g(X"_) ds

P
<C(p,d, L, q)E{( qu sup | X7™~ —)Z;ufx— |2 ds)

0 uxs

q »
+( f sup | Xnm T —Xmm | ds) }
0 uxs

q —
<C(p.d. L ) j Esup |XI™ — X | ds,

u<s

where the constant C(p, d, L, ¢) changes from place to place in the preceding. For every 7,
define

(o =Irlin{tn/\'; tnk 2 Tn} .

Then by simple calculations o, is an %" stopping time such that for every #*" adapted,
step process Y (i.e. of the form Y,=Y, , t€ [ty t,x[) we have Y7 =Y~ and
SUP; <y amm | Yol =SUP, <y n o | ¥;|. Therefore by using Corollary 1(iii) and the Burkholder-
Davis—Gundy inequality

5= swp |K;=KI|*

1<gAon

<c<p>E{[ f FX) = f(R0) de"}

(gAom)—

14

+ < f FXI_) = f(R7_) dW?' >

(gNon) —

2p
n
+6‘2}
(g on)—

<C(p.d, L, CI)E{[ L X)) =X ) de"]

g

+

L g(X7_) —g(X_) dp!

q —
+ J' Esup | X7~ X7~ | dp! +a;}

0 uss

2p

<C(p,d, L, q)E{SUP

1<y

[Lroxmy—pz) aw,

q

g —
+ f Esup |Xpm~ —X5m = | ds+8’2’}
C

) U<y

<C(p,d. L, q){ J:I Esup |X;™ " —Xym ™ | dS+83},

<y
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where

n . 14
az=E{[ j”‘f(xx) aw, — j AXD) de"]
0 o (g A aw) —

P

+ < [/ axo aw = | g de">

(g on) —

2p }
(gNon) —

+E ‘ f g(X,) ds— f g(X7_) dp?
0 0

<C(p,d,L,q)E sup | X —Xp™ |,

1<gq
From the above estimations it is clear that there exist two constant C,, C, such that for every
qe R d,
E sup IX;!,Tn - _X_';'LTH - |2p

<g

q _
SCEsup |X7 =X |2”+sz Esup (X3~ —Xp™~ | ds.
(

1<y ) u<s

To finish the proof we use Lemma 2 of the Appendix. If we set in Lemma 2
h,=Esup,.,| X"~ =X |*, k,=q we obtain

E sup Ix;z.ﬂ,f ___X_;I,Tn— |2p<2C|E sup |X,T” _X;’l“f'n— 12;) exp{zczq}

<g t<g

and the proof is complete. [

Theorem 2. Assume f, g satisfy (2).
(1) If D is a convex polyhedron then

Esup | X=X, |*=0(1/n""%), &>0,qeR*, peN.

t<q
(i1) If D is a convex domain satisfying the condition (B) then

Esup | X! =X,|*=0(1/n"?"%), £>0,geR*, peN.

t<y

(iii) If D is any convex domain then there exists a sequence of stopping times {7,},
T, 5 + % such that

Esup |[X™~ —X7|*=0(1/n??"%), £>0,geR™*,peN.

t<gq

Proof. (i) Due to Proposition 1 (with 7, =+, n&€N) it is sufficient to prove that

Esup | X! —X,|*»=0(1/n""%), £>0,geR".

1<q
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Next, by [4, Theorem 2.2] there exists a constant c(p) > 0 such that

2p

sup | X/ =X, | <c(p) sup , (15)

1<y 1<q

f AX,) dW, + f g(X,) ds
P oy

and therefore in order to prove (i) it is enough to use Lemma 3 of the Appendix.
(ii) For a general convex domain we have the following inequality [ 14, Lemma 2.2]:

sup | X7 ~X,|%

t<q

2p

<C<p){sup [ o aw+ [ g0 as
t<qg o o7

P

(IK"|5+|K|Z)}

+ sup

t<q

[y aws [ s as

instead of (15). Therefore by Schwarz’s inequality we have

Esup |X] —X,|¥

t<q

2p

< C(p){E sup

1<qg

[ aw+ [ sxo as

P

2/7)1/2

+(E sup j X, dW, + j g(X,) ds
0! Pt

I<qg
X (E|K"\7 +E|K|§P)”Z} :
To finish the proof in view of Proposition 1 (as before with 7, = +%, n€N) and Lemma
3 it is enough to show
E|K|? <+, (16)
and
sup E|K"| 2 < 4. (17
Now, let Y be a process with continuous trajectories and let (X, K) be a solution of the

Skorokhod problem associated with Y. Due to [14, 2.11(b)] there exist constants c, h>0
such that if n is so large that wy,,,(1/n, g) <h then

|K(w) ], <(ng+)csup |Y(w)], we . (18)

1<q
Define
N=inf{neN; w,(1/n, q) <ih}—1.

Then if N> 1 we have



L. Stomiriski / SDE’s with reflecting boundary 211

th<wy(1/N, g) <h (19)
and

|K|Z <c(p)(Ng+1)* sup |Y,|*. (20)

1<q
Set Y, =[pf(X,) dW, + [ g(X,) ds,r€R ™. By (19) and Lemma 3,
EN>»<(3h)"%E NP w,(1/N, )*

=(h) "% Y EnZoy(1/n, ¢)¥1 v

n=1}
x

g(%h)~8p Z n72p+&n4pfaEwy(]/n, q)Xp
n=1

< 4

for every p€N. In view of Schwarz’s inequality (16) is immediate from (20). On the
other hand it is known that (18) is true also if @}, (1/n, g) <k and Y is any process with
trajectories in D(R*, RY) (seee.g. [1]). Since by simple calculations

wyr(h q) <wy(h, q),

it is clear that

|K"| > <c(p)(Ng+ 1)* sup |Y#"|*, neN,

r<q

and by the arguments used previously the property (17) easily follows.
(iii) Denote 7% =inf{reR *; | X,| + | X! | + | X" | >k}, n, k€ N. Then of course

lim lim sup (7% <q) =0 (21)

k— +x n—o +oe

and for fixed kN, Xf X;”'A;’, XA’j"T'A" € D,. Since D, satisfies the condition (B) (see
Remark 1(ii) ), from the proof of (ii) we deduce

Esup |[X/™~ =X [7=0(1/n"2"%), &>0,q€R"*, keN, peN.

1<q
Hence, due to Proposition 1 also

Esup [Xn —X7 |7 =0(1/n""?"%), &>0,qeR", keN, peN.

I<q
Since £> 0 can be chosen as small as desired, we have in fact the convergence

sup n”"’>"°E sup | X/ —X,TA';|2”'—>0 (22)

pr<p t<q
forevery e>0,keN,gesR ", peN. Set

au(e™', g, p)= sup n”"’>"“E sup [Xm7~ =X | +.2(1h < q)

pl<sp t<q
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forevery £>0,keN,geR *,peN. By (21), (22) and Lemma 4 we can choose sequence
{k,}, k,T + sufficiently slowly such that

ank,,(gAlv q, p) —)0
and

T — 400,
P
Thus, setting 7, = 75", n €N we complete the proof. [

Remark 3. As observed in [4, Proposition 4.1], the estimation (15) is true only for a
convex polyhedron with nonempty interior. Therefore it seems not to be possible to obtain
the rate of convergence O(1/n” ) for other convex domains in R“.

Corollary 2. Assume f, g satisfy (2).
(i) If D is a convex polyhedron then

n'7¢sup |7 =X,| >0, F-as,s>0,gER".

1<q
(i) If D is a convex domain satisfying the condition () then

n"?2"¢sup |X"—X,| >0, P-as,e>0,gER™.
t<q
(iii) If D is any convex domain then there exists a sequence {1,} of stopping times such
that 17,— ., +% and

R4 sup X —X7| >0, P-as.,e>0,gERY .

t<q

Proof. (i) Due to the Borel-Cantelli lemma it is sufficient to find a sequence {«,}, o, | O
such that

¥ @(n”z_‘gsup X! —X,| >a,,)< 4o,

n=1 <q

Let p be such large that 2pe> 1. Set &' =1 (2pe— 1), a,=n~*"* . Then by Chebyshev’s
inequality and Theorem 2(i) used for ¢ instead of &,

Y ,@(n”25 sup | X7 — X, | >a,,)

<
n=1 r<q

<X
n=1

1 —
Enp—2p£ sup lX;’ _Xr | 2p

-
n 1<q

pP—2pe

1 n

<C(p.d. L, q) ),

n=1

p—e&’

n ¢ n
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=C(p, d, L, q) Z n-2pg+2gr‘

n=1

Since —2pe+2¢' < — 1, the proof is finished.
(ii) and (iii) It is enough to use Theorem 2(ii) and (iii), respectively and to follow
proof of part (1). O

Corollary 3. Assume f- g satisfy (2). If D is a convex domain then

(i) Esup |[X!'—X,|*—>0, geR™,peN,

1<q
(i) n'* “sup |X"—X,| — 0, gER™, £>0.
i<q »
Proof. In view of Corollary 2 (iii),

n/;/zfesup |}2;’-Xr'2”—_) 0. geR*, peN, >0,
#

<y
and we get (ii). Then to prove (i) it is enough to observe that by Theorem 1(i),
sup, E sup, ., | X —X,|* <+ forevery peN. O
Theorem 3. Assume f, g satisfy (2). If D is a convex domain then

Esup |[X"—X,|¥=0(1/n"), g€R™*.

r<gq

Proof. Forevery reR *,

B X, 17

2p

<3p—n{E ‘ [t —pxp aw+ [ k0 —g0x) 0
0 0

+E|K) =K, ¥

217}

+E‘ f FRE2Y —fR?) AW, + j g(R12") — g(RY) ds
0 0

=3"HIT+15+e,}) .
It is clear that

I'<C(p,d L,q) f E|X! —X |7 ds
0

and

t A A
&, <C(p,d, L, q) f E|Xme" =X | ds .
(4]
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Let € 1t 1,411, s <q. Then of course X" =X" . By using Theorem 1(i) for 7, ..
adapted processes we have

Zp}

s

j (R ds

nk

) i
E\X; —X" 12”<C,,E{[ j f(Xme™y qu] +

<C(p,d,L,q)/n".
Hence for every s < g,
E|X" =X1|*<C(p.d. L, q)/n”. (23)
On the other hand, due to Theorem 1 (ii),

I3 <Esup | K} —K,|*

1<q

2[)}
q

. p .
<CP{E[ [ stz = dws] +E‘ [ sckien —scx as
0 g 0

a 4 .
<C(p,d, L, q){J E|X"—X,|* ds+ j E|X™" =X | ds}.
0 0

Putting the above estimates together we see that for every t< g there exist constants C,,
C,> 0 such that

. C ro .
E|X; =X, |¥< = 4G J' E|X"—X,|% ds,
n 0]
hence by Lemma 2 of the Appendix,

. C
sup E| X! —X, |7 < =, exp{Caq} (24)
t<gqg n

which, when combined with (23), yields
sup E|X?" —X,|=0(1/n"), qER™. (25)

1<yqg
Finally, by the Burkholder-Davis-Gundy inequality and (24),
Esup |X} —X,|%

t<yq

2p
f( R %) W, (

<3 '{E sup

r<q

+ E sup

r<q

2p
+E sup |K” —K,|2”}

t<sqg

f( (ki) —g(X,) ds

<C(p. d, L, q){ J" E|X1#" =X, | ds+E sup |[K? —K, |2"}
O

1<y
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<C(p,d, L, q){ LI E|Xm" =X, | ds

+ qu|X:—xs|zf’ ds}+0(l/n”) ,
0
and thus, in view of (24) and (25) the result follows. [

By using the arguments from the proof of Corollary 2 we can easily deduce from Theorem
3 the following rate of almost sure convergence.

Corollary 4. Assume f, g satisfy (2). If D is a convex domain in R? then

n'2= sup |)2;’—X,|——>O, F-as.,e>0,geR™ . |

t<q

4. General domains

In this section we assume that D satisfies the conditions (A) and (B). In this case, if
ro <+, the processes |X,—X,|?, | X" —Xo|%, | X7 —Xo|?, and |X] —X,|* are not
necessarily integrable. Therefore the results are weaker than their analogues in Section 3.

Theorem 4. Assume f, g satisfy (2). If the conditions (A) and (B) are satisfied then there
exists a sequence of stopping times {1,}, 7, — . + such that

Esup | X"~ =X"|7=0(1/n"?"%), £>0,q€R", peN.

r<q

Proof. Denote

_ 1
Tﬁ:inf{t; |K|,+ |K"|,+ |K"|,>kor |AWF"| + - > ::%} kneN.
n
Due to [11, Proposition 3.1],

lim lim sup 2(7 <q)=0, g€R™. (26)

k—x n—ox
By using the arguments from the proof of Proposition 1 we show that
Esup [XIh ™ — X1~ |7 = O(E sup | X" — X |2") . (27)
t<g r<q
On the other hand since | AK™Th | < irgitfollows by [11, Lemma 2.3(i)] that

sup | X T — X |

I<gq



216 L. Stomiriski / SDE’s with reflecting boundury

2p

<c<p){sup [Lrxo aw+ [ gcx as
r<q ot ol
t t L
+sup j"ﬂxs) dWﬁJ 2(X,) ds| (|K™™~ |5+ |K™|5)
t<gqg [ pl
1 (o : Y
*(TL lxz"f'—X:.ﬂz<d|K""ﬁ‘|.§+|KTﬁ|.,.))}.
0

By the definition of 7%, | K e | <kand |K 7 < k. Therefore by using Lemma 2 we have

sup |XpmT — X7 |

r<qg

2p

<Clp. k){SUp [ o aw+ [ gcx as

1<yg

+ sup

t<q

}. (28)

Esup | X!~ =X~ |¥=0(1/n""?"%), £>0,qeR*, keN,peN.

r<q

[ rxo aw+ [ gcx) as

P

Because of Lemma 3 and (28),

Next, in view of (27),

Esup |[Xr™~ =X |*=0(1/n"?"%), &>0,9€R*, keN, peN.

I<qg
Hence

sup n”" >~ Esup | X7 — X% -0 (29)

p'<p I<q

for every €>0, keN, geR ™, peN. Finally, the result follows from (26), (29) and
Lemmad4. O

From the above theorem we can easily deduce:
Corollary 5. Assume f, g satisfy (2). If the conditions ( A) and (B) are satisfied then:

(1) there exists a sequence of stopping times {1,}, T, .. + % such that

n'* " fsup | X =X | >0, P-as,keEN, e>0,geR";

t<gq

(i) n'* “sup | X/ ~X,| — 0, keN,e>0,geR". O

t<qg



L. Stomiriski / SDE’s with reflecting boundary 217

Theorem 5. Assume f, g satisfy (2). If the conditions (A) and (B) are satisfied then there
exists an array of stopping times {{74}} such that lim ... lim sup, _ .. P18 <q) =0,
gER™ and

Esup [XM~ —X|¥=0(1/n"), g€R*, kEN,

t<q

Proof. It is sufficient to put 7% =inf{r, |K"|,+ |K|,>k} and use the arguments from the
proof of Theorem 4. [

Theorem 5 and Lemma 4 immediately lead to the following:

Corollary 6. Assume f, g satisfy (2). If the conditions (A) and (B) are satisfied then:
(1) there exists a sequence of stopping times {1,}, 7, s+ % such that

n'"2csup | X =X | =0, P-as,kEN, £>0,gER™;

t<gq

(i) n">"“sup |X7—X,| — 0, keN,e>0,9eR*. 0O
R

r<q

5. Appendix

Lemma 1 [ 13, Lemma 2]. Let Y', Y? be two increasing processes, Y}, =Y} =0 such that
EYL <+, Y2 < C, for some constant C». If for every stopping time T,

r

EY'<C, +Ef yldy?,

0

then EY. < C,exp{C,}. O

Lemma 2 [11, Lemma 2.2]. Let k€ D(R *, R) be a non-decreasing function with k,=0
and let h be a nonnegative Borel measurable functionon R *. If

h<C+C [T hdk. geR*

0

for some C,, C;>0 then h,< C, exp{Cyk,}. [

Lemma 3. Let H, G be two predictable processes with values in R @R and R?, respectively
such that sup, . | H,||, sup, <, | G,| <L <+ for some constant L> 0 and let Y be a process
with continuous trajectories of the form Y,= [(H, dW, + [{,G, ds, t€R *. Then

Esup |Y,—Y?” |¥*<Ew,(1/n, ¢)*=0(1/n""°), geR*,peN, £>0.

1<q
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Proof. Without loss of generality we may and will assume that d=1, g=0. Then
[6H, dW,=B<A,, for some standard (possibly stopped) Wiener process B and A defined
by A,= [(H? ds. Hence A,— A, <L*(1—s),A,<L’qand wg.4(8, q) < wy(8L% L%q). Since

16LV8((q+28)/8) p( yvﬂ)
€X

- 85L2

Py(BL2, L) >y) < Z
y P

2y
(seee.g. [15]) we can write

n? " “Ewg(L*/n, L’q)%

oc

<1+n"*fj Pwg(L*n, L?q)*>y) dy

L/np—¢

= 161, +2
<1+n”’f 16Lplgn+2) )exp( L)y”“'dy

w32ty 8L?
<1+C(p, L, g, m)P(n) exp(—n*"?)
=0(D),

where P(n) is some polynomial of variable n, n€N. O

Lemma 4.Let S=T1,_,S, where S, are equal N or R*. Assume that for every
a€S{{a(a)}} is an array of nonnegative numbers such that

lim lim sup a,(a)=0, «a€S, (30)

koo pso
aga,:ank(a)gank(a,) . (31)
Then there exists a sequence {k,}, k, T + > sufficiently slowly for which

au(a)—=0, a€S.

Proof. For every m &€ N there exists a number c(m) > c(m—1) (¢(0) = 1) such that for all
k=c(m),

)

1
lim sup a,,((m, m,..., m)) < —
n— +x m
where (m, m,.... m)€S. Seta,=(m, m,...,m) ifk€ [c(m), c(m+1)[, m&EN. Then

lim lim sup a,, (o) =0

k= +x no+x
and
a, T +x.

Similarly for every m € N there exists a number b(m) > b(m— 1) (b(0) =1) such that for
nzb(m),
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aIHH( a"l) < 2 lim Sup al”"( a"l) *

n— +x

Finally, if we set k,=m forn€ [b(m), b(m+1)[ then
an.k,,(ak,,) - O

and the desired result follows by (31). [
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