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Let D be either a convex domain in Wd or a domain satisfying the conditions (A) and (B) considered by Lions 

and Sznitman [ 7 ] and Saisho [ II]. We estimate the rate of L” convergence for Euler and Euler-Peano schemes 

for stochastic differential equations in D with normal reflection at the boundary of the form 

X,=X,+j;Lf(Xs) dW,+hg(X,) ds+K,,tEW+, where W is a d-dimensional Wiener process. As a consequence 
we give the rate of almost sure convergence for these schemes, 
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1. Introduction 

In this paper we investigate Lp convergence as well as almost sure convergence of time- 

discretization schemes for d-dimensional stochastic differential equation (SDE) on a 

domain D with reflecting boundary condition. Given a function f: D = D U dD + W”@ W”, 

Rx) = Uij(x) Ii,= I,....d we consider the following SDE: 

xi =%I + t j),(K) dW!, + j-i gi(X,) ds+K:, 
,=I 

(1) 

i=l ,...) d, teW+, where W,= (W,‘,..., Wf) is a d-dimensional Wiener process 

x,=(x:,..., Xy) is a reflecting process, on fj and K, = (K,’ , , , Kf) is a bounded variation 

process with variation 1 K( , increasing only when X, E dD (the precise definition will be 

given in Section 2). This equation is called a Skorokhod SDE with the analogy to the one- 
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dimensional case first discussed by Skorokhod [ 121 for D = W +. The case of reflecting 

processes in a domain more general than a half-line or half-space (i.e. D = W + X Wd- ’ ) has 

been discussed firstly in the paper by Tanaka [ 141, where D is any convex subset of w” and 

then by Lions and Sznitman [ 71 and Saisho [ 111, where D is a domain satisfying some 

mild conditions (A) and (B) given in Section 2. In particular in [ 141 and [ 1 l] it is proven, 

that if f, g are Lipschitz continuous and bounded on D i.e. there exists a constant L > 0 such 

that for every x, y E 0, 

IV(x) -f(y) II + I&) -g(y) I GLIX-Y I ) IW) II? Idx) I GL 3 (2) 

where II . (I denotes the usual norm in the space of linear operators from Wd into Wd, then 

there exists a unique strong solution to the SDE ( 1) . 

Let us consider an array { ( tnk) ) of nonnegative numbers such that in each nth row the 

sequence ( fnk) forms a partition on W’ with the property 0 = I,,(, < t,, < . . ., lim,_,t,,, = + 00 

and 

max(t,,-rt,,k_,)Gl/n, rz=N. (3) 

For the array { ( tnk}) we define the sequence of summation rules {p”), p”: W+ + I?+ by 

p~=max(t,,;t,,~t].Foreveryx~[D)(W~, Wd) (ltD( W+, Wd) is the space of all mappings 

x: W + + Wd, which are right continuous and admit left-hand limits) we define the sequence 

(~~“}ofdiscretizationsofx,x~“=x,~=x,~~fort~[t,,,t,,,+,),k~~U(O),n~~.Inthe 

present paper we assume that D is either a convex set or a general domain satisfying the 

conditions (A) and (B) and we consider Euler and Euler-Peano schemes for the SDE ( I) 

More precisely, we investigate the approximations (x”} and ( gn), which are the solutions 

to the appropriate SDE’s with reflecting boundary conditions 

x:=x,+ 
I 

‘f(%:_) dWY”+ dp:+K:, HEW+, (4) 
0 

and 

ri:=x,+ 
I‘ 

‘f&?“) dW, + 
I 

’ g(i;?‘“) ds + I?; , tEW+. 
0 0 

It has been observed in [ 13, Corollary lo] and [ 11, pp. 473-4741 that 

IX:-x,1 7 0, qgR+ > sup 
f<q 

(5) 

and 

sup 
f<q 

respectively. Note that if D = Wd then 2; =$‘.@’ and (4) is a classical Euler scheme 

considered firstly in Maruyama [ 81. In the case D # W” the equality x:l = i:,p” need not be 

satisfied. In this case the rate of mean-square convergence in the above schemes was 

considered before only if D = W + x W”- ’ by Chitashvili and Lazrieva [ 31, Kinkladze [ 5 ] 
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(the scheme (4) ) and Lepingle [ 61 (the scheme (5) ) . Let us observe that in this case we 

can write down the explicit formulas for the solutions X’* and 2”. Namely, 

where 

Xl if tE [O, t,,i[ , 

y::;‘,_ I 

+ gi( c,,, _ , ) (hk - *rf.k - I ) 

Similarly 

if i= 1 , 

if i=2,..., d, 

where 

Xb ift=O, 

*,i = fi;: + C$ ,j,( fi_,, (w: - w:,,,> 

+g,(~J(WAJ iftE]&k$ tn.k+ll . 

In our paper we assume that D is a domain in Wd with nonempty interior and we give the 

rate of Lp as well as almost sure convergence for the schemes (4)) (5) for domain more 

general than half-space. 

Let D be a convex domain in Rd. For the Euler scheme we show that there exists a 

sequence of stopping times ( T, }, T,, + 9 + CO such that 

Esup ]X;,nT- -X~(2”=0(l/np’2--E), c>O,qEf?+,pEN, (6) 
r<q 

and 

n 1’4--Fsup ]X:,7,rp -Xy I-0, p-a.s., s>O, qEW+ (7) 
t<y 

In this case for the Euler-Peano scheme we obtain 

Esup ]ri~-X,]2p=O(llnp), qeW+,peN, 
t<y 

(8) 

and 

n “2-Csup ]Xy -X,] +O, g-as., E>O, qER+ . (9) 
WY 

For a large class of convex domains we are able to strengthen (6) and (7). If D is a convex 

subset of Wd satisfying the condition ( p), which is automatically fulfilled if D is bounded 

or d < 3 (the precise definition is given in Section 2), then we prove that 

Esup (~:1-X,(*~=O(lln”‘*--), c>O,qER+,pEN, 
f<U 
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and 

?I “4--Fsup IX: -X,1 +O, 9-a.s., E>O, qER+ 
f<U 

If D is a convex polyhedron, i.e. D = n ;“= , D,, where D, is a closed half-space, we prove 

even more, namely that 

Esup ]x:-x,]*“=o(lln”~“)) &>o,qEw+,peN, 
t<q 

(10) 

and 

II “2--Esup IX:-X,1-+0, 9-a.s.,&>O,qEW+. 
r<q 

(11) 

Let us mention that in the case of half-space some results of type ( 10) were obtained in 

[ 3,.5], while (8) was announced in [ 61. 

Now let D be a general domain satisfying the conditions (A) and (B). For the Euler 

scheme we prove that (6) and (7) are true, too. In the case of the Euler-Peano scheme we 

prove that there exists an array of stopping times ( {T: ) ) such that lim,, += lim sup,, _ +% 

p(ri<q)=Oand 

E sup 1 i$ - x$ 12”=0( l/n”) , kEN, qEw+,pEN. 
r<y 

We can also find a sequence of stopping times ( 7,) , T,, + 9 + 00 such that 

n “2--6sup ]X:l,“‘-Xy) 40, 9-a.s., s>O, qEW+ . 
f< ‘, 

The paper is organised as follows. In Section 2 we give some basic definitions and basic 

facts about SDE’s with reflecting boundary conditions. In particular, we give L” versions 

of general inequalities for reflected processes proved earlier in [ 131, which are our main 

tool in the proofs. In Section 3 we consider the case of convex domain and in Section 4 the 

general case of domains satisfying the conditions (A) and (B). Finally, the Appendix 

contains some versions of Gronwall’s lemma and other technical lemmas used in the proofs. 

Let us introduce now some definitions and notations used further on. For XE D( W +, 

Wd) , A c W + we denote w,A = SUP,~,~=~ ) x, - x,~ ( , 

%(b 4) = sup lx,-xsl ) .s,r~[O.q],~r--tl <h 

and 

w:(h, q) = inf max w,[s,_, , sk[ , 
(Sk) I <k<r 

whereO=s,<s,<...<s,=q,s,-s,~,>h,k=1,2,...,r. (0,9,9) isaprobabilityspace 

and (9,) a filtration on (0, 9, 9) satisfying the usual conditions. Let X be an (.F,) 

adapted process and r be an (.9,) stopping time. We write X’and XT- to denote the stopped 
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processes X. ,, 7 and X. ,, 7-, respectively. If X = (X ’ , . . . , Xd) is a local martingale then [X] f 

stands for Cp=, [Xl] ,, where for i = 1,. . . , d, [Xl] is a quadratic variation process of X’. If 

K= (K’,..., Kd) is a process with locally finite variation, then 1 KI I = Cf=, 1 K’I ,, where 

I K’ I f is a total variation of K’ on [ 0, t] . 

2. Preliminaries 

Let D be a domain in Wd with nonempty interior. Define the set Ss, of inward normal unit 

vectors at x E aD by JV~ = U r> O.Mr,r, 

SS,,,=(~EW~; InI=l,B(x-m,r)nD=@}, 

whereB(z,r)=(yEW”; Iy-ZJ <r],z~W~,r>O. 

Following Tanaka [ 141, Lions and Sznitman [ 71 and Saisho [ 1 l] we introduce three 

assumptions. 

( p) There exist constants F> 0 and 6 > 0 such that for every x E aD we can find x0 E D 

suchthatB(x,,,E)CDand Ix-x,~/ ~6. 

(A) There exists a constant r. > 0 such that 

J ; = KV,, #0 foreveryxEaD. 

(B) There exist constants 6 > 0, p > 1 such that for every x E aD there is a unit vector Z,V 

with the following property: 

1 
(I,, n) > - 

P 
for every n E U ss,. 9 yGB(x.s) ni,n 

where ( . , . ) denotes the usual inner product in Rd. 

Remark 1 [ 14,7]. (i) If the condition (A) is satisfied and dist(x, D> < r,, x @D then there 

exists a unique [x] i) ED such that 1 x - [x] d I = dist(x, D) and, moreover, ( [x] i) -x) / 

I [xl,-xl EJVf. 

(ii) If D is a convex domain in Wd with nonempty interior then r, = + m and the assump- 

tions ( p), (A) and (B) are satisfied for d = 1, 2. For d > 2 there exists a sequence of 

bounded convex sets { Dk] satisfying the conditions ( p), (A) and (B) such that D, t D. In 

thiscase( andwecanputD,=Dn{xEWd; 1x1 <k},k~N. 

The Skorokhod deterministic problem is stated in the following manner. 

Definition 1. Let y E D( W +, Wd) and y. E D. We will say that a pair (x, k) E D( W +, W2d) 

is a solution of the Skorokhod problem associated with y if 

(i) x,=y,+k,, tEW+, 

(ii) x,ED, rE W +, 

(iii) k is a function with bounded variation on each finite interval such that k. = 0 and 



where 12) E JV_ if x,? E 8D and 1 k 1, denotes the total variation of k on [ 0, t] , t E W +. 

Remark 2 [ 14,11,13]. If either D is convex or the condition (A) is satisfied and y is 

continuous then there exists at most one solution to the Skorokhod problem associated with 

y. However if we assume only the conditions (A) and (B) then the solution of the Skorokhod 

problem associated with fixed discontinuous y is in general not unique (see Example 1 in 

[131). 

Let (0, 9, 9) be a probability space and let (F,) be a filtration on (0, 9, 9) 

satisfying the usual conditions. 

Definition 2. Let Y be an (9,) adapted process and Y,, E D. We will say that a pair (X, K) 

of (9,) adapted processes solves the Skorokhod problem associated with Y if and only if 

for every w E 0, (X( w), K( w) ) is a solution of the Skorokhod problem corresponding to 

Y(w). 

In this section we will give Lp versions of some estimates for reflected processes proved 

earlier in [ 131. Let (X, K) be a solution to the Skorokhod problem associated with a 

semimartingale Y of the form 

Y,=Y,+M,+V,, tEW+, (12) 

where M is an ( Fr) adapted local martingale, Vis an ( Ft,) process with bounded variation, 

MO = V,, = 0. Assume also, we have given another (9,) adapted process Y and Y admits the 

decomposition 

Yr=y,,+tit+Vr, tEW+) (13) 

where fi is an (9,) adapted local martingale ho = 0 and V is an (F,) adapted process with 

bounded variation, V. = 0. Let (2, R) be a solution of the Skorokhod problem corresponding 

to P. 

Theorem 1. Assume D satisfies (A) and (B). Let Y,, YoeD and let processes Y, ffulfil 

( 12) and ( 13)) respectively, where M, I%? are square integrable martingales and V, V are 

processes with square integrable variation. If ro< +a we assume additionally I AK 1, 

1 AZ?1 < ir, and that there exists a constant a such that ( K) =, I Z?I _ < a. Then for every 

p E N there exists a constant C, depending on a and r. such that for euery (9,) stopping 

time o-z 

(i) E sup IX,T-X, lzP<C,,E( [M-k]%+ IV-V]?] . 
f<cT 

(ii) Esup IK,~-~,~l’~~C~E([M-n;r]I:+ IV-VIZ]. 
f<U 
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Proof.(i) By [ll,Lemma2] foreverytEW+, 

IX,-J?,i,l’< IK-PA’+ $j’ l~,-~,12~~l~I.~+I~I.~ 
0 

+2 ‘(Y,-Y,-~~+~~,d(K,-~‘,)) 
I 

. 

0 > 

Since I AKI, I AkI <ire, 

IX,-Qk2 IY,-?J’+ $ 
I 

‘- Ix,-ri,I’d(I~l.~+I~l.~) 
0 

‘(r,-Y,-~~+~~,d(K,-K,)) 
> 

On the other hand by the integration by parts formula 

2 ‘(Y,-u,-~~+~~.d(K,-~,~)) 
I 0 

= 2 (X,_ -R,_, d(ll/l, -fi,)) 

Hence for every stopping time T and p E N, 

+ 2PE sup 
II 

’ (X.$- -ri,_, d(M, -k,,) ’ 
f<T 0 

Next by the Burkholder-Davis-Gundy and Schwarz’s inequalities 

(14) 

E sup 
II 

’ ((X.- -ri,->> d(M, -ti.J) ’ 
f<T 0 



204 

(1 T 

p/2 

GC(P)E lx,_ -X,,_ 12, d[M-fil, 
0 1 

l/2 

<c(p) E sup 1X,7_ -ri,_ j2” (E[M-A%]P,)“2, 
3 < 7 

and 

-X,_), d(t’-p,)) ’ 

< 

( 
Esup IX,_ -X,_ 1”’ 

3 < 7 1 

I I2 

(EJV-+I$“)“2. 

By simple calculations 

E[Y-~]‘:<2”E[M-h’]/:+2J’E[V-~]‘: 

~2pE[M-h;l]‘:+2/‘EIV-~I~p 

If r,) < + m then there exists a constant c(p, a, Y()) such that 

If we denote 

b, =(E[AJH?]‘:+E~V-+\$“)“~, 

b2 = L E I T- IX,-~,12~‘d(I~I,+I~l.~) 7 
r. 0 

then by the above calculations we deduce that there exists a constant C, such that 

x’<C,(b,+2b,x+b;). 

Since 0 <b,, x < + 0~ it is clear that x2 < C,( b, + bf) for some constant C2. To finish the 

proof it is sufficient to use Lemma 1 of the Appendix. If we set in Lemma 1 

Y: = sup rmAX,-~.~12’J> y: =C,( 1w,,,,+ Ikl ,,,) < C22a + 1 then the proof of (i) is 

complete. 

(ii) Is an obvious consequence of (i) and of the Burkholder-Davis-Gundy inequality. 

(iii) We can deduce from (ii) by using the version of Metivier-Pellaumail inequality 
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proved in Pratelli [ lo] and the arguments from the paper of Chaleyat-Maurel, El Karoui 

and Marchal [ 21. 0 

Corollary 1. Assume D is a comex subset in Rd. Let Y,,, PO ED and letprocesses, Y, Pfilfil 

( 12) and ( 13), respectiuely, where M, &l are square integrable martingales and V, p are 

processes with square integrable uariation. Then the estimations (i), (ii) and (iii) are 

true, too. 

Proof. It is clear that in this case the condition (A) is satisfied with r,= +a. Let 

rk=inf(tEW+; IX,] or ]&I&k), keFV. Then of course X7-, 2: E&, where 

D,=D~I(xEW~; 1x1 <k}.NextduetoRemarkl(ii)andTheorem2(iii)foreverykE~, 

E sup IfG-ts 1’“9C,,E((M-~):‘,,,,~ 
,<ThFlm 

Since C, does not depend on 6 and p and rk t + x, letting k t + w we have (iii) for every 

convex set in Wd. Similarly 

= lim E sup ]KY-Z?P]2f 
k- tx fisl 

<C,, lim E( (Mu-fi”)‘:,_ + [M”-ku]!& + I V”- pfll$_ ) 
k+ +== 

=C,,E((M-&+[M-&‘I;+ IV-pi?) 

<CC,, +p”)E( [M-k];+ IV- cl%} 

and we get (ii). Finally, the estimation (i) is an obvious consequence of (ii) and of the 

Burkholder-Davis-Gundy inequality. 0 

Now, let W be an (9,) adapted Wiener process. We will say that the SDE ( 1) has a 

strong solution if there exists a pair (X, K) of (9,) adapted processes such that (X, K) is 

the solution of the Skorokhod problem associated with 

X,, + 
I’ 

1) f(X,) dW, + 
I 

g(X) ds . 
0 

If for two (9,) adapted solutions (X, K), (X’, K’) on (0, .Y, 9) of the SDE ( 1) satisfy 

9 [ (X, K) = (X’, K’) ; t E IL? + ] = 1 then we say that strong uniqueness holds for the SDE 

( 1). Similarly we will say that the SDE (5) has a strong solution if there exists a pair 

(Xn, Z?‘) of (9,) adapted processes such that (X”, Z?“) is the solution of the Skorokhod 

problem associated with 

x0 + j-(X;?“‘) dW, + 
I’ 

o g( X:5”‘) ds . 
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Let (9 7”) be a discretization of (F-,) i.e. Sy” = Yr,,r, t E [ fnk, I,,,~ + , [ . We will say that 

the SDE (4) has a strong solution if there exists a pair (X”, I?‘) of (Ff”) adapted processes 

such that (X”, K”) is the solution of the Skorokhod problem associated with 

X0 + O’.f(X:_) dWf” + (’ 
I 

g(X:-) dp: . 
0 

It is easy to prove that the pair (X”, K”) defined by the recurrent formula 

and 

1 

0 iftE[O, t,,], 

q = C,Am, +x: %.km, 

- cf(%,.L- I) (W&A - W,,& ,> 

+sGZ,,_,m,k -f,l,k-ll)~ iffE[fnkrf,,,k+I[ 

is a strong solution to (4) on an interval [ 0, ‘y,, [, where y,, = inf ( t; 1 AW f” 1 + 1 /n > r,,/L] . 
If D is a convex domain then due to [ 141 strong uniqueness for the SDE (4) holds, too. 

The solution (X”, &‘) to the SDE (5) we construct also recurrently. We put&,=X,, and 

then for I E [ 0, t,,,] , (x:, ky) is a solution to the Skorokhod problem associated with 

X0 +f(Xo) w, +g(Xo)l 

(we know that under our assumptions on a domain D the solution really exists and is 

unique). If we have defined (Xy, I?:) for t E [ 0, tnn] then for 1 E [ t,lkr tn,k+ ,I, (2:) ky) is 

a solution to the Skorokhod problem associated with 

X::,~+f(X;,)(w,-w,,) +g(X::,L)(t-t,,,) 

By construction, strong uniqueness for the SDE (5) holds for every D, which is either 

convex or verifies both (A) and (B) . 

3. Convex domains 

In this section we assume that D is a convex domain in Rd. We would like to stress that in 

this case, due to Corollary 1, 

E sup IX,--X0 ~*“~C#‘L*“(q”+q*“) . 
f<y 

Let (XV, K”) be a solution of the Skorokhod problem associated with 

x0 + I p’.f(XJ dW, + “’ g(X,Y) ds 
0 I 0 

Using once more Corollary 1 and the Burkholder-Davis-Gundy inequality 
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=C(p,d,L,q)<fm. 

Notice that Corollary 1 implies also integrability of SUP,,~) 2: -X0) “‘, and sup,,, 18: - 

x, 1 Zp. 

Proposition 1. Assume D is a conclex domain in Rd. Then for ecery sequence (T,,) of 

stopping times 

Proof. For every q E Wd, 

+E sup IK;-K;12”+~; 
Icy A TII > 

=3”_‘{1;‘+1; +&;I , 

where 

By the Burkholder-Davis-Gundy inequality 

II 

2P 
F;<E sup 

f < q A Tn ;fK, -f(K 1 dW, + lo’ g(X) -g(X:L 1 ds 

GE sup 
I<q /I 

2’~ 

‘f(X,:) -f(X:F) dW, + g(X.7) -g(X;?‘-) ds 
0 

<C(p, d, L, q)E sup IX: -X;?‘- 1”’ 
r<y 

= C(p, d, L, q) E sup I X7 - X;,5z - I 2’J 
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and 

II 

2P 
I;<E sup ‘f(X;_) -f(x:_) dW, + -g(X:_) ds 

T<yA 7” 0 

G C(p, 4 L q)E ’ sup ,x:.2- -x;.?- I2 & 

< C(p, 4 L, q) I ’ E sup , X;.“‘~ _~::.TII ,2P & , 

0 u < s 

where the constant C(p, d, L, q) changes from place to place in the preceding. For every 7, 

define 

Then by simple calculations a,, is an F4”“” stopping time such that for every .Fp” adapted, 

step process Y (i.e. of the form Y,= Y,,,, TV [ f,,kr fn,k+, [ ) we have Yy _ = YF ~ and 

suPr<QA% I Y,l =suPr<qAu,, 1 Y, I. Therefore by using Corollary 1 (iii) and the Burkholder- 

Davis-Gundy inequality 

g(X:-) -g(X:- ) dp:’ 
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where 

d1 
F; =E -u f(K) dW, - ” I 

P 

o f(X:- 1 dw:” 
1 (YAC”,) 

(I “‘.f(X,J dW, - 
J‘ 1 

P 

+ f(X;p) dW:” 
0 0 

(SA LTII) 

n 2P 

+E g(K) ds- 4(X:-1 dp: 
I I (9Ac+- 

< C(p, d, L, q) E sup (XT -X:,‘I ~ 1 2p 
fi” 

From the above estimations it is clear that there exist two constant C,, C, such that for every 

qEWd, 

E sup ,X:,7,- _X;.Tn- ,2P 
f<4 

<C, E sup IX: -X;.7r’p 
r i ‘, 

12”+C2 j-r E ;;y IX:.n’- -x;.*lP 12” ds. 

To finish the proof we use Lemma 2 of the Appendix. If we set in Lemma 2 

h, = E sup, < y 1 X:1.7,’ ~ - Xy.7,’ _ 1 ‘I’, k, = q we obtain 

E sup IX:l,nlp -X:l.nt- 12/‘<2C,E sup 1x7 -Xy,*1- j2p exp[2C2q} 
f < y f<Y 

and the proof is complete. 0 

Theorem 2. Assumef, g sarisfy (2). 
( i ) If D is a convex polyhedron then 

Esup Ix:-X,12”=0(l/~2/7--), &>O,qEW+,pEN. 
f< 4 

(ii) If D is a comvx domain satisfying the condition ( f3) then 

Esup Ix:l-X,I~“=O(1/np’2-&), E>O,~EW+,~EN. 
r<q 

(iii) If D is any conuex domain then there exists a sequence of stopping times (r,,}, 

T,, + 9 + CC such that 

Esup Ii?;,Tn- -X~12p=O(l/np’2~E), s>O,q=b?+,pFN. 
f<9 

Proof. (i) Due to Proposition 1 (with T,, = + cc, n E N) it is sufficient to prove that 

E sup 1X; -X,l”‘=O( l/n”-“) , E>O, qEW+ 
f<Y 



Next, by [ 4, Theorem 2.21 there exists a constant c(p) > 0 such that 

sup ) x: - x, ) *‘) < c(p) sup 
f<y 

(15) 

and therefore in order to prove (i) it is enough to use Lemma 3 of the Appendix. 

(ii) For a general convex domain we have the following inequality [ 14, Lemma 2.21: 

instead of ( 15). Therefore by Schwarz’s inequality we have 

dW.7 + I,;; g(K) dfl?3”- 

x (EIK”j~+EIKj~)“* 
> 

. 

To finish the proof in view of Proposition 1 (as before with T,, = + m, n E N) and Lemma 

3 it is enough to show 

E]K]T<+m, ( 16) 

and 

supE]K”]~<fca. (17) 
n 

Now, let Y be a process with continuous trajectories and let (X, K) be a solution of the 

Skorokhod problem associated with Y. Due to [ 14, 2.11 (b) ] there exist constants c, h > 0 

such that if n is so large that wyC,) ( 1 ln, q) < h then 

lK(w)l,<(nq+l)cw IYr(w)l 9 6JgR. (18) 
f < q 

Define 

Then if N>, 1 we have 



;h<w,( l/N, q) <h 

and 

IKIz <c(p)(Nq+ 1)"' sup 1 Y, 12p. 
I<:y 

SetY,=I~f(X,)dW,~+lbg(X,~)ds,tEW+.By(19)andLemma3, 

EN2p~(~h)-8PEN2P~Y(1/N,q)gp 
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(19) 

(20) 

for every p E N. In view of Schwarz’s inequality ( 16) is immediate from (20). On the 

other hand it is known that ( 18) is true also if obC WI ( 1 /n, q) <h and Y is any process with 

trajectories in UI( W’, Wd) (see e.g. [ 1 ] ). Since by simple calculations 

&Ah, q) < o,(h, q) , 

it is clear that 

and by the arguments used previously the property ( 17) easily follows. 

(iii)Denoteri=inf(TEW+; IX,I+JX:‘IfIX:‘I>k],n,k~~.Thenofcourse 

lim limsup9(ri<q)=O (21) 
k-+x I!-+= 

and for fixed kE N, Xc, Xy.d ~, 2:l.d ~ ED’,. Since Dx satisfies the condition ( p) (see 

Remark 1 (ii) ) , from the proof of (ii) we deduce 

E sup IX;+ -X,+‘=O(l/n”‘-“) , E>O, qEW+, kEN,pEN. 
f < q 

Hence, due to Proposition 1 also 

Esup Ix:‘.~-X~(2/‘=O(1/np’7~~), E>O,qeW+,keFV,pe~. 
r<y 

Since E> 0 can be chosen as small as desired, we have in fact the convergence 

sup n I”lZ--sE sup Ix:‘.+ _X$ I’/“+o 
I”_(/’ f < ‘, 

(22) 

forevery&>O,kEIW,qEW+,pEN.Set 

a,,,(&-‘* q,p)= sup n”“‘-“Esup (X:,+ -X,,ll- +9(~;<q) # ?,I’ 

/“G/J f < 4 
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forevery&>O,kE~,qEWf,pE~.By(2l),(22)andLemma4wecanchoosesequence 

(k,,), k, t + 00 sufficiently slowly such that 

%k,,( 6 - ‘> 9, P) + 0 

and 

Thus, setting T, = rk, n E N we complete the proof. 0 

Remark 3. As observed in [4, Proposition 4.11, the estimation ( 15) is true only for a 

convex polyhedron with nonempty interior. Therefore it seems not to be possible to obtain 

the rate of convergence 0( 1 ln p -“) for other convex domains in Rd. 

Corollary 2. Assume f, g sat&-b (2). 

(i) If D is a conuex polyhedron then 

n “2pE~~p IX:-X,1 +O, 9-a.s., &>O,qE’W+. 
t<q 

(ii) If D is a convex domain satisfying the condition ( p) then 

n “z-csup IX;-X,] -0, 97-U.S., &>O, qeLQ+ 
r<q 

(iii) If D is any convex domain then there exists a sequence ( r,, ) of stopping times such 

that rn+ /o fmand 

n “4+6sup ]X:.nl- -Xy ] -0, Fa.s., &>O, qEW+ . 
t<q 

Proof. (i) Due to the Borel-Cantelli lemma it is sufficient to find a sequence ( a,,), cr,, JO 

such that 

,g, +-” f&y 

sup IX;-X,]>ck!, <+m. 
1 

Letpbesuchlargethat2p&>1.Set~‘=~(2ps-1),~,,=n-”“‘2p’.ThenbyChebyshev’s 

inequality and Theorem 2(i) used for E’ instead of E, 
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= C(p, d, L, q) 2 tl --2pF+2F’ . 
n= I 

Since - 2psf 2~’ < - 1, the proof is finished. 

(ii) and (iii) It is enough to use Theorem 2( ii) and (iii), respectively and to follow 

proof of part (i). 0 

Corollary 3. Assumef g satisfy (2). If D is a convex domain then 

(i) Esup IXy-X,12P-+0, qEw+,P=N, 
f<cl 

(ii) n”3PE sup IX:-x,I - 0, qEW+, &>O. 
fS* /? 

Proof. In view of Corollary 2 ( iii), 

n’3’*P”sup IX:‘-XJ”‘: 0, qEW+,pEN, &>O, 
I<r/ 

and we get (ii). Then to prove (i) it is enough to observe that by Theorem 1 (i), 

sup,,Es~p,~,jX:‘-X,12/‘<+=foreverypEN. 0 

Theorem 3. Assumef, g satisfy (2). If D is a conuex domain then 

Esup IXi:‘-X,12”=0(l/y1”), qEi?+. 
f<Cj 

Proof. For every I E W +, 

E@i: -X, 12/’ 

*P 

-./IX,) dW, + &) -g(X,) ds 

+E -j-(ri:) dW, + I’g&““) -g(X;) ds 
0 

=3”-‘(I’; +r; +&,,} . 

It is clear that 

1;’ G C(P, 4 L q) 
I 

‘E&-X,(“‘ds 
0 

and 



Let s E 1 &,k, f,r,k+ 11, s < q. Then of course _?,!?I”’ = Xz, By using Theorem 1 (i) for Fr,,, +. 

adapted processes we have 

G C(p, d, L, q) In”. 

Hence for every s < q, 

E&?!“-2’: )*“<C(p, d, L, q)ln”. 

On the other hand, due to Theorem 1 (ii), 

I;<E sup II?‘: -K,j2p 
f < 4 

(23) 

*P 
g&Y”) -g(X,s) ds I> Y 

f C(P, d, L 9) U ’ Elii: -X,, 12” dst 
5 

“EIX:‘$““-X’,‘/%‘ds . 
0 0 I- 

Putting the above estimates together we see that for every t < q there exist constants C,, 

C2 > 0 such that 

EI&‘-XJ2/‘< 2 +C, 
I 

‘E@X,J’“ds, 
0 

hence by Lemma 2 of the Appendix, 

sup EIJ?:‘-X,l*“< $exp{C2q], 
f<Y 

which, when combined with (23)) yields 

sup EIX:‘?“‘-X,(2J’=0(1/nP) , qew+ . 
f < ‘, 

Finally, by the Burkholder-Davis-Gundy inequality and (24), 

E sup ) $’ -X, ) “’ 
I < L, 

2p 

~3”~’ -f(X.,) dW, 

(24) 

(25) 

II 
2P 

+Esup 
I<c/ 

,;g(X:?‘f)-g(X,,) ds +Esup I+Kl’” 
f < ‘, > 

< C(P, 4 L q) “EI~~~“-X,~12/‘ds+Esup )i:1-KJ2” 
f G ‘, > 
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< C(p, d, L q) 

> 
+0( l/n”) , 

and thus, in view of (24) and (25) the result follows. 0 

By using the arguments from the proof of Corollary 2 we can easily deduce from Theorem 

3 the following rate of almost sure convergence. 

Corollary 4. Assumef, g sad@ ( 2). If D is a concex domain in Wd then 

n”2-Esup 1X:-X,1 40, 9-a.s., E>O,qEW+. 0 
f<4 

4. General domains 

In this section we assume that D satisfies the conditions (A) and (B). In this case, if 

Y,) < + m, the processes I X,-X, 1 2p, 1 X: -X0 1 2p, 1 X:l -X0 1 2”, and 1 X: -X0 I 2p are not 

necessarily integrable. Therefore the results are weaker than their analogues in Section 3. 

Theorem 4. Assumef, g satisfy (2). If the conditions (A) and (B) are satisfied then there 

exists a sequence of stopping times ( r,,], r,, + + + ~0 such that 

E sup IX;,n,- -Xy Izp=O( llnfJ’2-“), E>O, qEW+,pgN. 
r<y 

Proof. Denote 

ri=inf 
{ 

t; IKKJ,+ )K”),+ )K”l,>kor (AW~“j+ L 2 -$ 
n > 

, k,nEN. 

Due to [ 11, Proposition 3. I 1, 

lim limsup9(r:<q)=O, qEW+. (26) 
k-x u-r 

By using the arguments from the proof of Proposition 1 we show that 

Esup IX;.+ -X:‘.+ %J- I 
f<r/ 

-O(E m; IX? -x:,J+ I”‘). 

On the other hand since 1 AK”.< - ( < 4ro it follows by [ 11, Lemma 2.3(i) ] that I 

sup Ix;.+ -x,4 12/J 
r < r, 

(27) 
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By the definition of r:, 1 K”,e - 1 < k and ( Kd < k. Therefore by using Lemma 2 we have 

sup Ix;.+ -y-i )2/J 
r<y 

(28) 

Because of Lemma 3 and (28)) 

E sup I X7.d - -xc- ~*“=O(lln”‘*-“) , c>O, qEW+, kENpEN. 
r<q 

Next, in view of (27)) 

E sup Ix:‘.4 - -Xc 12”=0( l/n”‘*-&) , F>O, qEW+, kEN(,pEN . 
r<q 

Hence 

sup n /J’/2-&E sup Ix:‘.+ -X,4 12”‘-,0 (29) 
I”GP f<q 

for every s>O, kEN, qEW+, p E N. Finally, the result follows from (26), (29) and 

Lemma4. 0 

From the above theorem we can easily deduce: 

Corollary 5. Assumef, g satisfy (2). Ifthe conditions (A) and (B) are satisfied then: 

(i) there exists a sequence of stopping times ( r,,}, T,, + + + m such that 

n “4PSsup Ix:l.“~--X~I+O, 9-a.s.,kEN,E>O,qEW+; 
f<Cf 

(ii) n”4P6sup 1%; -X,1 7 0, k=N, E>O, qe.R+ 0 
f < ‘, 



Theorem 5. Assumef, g satisfy (2). If the conditions (A) and (B ) are satisfied then there 

exists an array of stopping times { (7: ) } such that lim,,, lim sup,,_, P( ~-1: <q) = 0, 

qeR+ and 

Esup Ii:,+ -X$~2P=O(llnP), qEW+,keFV. 
f<G 

Proof. It is sufficient to put T: = inf( t; 1 I? 1, + I K ( , > k} and use the arguments from the 

proof of Theorem 4. 0 

Theorem 5 and Lemma 4 immediately lead to the following: 

Corollary 6. Assumef, g satisfy (2). Ifthe conditions (A) and (B) are satisfied then: 

(i) there exists a sequence of stopping times ( T,,}, T,, +,a + x such that 

n”2P”sup Ik:.“‘P -XT1 +O, P-a.s., kEN(, e>O, qEW+ ; 
f<y 

(ii) n”*-& sup jri;-x,1- 0, kEN,&>O,qEW+. 0 
r<q z 

5. Appendix 

Lemma 1 [ 13, Lemma 21. Let Y ‘, Y’ be two increasing processes, Y:) = Yi = 0 such that 

EYI < + 00, Y; < C, for some constant C2. Iffor et,ery stopping time r, 

EY)<C, +E 

then EYL <C, exp(Cz). 0 

Lemma2 [ll,Lemma2.2].LetkED(Wf, W) be a non-decreasing function with k,, = 0 

and let h be a nonnegatire Bore1 measurable function on W +. If 

I 

‘, - 
h, Q C, + C, kdk,, q=W+, 

0 

for some C,, C2 > 0 then h, < C, exp[ C,k,,). 0 

Lemma 3. Let H, G be twopredictableprocesses with ralues in WdO Wdand w”, respectively 

such that SUP,,~ I( H,ll, sup,<, ( G, 1 <L < + x for some constant L > 0 and let Y be a process 

with continuous trajectories of the form Y, = I;, H, dW, + (:,G, ds, t E W +. Then 
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Proof. Without loss of generality we may and will assume that d= 1, g = 0. Then 

I;H,? dW, = B “A,, for some standard (possibly stopped) Wiener process B and A defined 

byA,=I:H~ds.HenceA,-A,~~L2(f-S),Aq~L2qando,,,(6,q)~w,(6L2,L2q).Since 

9;( ws( 6L2, L2q)2P>y) < 
16L&(q+26)/S) 

4Gp 

(see e.g. [ 1.51) we can write 

n !-- %I& L2/n, L2q)“’ 

9( w,(L2/n, L2q)“‘>y) dy 

< 1 + C(p, L, q, n)P(n) exp( -ne-‘“) 

=0(l) 1 

where P(n) is some polynomial of variable II, IZ E N. 0 

Lemma 4. Let S= nf=, S, where S, are equal N or W +. Assume that for ecery 

a E S( ( ank( a) ] ) is an array of nonnegatice numbers such that 

lim limsupa,,(a)=O, aES, (30) 
k-n. n-m 

(~<cr’Ja,+((~) <ank(a’) 

Then there exists a sequence (k,,], k,, T + 3~ su#icientlY slowly for which 

a,+,,( a) + 0 , aes. 

(31) 

Proof. For every m E N there exists a number c(m) > c( m - 1) (c(0) = 1) such that for all 

k>c(m), 

lim sup a,& (m, m,. . ., m) ) < 1 
II” +r m’ 

where (m, m ,..., m) ES. Set CY,= (m, m ,..., m)ifk~[c(m),c(m+l)[,m~N.Then 

lim lim sup a,,l( a,) = 0 
/r++J: ,,-+2 

and 

Similarly for every m E N there exists a number b(m) > b( m - I ) (b(0) = 1) such that for 

nab(m), 
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a,,,,, ( a,,, ) G 2 lim sup a,,,,, ( a,,, 1 . 
,I- +x 

Finally, if we set k,, = m for TZ E [b(m), b( m + 1) [ then 

%A, ( % 1 + 0 

and the desired result follows by (3 1). 0 
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