L=
View metadata, citation and similar papers at_ core.ac.uk brought to you byz; CORE

provided by Elsevier - Publisher Connector
(bmp, & Maths. with Appls.. Vol. 6. pp. 79-97 (197-4943/80/0301-0079/$02.00/0
T Pergamon Press Lid.. 1980, Printed in Great Britain

=l
~

IABLE PENALTY METHODS FOR

A\ nl\AﬂUuu IVER /A L AXNSRAVT L NJAN

CONSTRAINED MINIMIZATION

B. PrASAD

Senior Research Engineer. Structures Computing. Research and Test Center. Association of American
Railroads. 3140 S. Federal Street, Chicago. IL 60616, U.S.A.

Communicated by J. T. Oden
(Received March 1979)

Abstract—This paper describes a class of variable penalty methods for solving the general nonlinear
programming problems. The algorithm poses a sequence of unconstrained optimization problems with
mechanisms to control the quality of the approximation for the Hessian matrix. The Hessian matrix is
proposed in terms of the constraint functions and their first derivatives. The unconstrained problems are
solved using 4 modified Newton's algorithm. The convergence of the method is accelerated by choosing
variable penalty function parameters which in a given constraint environment. during an unconstrained
minimization process, best control the error in the approximation of the Hessian matrix. Several pos-
sibilities for obtaining such parameters are discussed. The numerical effectiveness of this algorithm is
demonstrated on a relatively large set of test problems.

The constrained optimization problem has been approached in several ways as indicated in the

surveysll 21 Of the various alternatives. it anpears that the mathamatiral nroorammsi ann.
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roach; the Sequence of Unconstrained Minimization Technique (SUMT) with penalty functions,
is the most general and one of the simplest procedures. Among the unconstrained minimization,
Quasi-Newton Algorithms[3, 4] are usually considered to be the most efficient. However, in
such algorithms the number of iterations required for optimization procedure (one measure of
computational efficiency) is a linear function of the number of variables. These algorithms, are
therefore, not suitable for use with functions having a large number of variables. It was recently
shown[5], however, that Newton's method applied with an interior penaity function formuiation
can be used to overcome this disadvantage because it 1s possible to obtain a SImple ap-

-~ 2 f ¢th d dariuats tha manalty £
proXx imation of the second derivatives of the pehnainty 1y uncti

The proposed approximations were coarse but the idea was interesting. Newton’s method is
attractive for we know that in most quadratic functions with true Hessian matrix, the minimum
can be reached in just one step[6, 7. In order to reduce, therefore, the number of iterations in a
nonlinear problem, a very good approximation of the Hessian matrix is required.

A variable penalty function is proposed herein, where the shape of the penalty function
changes from one iteration to another. The penalty function is continuous and possesses
continuous first and second derivatives over the entire space (feasible or infeasible) where the
function and the constraints are defined [8] The algorithm is based on a limited step Newton’s
for'“"‘"e{ﬁ] and pro ovides casy schemes for \.uuuumus the quality of the apprommauons in
several possible constraint environments. The approximations are expressed in terms of the
constraint functions and their first derivatives only. The convergence of the algorithm is
accelerated by properly assigning values of the variable penalty function parameters which, in a
given constraint environment, best control the error in the approximation of the Hessian matrix.
The quadratic extended interior penalty function[5] appears as a special case of the present
algorithm wherein the error in the approximation of the Hessian matrix is found to be the
largest. The present algorithm allows relatively smalier values of the penalty parameter r than
what conventionally is used to start SUMT without jeopardizing the rate of convergence or
making the associated Hessian matrix ill-conditioned. With the existence of the flexible
characteristics of the penalty formulation the Hessian matrix steadily gets better and better as
the minimum is approached. As a result. the total number of iterations required for convergence

1s greatly reduced compared to any standard penalty or extended penalty function methods.

ru far Nauwtan'’c mathad
ry ior Newton's method.
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2. PROBLEM STATEMENT

The problem of interest in this paper is to determine the n-vector x* that minimizes the scalar
function

)= flxi 2,000 Xn) (h
called the objective function, subject to the inequality constraints
c(x)=0, k=1,....1
and the equality constraints
c(x) =0, i=l+1,...., m 2

the function f(x) and c¢(x) are assumed continuously differentiable to second order in the
region

X=X <xy 3)

where x; and xy are the specified lower and upper bounds. Bounds determine a region of
computability, and unlike other constraints cannot be violated during an iterative process.

3. STANDARD PENALTY METHODS

The constrained minimization problem (equations 1-3) may be solved by the Sequence of
Unconstrained Minimization Technique (SUMT)[9] by using standard interior, exterior or
mixed penalty function formulations[10-13]. In the mixed SUMT procedure (see for example
Ref.[10]) the problem is transformed into finding the minimum of a function F(x, r) as r goes to
zero. Where,

{ 1 m
F(x.n=f()+r 3 dladol+y 2 dla) @
The set I ={1,....,m} of constraint indices are partitioned into two disjunct subsets I, =
{1,.....1}and L={l+1,...., m} containing pure inequality and equality constraints, respec-

tively. Any one of the subsets I, or I, may be empty. The penalty function in equation (4) is
defined in such a way that it reduces to an interior penalty function, ¢{c,(x)], when I is empty,
and to the exterior penalty function, ¥{c,(x)], when I, is empty. The function ¢ in equation (4)
is chosen as

Yla@)=cl(x); k€L (5
this, unlike the standard loss function, is continuous and possesses continuous first and second

derivatives over the entire space where ci(x); k € L, is defined. The interior penalty function ¢
is chosen over the feasible domain as

dle(x)] = pu(x) for c(x)>0 )]

the function pi(x) is standard barrier function, because of its barrier properties to prevent
violation of the constraints. Two well known standard barrier functions are defined as

pr(x) = /¢ (x) M
and

pr(x)=—log [ci(x)] ®)
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which are called the inverse barrier function and the logarithmic barrier function, respectively.

The interior penalty function characteristic of being defined only in the feasible region
presents some difficulties. Theoretically, if the starting point is chosen in the feasible domain,
then the search should stay there until the optimum is reached; however when approximate
techniques are employed if often happens that intermediate points generated during the
unconstrained minimization fall outside the feasible domain.

To overcome these difficulties an extended interior penalty function[S, 8 and 14] is often
proposed. Kavlie and Moe[14] has suggested a linear extension of the penalty function in the
infeasible space and Haftka and Starnes has put forward a quadratic extension{5]. Linear
extended penalty function as shown in Fig. 1 has discontinuous second derivatives and is
therefore not suitable for a second order optimization algorithm. Quadratic extended penalty
function[5] does surmount this difficulty however it does not provide any quantitative measure
on the quality of the approximations it proposes to the second derivative matrix (Hessian). The
poor approximation of the Hessian matrix retards the rate of convergence and thus requires
“too many” iterations. The word "too many™ has been used to indicate more than what is
necessary.

Another problem which is common to most interior and exterior penalty function methods is
the problem of ill-conditioning when r goes to its limits, the Hessian matrix becomes more and
more ill-conditioned[16]. To avoid making the problem ill-conditioned right from the start, the
common strategy, usually followed, for example with interior penalty functions is to start the
optimization with a large value of r and get close to the optimum before r is reduced to a very
low value. Thus for small values of r when the problem is ill-conditioned the minimization
procedure is required to make reasonably small moves. However, the total number of iterations
required to achieve an optimal solution is usually large because several values of r have to be
used. On the other hand, if we choose a very small r to start with, we can complete the
optimization for a single r but because of ill-conditioning the total number of iterations is
found[12] to be even larger. Depending upon a particular problem, there is thus always a certain
value of r which leads to an optimal solution in a minimum number of iterations.

A variable penalty function is proposed herein which is designed to minimize the errors in
the approximations of the Hessian matrix. When used in conjunction with a second order
method (modified Newton's method) the formulation has been found quite effective in reducing
the ill-conditioning nature of the problem and also in lowering down the “optimal” value of r so
that smaller values of r can be used to start SUMT.

Variable penalty function

Interior penalty function

Quodratic extended penalty function

Linear extended penalty function

Co Constraint function  C,

Fig. 1. Penalty functions.
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4. VARIABLE PENALTY FUNCTIONS

Variable penalty functions are the sequence of piecewise continuous penalty functions
defined over the entire space (feasible or infeasible) where f(x) and c¢.(x) are defined. The
extension of the variable penalty function into the infeasible space is accomplished by defining
a transition or a cut-off point, at which some characteristics of the extended part are matched
with the part of the penalty function defined strictly in the feasible space. That is. the Sequence
of Unconstrained Minimizations (SUMT) takes the following form.

Find x € R" to minimize

| o S S P A V" 1r /\1.Ién‘ [ AN | £00
rx ”)—I\’C)*rkz, rlckl‘)J*‘;Az, UL Gl X)) (Y)
=1 =/~
The variable penalty function is defined here as
|‘ (), if alx)=c
d.la(x)] = (10)

] e(x), if c(x)=<c,.

A portion, pi(x), of the above function is defined to be in the feasible space with a cut-off at
colco>0), which is taken here as a standard interior function (see equations (7) and (8)).
Conceptually, any monotonic decreasing function in ¢, with continuous first and second

derivatives can be used for p.(x). e.(x) renresents the nortion of the variable nenaltv function
aernvallves can dDe Used Ior pelx). ¢ x) represenis the portion Of the variadice penaity runction

which extends into the infeasible space. ¢, is the transition or the cut-off point. Corresponding to
two commonly used interior penalty functions, two distinct classes of variabie penalty function
formulations can be advanced. They are proposed here as:

] Hedx):  alx)=c
o.[(ci(x)] =] , (11)
! A(C»/Cn— 1 +(CL/Cn— 1)'—(Cb/Cn* D+ ”/Cn al(x)<cy
and
=logla(x)];  alx)=c
d’v[ck(x)] =
r oAz ] "3, l i 122 s N 1y 1. L1, N e (12)
ULAlCY Co— 1) +§ Cif Co— 1) —(Cif Cp — 1) — 108 Co); GlX)=Cp
which are named the inverse variable penalty function (IVPF) and logarithmic variable penalty

J
function (LVPF), respectively. A is a constant to be determined later. It can be checked that,
in each case, the expressions (11) and (12) satisfy the continuity of p, and its first and second
derivatives at the transition point, ¢,. The continuity of third derivative is not sought since for
the application to a second order method it is not essential. There appears in the expressions, a
free floating constant A and hence the function ¢, is called a variable penalty function. The
function ¢, is same as ¢ in equation (5) but it extends into both feasible and infeasible spaces.

Newton’s method with approximate second derivatives
Th annly Nautan’ec mathnad with the QITMT nracednre the
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function F,[x, r], equation (9), for a given value of r is found by usmg an iterative procedure. If
x' is the initial guess for x” at an iteration ¢ a better approximation x'*' is found from

J
=4
<
5
-
3
0
-
3

x'*'=x'-9H 'VF, (13)

where VF, is the gradient of F,, H is the matrix of second derivatives of F, given by
(14)

and 8 is the step size from x' to x'*! found by means of a one-dimensional search in the direction
H™'VF,. x{ and x; are the ith and jth variable of the n-vector x and ¢ is an integer.
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Dropping the superscript t and using (9). the equation (14) can be expressed as

H“:ﬂ'(X)JI“I"‘[‘ a:¢:‘[ck]+l ‘m‘ azdjv[ck]. (!5)
i ﬁx,-(?xj k‘:‘l 8x,»(9x,- rk‘i; Bx,-ax,-

Using the definitions of variabie penaity function, ¢,, as introduced in equations (10)-(12), we
find

o [p et B ] &
| G [" ax; ax,  Faxox ! ¢ =1
o _ ! (16a)
ax;0X; s ,
foa (1) +2} 22y ¢ f3a(%on) po(Sot) -1} Lo ] Ggy
co [{ (Cn ) } ox; axj CO{ (Co ) (C() ) 3X,‘l9X,J’ Co =
(16b)
employing the inverse variable penalty formulation (/VPF) and
erfdada Fal Gy
, Lo axp Tt dxidx 1 Co
o _i 17
xdx (172)
oxdx; ,
[ Ci. dcy, dcy { (Ck )2 (Ck ) } a‘cy ] Ci
et X o)+t gy +(E-1)-1t 2= =1
j co [{6A (Co ) 1} ax; an Co 3A Co ! Co 6x,-8x,- Co
(17b)
on the basis of logarithmic variable penalty function (LVPF). Using the definition of the
function ., (Eq. (5), we get
3%, dex dcx e
=2= 18
0x;0%; ax; dx; +26 5 ox, ox;0x; (3

Because of the factors ¢, and ¢, "> in equations (16a) and (17a), the main contribution to the
penalty function second derivatives (for (¢/co) = 1) is from the constraints, which are nearly
critical (i.e. ¢, very small). For these constraints, the second terms in the expression (16a) and
(17a) can be dropped out since they are muitipiied by ¢,. Part of the coniributions io the second
derivatives also comes from the equations (16b) and (17b) when (c¢/co) <1. Because of the

-3 =2
factors ¢, and ¢, appearing before these equations, their magnitudes depend upon the initial

value of ¢, and the rate at which ¢, goes to 0 as r goes to 0. For the purpose of dlscuss1on, we
introduce the following terms:

AC, =64 (i—z— ) (192)
2

Ael——jA(%‘;-—l)ﬁ'- ( —1}—1 (190)

AC = ﬁA( ) (20a)

Aes=3 (—-1) ( )-1 (20b)

Equations (16b) and (17b) can thus be rewritten as

b ey ac, 282 ne, LL] g1 and2 21
ax,ﬁx, I_ ax; 9x; CoRes G rax J’ §=1land. D
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The variable s has been conveniently introduced in the above equation to simultaneously
represent the two class of variable penalty formulations advanced in this section. s =1.
corresponds to the equation (16b) and s = 2. corresponds to (17b). The value of ¢, is usually
small compared to 1.+ Because of the factor ¢, appearing before the second term in equation
(21) the major contribution to the second derivatives of the penalty function would be from the
first term. It is desirable to be able to do without the second term in equation (21) because then
we can express the second derivatives of ¢, namely (3°$,/dx;0x;) in terms of only the first
derivatives of c;.

The second term is a product of three quantities namely c¢,, Ae, and ( 8¢ 0x;0x;). In order to
minimize its contribution, it is essential to show that one or more of these quantities are either
small initially or can be made small, so that the product is negligible as compared to the first
term. There are two quantities in the second term of equation (21) namely ¢, and Ae, over
which we have some control. Out of those, ¢, is not an effective choice since assuming a small
value of ¢, would increase Ae, for a given c,. The other choice is Ae,. Because we have an extra
floating quantity A is the expression of Ae, it is possible to make Ae, sufficiently small by
adjusting A. The various choices of A are discussed in the next section. The approximation of
the H; is proposed here as

f(x) & aelck]  1& Plad
H; = + +—
T axiox rg. 2x;0 x, resST dxox;

M

where

' 2dc dc ] ¢

s-a | 2 0Ck 9C | Gk
!Ck [S 6x,- 8x,~]’ =1
az¢v[ck] .y (22)
axiaxj ‘ 3
¢y ck} Cu
[AC’ ox; 0x; o]

and

2

Bx,ﬁx,- ax; ax,- ’

Equation (22) includes only the first derivatives of the constraint functions, so that the
computational effort for obtaining the second derivatives needed for Newton’s method is the
same as for a first order method. The term AC, in equation (22) reflects the correction to the
Hessian matrix. Its value as can be seen from equation (19) depends upon the ratio ¢/c, and the
value assigned to 4

5. DETERMINATION OF A

In order to establish a suitable value for A, we shall first determine the upper and lower
limits A can assume without compromising the characteristics of a penalty function. The shape
of the variable penalty function curves depends on A. This is shown in Fig. 2. In order to insure
a higher penalty for a higher constraint violation we need a curve increasing monotonically with
negative c¢y,. The slope of the variable penalty function is obtained as

[3A<—— )2+2(%‘3— )—1] for IVPF

o€ _ (24)
¢! [3A (ﬁ— )'+(-Ci— 1)—1] for LVPF.
Co Co

+The limits on ¢, are obtained in Section 6.
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w———  Plots for IVPF (s=2) 10.0
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e,

-3.0 -2.0 -1.0 00 1.0
G /6,

Fig. 2. Variable penalty function formulations.

To get a monotonically increasing function, it is enough to have A negative; since in that case
we do not have any possible real negative value of ¢, for which (de/dc,) = 0. However, as can
be seen from equations (19b)~(20b) negative vailues of A increase the magnitude of the
associated error Ae,. We thus, have to limit ourselves for positive values of A. Figure 2 shows
a plot for e,(x) vs ¢/cy for various positive values of A. For such positive values of A, the
penalty function does not show a strictly increasing monotonic behavior. It is thus important to
select a positive value for A which insures an increasing penalty behavior at least up to the
most negative constraint that we may encounter.
This requirement can be set as

[ (E—I; = d()) =€ (i_‘:} = d*) (25)

where d* is the most negative constraint ratio and d, is a value of (c/cy) for which
(aek/&Ck) =0.

A limiting situation would be when d, equals d*, i.e. the penalty for the most critical
constraint violation is a maximum at the value specified by the most negative possible
constraint. The range of A can be established using this limiting case. This gives,

1-2(d* - 1) '
As————3(d*_ 7 for IVPF
(26)
A<D veE
= 3(d*-1)?
where d* is the smallest possible ratio, ¢,/co, that we obtain in a particular problem.
For the possible range of d*, i.e. 0 = d*< — =, the bounds on A can be established.
0<A<] for IVPF
27

0<A=2/3 for LVPF.
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A =0 corresponds to the case when we allow for an infinitely negative d*, in this particular
situation (A =0), the inverse variable penalty function formulation (IVPF) degenerates to a
quadratic extended interior penalty function, introduced by Haftka and Starnes{S]. A=1 and
A =2/3 correspond to the case when d* is zero. Particularly for this value of A(l or 2/3) as can
be seen from the plot (Fig. 3) the error term Ae,, for s = 1 or 2, is very small. In the strategy for
choosing best A, we therefore keep A to be a constant and equal to 1 or 2/3 in the respective
variable penalty formulations. This value is not changed as long as the intermediate x stays in
the feasible region (¢, =0). The best possible choice of A when constraints are violated (¢, <0)
is governed by the following criterias.

Minimization of error Ae,. Figure 3 shows the error term Ae, for each of the variable penalty
formulations expressed as a function of c¢j/co. Several curves are indicated in each case
corresponding to several values of A. The curve corresponding to, A =0, is a straight line for
which the error is largest for all values of ¢;. In order to meet the characteristics of the penaity
function, a particular value of A should be chosen such that: (a) A is a constant and the same
for the set of constraints which are encountered during an intermediate unconstrained mini-
mization process. (b) A higher penalty for higher constrained violation is insured and: (c) The
associated error Ae, is small.

Since various possibilities for meeting the requirement (c) exist, there could be several
possible alternatives on which A can be based.

One of the simplest procedures to find a suitable A is from the condition that Ae; = 0, for the
most critical constraint. It can be easily checked that the requirements (a) and (b) are also
satisfied. This condition leads to a value for A as

_1=2(c* o= 1)

A= c*co— 1) for IVPF
or
_1=(c*eo—-1)
A=y for LVPE (28)
“ 2.0
Al/3 . A=2/3 \

Ae,

1.0

A=0 P Plots for Ag, (IVPF)
L -40 —Plots for Ae, (LVPF)
T -50
.= A0
-6.0

Fig. 3. Plots for error functions: Ae, V. ¢i/co.
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where
—o< c*¥ sy fork=1,....1L

Another strategy that was found to be effective for choosing a relatively stable value of A
which reduces Ae, for most constraints, is to require

!
> Ae, =0. (29)
=
This provides an expression for A as

! {
A= [1 D (ck/co)] / > (adco— 1 for IVPF,
k=1 k=1

and
! !
A= [2/3[ -1/3 2 (ck/c())]/z (clco— 1) for IVPF, (30)
k=1 k=1

where | is the number of inequality constraints. Sometimes, when constraints are not evenly
distributed, a situation could arise when a large number of constraints are clustered in a zone
far from the most critical constraint. The value suggested by (29) for A may not be suitable in
that situation.

Another value of A for a given constraint range d* <c/c, <0 which avoids the above
problem, may be found by requiring that the maximum value of Ae, is minimal over that range.
This is equivalent to the requirement that the largest positive value, obtained at ¢,/c, = d* is the
same as the largest negative value obtained at the point where

dAe _
acy

This can be expressed as
Ae (el co = do)= — Ae,(cil co = d¥) (31)

where d, is an intermediate point at which (dAe/dc,) = 0. Using equations (19) and (20) it is
possible to solve equation (31) explicity for A as

_ = (@* -+ V(@*-2+(@* - 1)
- 3d*- 1)

A for IVPF

and

_—@*-3)+V@* -3+ (@*- 1)

A 6(d* -1y

for LVPF. (32)

Of the three values for A found from equations (28), (30) and (32), the one smallest in
magnitude was used in implementing the algorithm, in the respective cases.

Positive definite characteristic. The possible choices for A expressed by equations (28), (30)
and (32) do not guarantee a positive definite Hessian matrix. As we get close to the optimal
solution it is desirable that we have the positive definite character to the approximated Hessian
matrix.

Using equations (22) and (23) we can write H; as

P S [z (o) o _g)]mgc_k 1 & e de
Hy = ‘+r2 sc" I Co 1)+ate™ 1] Co/ J OX; ax,-+rk:E,+.2ax,~ ax; (33)
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s indicates the type of the formulations and I(n) is a generalized step function defined as

Im)=1, >0
I(m)=0, 7<0.

Denoting for convenience
—Z o (Ck_ > S_4 ( —Ck>
Ab, = 5 Gk I o 1)+ACc’ I 1 o) (34)

We can rewrite the contribution to the Hessian matrix H; in equation (33) from the constraints

as
L

[ I
=

s Abw% s }(2 96, 9¢c) (35)

22 LAl U0 COCLASC Al 4 SURNGICIN CUNRAN0H 10T 1 VRills ICASL SURL-PUSIUVL GCiiiinie

Ab, =0  fork=1,.....L (36a)
To satisfy equation (36a) we require that

AC, =0 fors=1or2 (36b)

[¢]
=
(e}
Q
=
=
-
o
-
c

sm quatlon

(1]
(¢

for the smallest possible value of ¢,/cq; d* <(c/cy) <0, that we may
(36]-\\ the pgscﬂ\lp choice of A in each of } i < or?

UV, SIVIC VIVIVO UL S il vavna Y

AsSs+— for IVPF
Ni—avj

(37

<1 for LVPF

6(1 — d*)

4L - . - L A 1 a1 L S = . Y R PR [ P, Y S . o e &Y
lVULC lﬂdl e Vd ues or A preaicica by uic d DOVE 10rmura€ wnen ineére is no negdive
constraints are 1/3 for s =1 and 1/6 for s = 2. For these values of A, the error function Ae, is

1 r
shown in Fig. 3. As indicated the error for committi ng the nncmvp definiteness character to the
Hessian matrix is still smaller than the largest error which is possible when A =0.

6. LIMITS ON BEHAVIOR OF ¢, WITH r
To complete the definition of variable penalty function, a relation that defines the cut-off point
¢o between the two constraint function in equations (11) and (12), is required. As r goes to zero, the
following two conditions should be satisfied.

(i) redx)—0 for any ¢ (x)=0; kel,.
This condition represents a vanishing contribution of the penalty terms in the feasible domain.
(i1) re(x)—> for any ¢ (x) <0; kel,.

This represents an increasing penalty for constraint violation. It can be easily vertfied that the
first condition is satisfied because e, (x) < pk(x) and rp,(x) goes to zero as r — 0 for any value of

_____ s | P TRy i g Y e

Ck. lllC acu)uu LUllUlllUl'l lb cquxvmcm w LllC reyuicincIit that

rA
-5

Co

—was r—0.

1t is assumed that minimum of the function f exists.
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If we assume that A is a constant then the above condition means

colr'*=0as r-0  fors=1(IVPF)

and

/3

colr'?—0as r-0 for s =2(LVPF). (38)

Equation (38) identifies one limit on the behavior of c,. If ¢ is allowed to vary as some power
to r, say g such that

co=Dre. (39)
Equations (38) and (39) lead to
r4l e asr-0 fors=1,
and
rittseo asr—0  fors=2.

This requires

—-4q+1<00rq>% for s =1,

and

—3q+l<00rq>% for s =2. (40)

Another limit of g can be found by requiring the minimum point x” to move in the range
where ¢,[c.(x)] is defined by the portion of the variable penalty function e,(x) most of the time
rather than by p,(x). This requirement is desirable because the cubic definition of ¢,[c(x)] may
be expected to be better behaved than the p,(x) [i.e. 1/c; or —log ¢;] form of the function. As
shown in the Appendix, c,(x) does not go to zero faster than #'*? for IVPF formulation and
faster than r for LVPF formulation. Therefore, if ¢, goes to zero faster than r"? or r in the
respective cases, the minimum of F,(x, r) will drift away from the cubic range as r—0.

The transition point behavior for the variable penalty functions as suggested by equation
(39) can thus be expressed as

¢o = Dr? 41)

where D is a constant and the range of q is

%< q <% for IVPF formulation

and

1 .
3<4< 1 for LVPF formulation.
7. RATE OF CONVERGENCE AND ILL-CONDITIONING

The advantages of the conventional interior penalty function method that it does not require
the solution of the constrained minimization problem to be a Kuhn-Tucker point, the latter is
CAMWA Vol. 6. No. 1—G
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actually provided by the calculation (see for examples [9] and [12]), are offset by its two
important disadvantages.

(1) The rate of convergence is dependent on {r'}. For the standard inverse barrier function
we have

[x* = x*| = 8([r' ") (42)

at best, and for the log barrier function we have

i’ = x* = 8(r") (43)

at best. This implies that for a fixed r* sequence, the rate of convergence depends on the barrier
function chosen. The *“obvious™ approach of choosing a fast converging r* sequence leads to
costly minimizations of F(x,r") for each t. Osborne and Ryan[12] have considered the
possibility of improving the rate of convergence by a careful choice of the barrier function.
This is what we achieve by introducing a piecewise variable penalty function with a cut-off at ¢,
such that ¢;—0 as r— 0. Each class of variable penalty functions proposed in equations (11)
and (12) actually represents a family of the functions governed by the choice of the parameter
A. Some of the choice are restricted by the conditions outlined in Section 5 but still a large
group of penalty functions are available. The flexibility in the choice of the penalty functions
leads to a rate of convergence that may be defined as follows:

flx* = x*| = 6([r']*) (44)

where

R
vV
|

for IVPF

and

a>1 for LVPF.

The above observation is reflected in numerical results which show that a reasonable con-
vergence can be achieved even with fairly fast converging choice of r' sequence.

(2) The second disadvantage of penalty function methods involves the increasing difficulty
of minimizing F(x, r') as r' becomes small, this is reflected in numerical examples in which the
number of unconstrained minimization iterations required to find x' does not decrease notice-
ably even though [x' —x‘"|| is decreasing as r increases. It has been suggested (Lootsma(2],
and Osborne[12]) that this behavior can be at least partly explained by examining the condition
number of the Hessian of F(x,r) at its minimum. Fletcher and McCann[19] have tried to
exploit the behavior of some Hessian matrices to accelerate the computational process. [t is
possible to show that the condition number of V?F(x, r), in the case of standard penalty
methods, is given by

B(r)
= )
where B(r) >0, is bounded. Clearly with the choice of variable penalty functions where the rate
of convergence is governed by the relation proposed in equation (44), the ill-conditioning
behavior of the problem is expected to be reduced. This observation is reflected in numerical
results which shows that minimum of F.(x, r) can be achieved in a small number of iterations
irrespective of the initial choice of the penalty parameter r° to a certain extent.
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8 NUMERICAL EXPERIENCE

The algorithms described in the previous sections have been implemented in a digital com-
puter program called ‘LEAD". An extensive set of test problems are considered. Each one of
the problems is solved under three or more sets of values for the initial parameters of the
penalty methods, such as r°, ¢, and A, A, is the ratio of r used for two consecutive
unconstrained minimization process, i.e.

Ar=rifrt,

This section presents the results of this numerical experience. Most of the problems have been
drawn from the literature and it is hoped that the set is fairly representative in view of its
mathematical complexity and nonlinearity. The problems, however, have two significant attri-
butes which are distinct from those commonly encountered in engineering practice.

First, the function evaluation process is relatively inexpensive, and errors in the evaluation
process are of the order of machine accuracy. Similarly, accurate gradients can be obtained
cheaply for the test problems by directly evaluating corresponding analytical derived partial
derivative expressions. Practical problems, on the other hand, may require that the function and
gradient information by evaluated using numerical methods. For the purpose of functionally
testing the algorithm for various values of ¢, and r°, least effort is given here to determine the
overall behavior of optimization process on such numerical procedures. The use of these numerical
techniques is further subject to numerous variations which may obscure the objective of this
paper. Analytical derivatives are therefore always employed.

Secondly, the required second derivatives of the function, f, are obtained from the forward
difference formulae in terms of the gradients, which are evaluated using the analytical means.
The second derivatives of the constraints are based on the approximations proposed in terms of
the first derivatives (see Section 4). For structural problems the algorithm is expected to behave
much better since there is no approximation involved in computing the second partial derivatives
of the function which are unconditionally zero.t Because, the cost of function and gradient
information in an iteration varies very little from one unidimensional search procedure to other
(assuming that all procedures are efficient and are based on the analytical information of the
functions and their first derivatives only), the major computational expense of the optimization
algorithm largely depends upon the number of times such procedures are required to be
performed.f In the present case we have therefore imposed the number of iterations as a
measure of the algorithm effectiveness. It is assumed that an iteration consists of evaluating a
Hessian matrix, finding a suitable search direction and finally performing an unidimensional
search. The transition point parameter, c,, was controlled by a value of g = (1/2) for IVPF and
a value of g =1 in the case of LVPF formulation.

The test problems are stated in the Appendix B with references where applicable. This also
includes the solution points found ‘from the variable penalty function algorithms (namely
IVPF and LVPF). The salient results are presented in condensed form in Table 1 using
IVPF and in Table 2 using LVPF algorithms. Specifically, we present the total number of
iterations and the number of unconstrained minimizations required for convergence. Several
initial starting parameters are considered for each problem in order to show their effects on the
results. For all problems, the optimization process was terminated when penalty weight was
reduced to less than 0.01 percent of the functional value. From the results in Tables 1 and 2 it
can be inferred that in general both methods are competitive but inverse variable penalty
function (IVPF) behaves slightly better than the logarithmic variable penalty function. It can be
seen that in most cases the optimum is reached in fairly small numbers of iterations, except
problem 11.2. The poor performance of the algorithms in the case of Problem 11.2 is partially
attributed to a choice of very large initial value (starting function value 909.0 while the
minimum is at 0.25) and is partially due to the presence of an ill-behaved function (the so called
banana shaped function). The complexity of this problem is further increased by the use of a

*The weight of the structure is usually linear functions of design variables.

tIn a structural problem for example. one iteration represents a fresh analysis which is very expensive as opposed to
the functions or the weight evaluations which are based on the constant mass derivatives. With such application in mind,
the derivatives of the functions and the constraints are computed only at the beginning of each iteration.
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set of Hnear constraints which funnels the feasible region of the solution space to a narrow
band. This can be explained very well from the results of the Problem 11.3 which is a little
variation of the Problem 11.2. Here, one of the linear constraints, cs, of Problem 11.2 is simply
replaced by a quadratic constraint function but the effect is that it brings down the number of
iterations to less than half of its earlier value (which was experlenced in Problem 11.2). It is
worthwhile to note that several initial starting vaiues of r® are convenieni i0 use in the
algorithms while its effects on the number of iterations are innocuous.

9. CONCLUSIONS

Two kinds of variable penalty function methods (VPF) are introduced which minimizes the
error in the approximation of the Hessian matrix resulting from using only the first derivatives of
the function and the constraints. It permits consideration of initial points outside the feas-
ible domain and the mechanisms for quick recovery, which are useful, as approximate
techniques used during the optimization process often result in incursions into the infeasible
domain. The sensitivity of the number of iterations on variations in r° and ¢, has
been minimized. The algorithm permits relatively smaller value of the penalty parameter r° than
what conventionally has been used for standard penalty formulations. In the process neither the
rate of convergence is jeopardized nor is the associated Hessian matrix found to be badly
ill-conditioned. The fact that a relatively small number of iterations are required to solve the
overall problem, as illustrated by the resuits presented in Tables 1 and 2, tends to corroborate
the above assertions.
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APPENDIX A: BEHAVIOR OF ¢ (x) AS r—0

The variable penalty method with the inequality constraint (k € I,) consists of finding the minimum x* of function
F.(x, r) as r goes to zero where

{
Fx.r)=flx)+ z LX), (A.D

k=1

The above equatlon follows from expression (9) where p,(x) is defined by (7) or (8). With the assumption that ¢, varies as
the power of r, i.e.

co=Dr?, q >0 and (A2)

with x” denoting the point in solution space where F,(x, r} attains its minimum value for a given value of r. it may be
shown following (See for example Refs. [9], [12]) that as r >0

(1) Min F.(x, r)~ f(x*)
and
(i) x"—x*

By defining a function p such that
!
p=2 lg(x) for IVPF
k=1

and
I
logp = log[c(x)]  for LVPF. (A3)
k=1

It is possible to write equation (A.1) as

F,(x,ri=f(x)+rnp  for IVPF
and
F(x,rn=f(x)—-rlogp  for LVPF. (A4)

The behavior of the ¢,(x’) as r—0, can be investigated by making the following assumptions

(1) f(x) and c(x), (k=1,2,...,1) are continuous and have continuous first derivatives where the functions and the
constraints are defined.

(i) Two positive constants, d, and 7y, can be found at x = x” such that

0> dy > ' af/ for all r<r, (A.S)
ax;
and x; is a component of the vector x”.
Since F,(x, r) attains its minimum at x".

W o TP iy n for IVPF
ax;  ox; p ox;

and
9 T o i=1...n for LVPF. (A6)
ax; ox; pox

The equation (A.6) implies

{12)
px) = F12 (j—)’: gxf—) for IVPF

and

no (9P f)
p(x) = r(ax'_/ i for LVPF. (A7)

Using equations (A.3) and (A.7), we can express

p(x’) Z Vedlx r)_(‘;f (‘:f)u/*» -1 < g D11 (A8)
for inverse penalty function (IVPF) and
log [1/p(x")} = 3 log [1/ee(x")] = log [(:f ) r"J <log(dyr™") (A9)

for logarithmic penalty function (LVPF).
The summations £ in equations (A.8) and (A.9) are taken over all the constraints for which ¢, (x) = ¢g; k € I, where
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co—0 as r—0. In order to satisfy the inequality in the equations (A.8) and (A.9) it is sufficient to insure that each ¢, in the
summations satisfies :

a=dr'  for IVPF
and
o = dor, for LVPF (A.10)

where d, and d- are some positive constants. Consequently c{x"). k € I,, does not go to zero faster than r*'* in the case
of IVPF, and faster than r in the case of LVPF.

APPENDIX B: EXAMPLES ON CONSTRAINED MINIMIZATIONS

This Appendix contains the test problems chosen to assess the effectiveness of the nonlinear programming algorithm
described. No scaling of the variables is used.

The points x* presented are assumed to have converged in the sense described in the Section 8. When the exact
solution is known its value is presented following the computationally obtained value, which is rounded off to four decimal
places.

Problem 11.1 Minimize

F(x) =2 = (1/120)0x, X2 XX4Xs,
subject to

c(x)=x, =0, k=1,...,5,

Gas(X)=k~x20. -10<x, <10, k=1,...., s,
Starting point: x°=(2,2,2.2.2)

Solution point: x*(IVPF) =(0.9999, 2.0, 2.9999, 3.9988, 4.9994);  f* = 1.0005
X*(LVPF) = (1.001. 1.9991. 3.0003, 3.999, 4.9996);  f*=1.001
x*Ref [21))=1,2.3.4,5; f*=1

Problem 11.2 Minimize
f(x) = 100(x; — x P + (1 - x,)?,
subject to

a0 =x"+x20

o) =x1+ 120

(0= -x+320

c4(x)=x‘+%zo
Ccs(X)=~x,4+ 120

Starting Point: x®=(-2, 1)
Solution Point: x*, f*

x*(IVPF) = (0.49999, 0.2499);  f*=0.25
x*(LVPF) = (0.4999, 0.2499);  f*=0.25
x*Ref. [21]) = (0.5, 0.25): f*=0.2s.

Problem 11.3 Minimize
flx) = 100(xs - ;2 + (1 - xy),
subject to

cx)=x"+x,20

ox)=x72+x=0

cx)=—x, +%>0

c4(x)=x,+%>0

cslx)=x 2 +x2-120
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Starting Point: x*=(-2,1)
Solution Point: x*, f*

x*(LVPF) =(0.5. 0.86602
y*(Daf MMMN =/ § 0 QKEON % = 1Q 10Q
XTARCL. [e1)) T V.0, U.600VL) J7 = Jb6.170.

Problem 11.4 Minimize
f(x)=9x," + x> + 9x5?

c(x)=x-120
ox(x)=x .- 120
c(x)=1-x20

~10<x <10; k=13

Starting Point: x°=(2,2,2)
Solution Point: x*, f*

x¥IVPF) =(0.5772, 1.732, 0.0) f*=5.99
y*(LVPF) = (0.5774, 1.7321, 0.0) f* =6.005
x*Ref. [21]) = (0.57735, 1.7320, 0.0 f*=60
Problem 11.5 Minimize
fx)=2-x1x2x3,
subject to
ci{x)=x;+2x2+2x3—x5=0
) =x20 k=1234
cun(x)=1-x520, k=123,
co(x)=2—x4=0,
~-0=x=<10, k=13
Starting Point: x°=(2,2,2,2)
Solution Point: x*, f*
f*=1926

X*(IVPF) = (0.6666, 0.3333, 0.3333, 2.0001);

H(LVPF) = (0.6666, 0.3333, 0.3333, 2.000);

x*(Ref. [21]) = (0.66666, 0.33333, 0.33333, 2);

fr=19%
*= 1.9259.

Problem 11.6 Minimize
fX) = x 2+ 02+ 207 + X2 = 5% = Sx = 215 + Txy,

subject to
aX)=-x -t -t -l en+tn-xn+x+8=0

C:(X)= —X|:_2X22—X32-2X4Z+X| +Xx.+ 10=0

oxX)=—2x 7 — ' — X =20+ X+ X+ 520

Starting Point: x°=1(0,0,0,0)

Solution Point: x*, f*
X*(IVPF) = (0.0, 0.9995, 2.0001, -1.00);  f*=—43.9981
X*(LVPF) =(00, 1.004, 1.998, -1.00);  f*=-43.9926
x*Ref. 211)=(0,1,2, -1); f*=-44,

Problem 11.7 Minimize
f) =0 =2 +(x, - 1)
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oX)=-x +x=0

cAX)==x1—x,+220;

Starting Point: x°=(2,2):

Solution Point; x*, f*
x*(IVPF) = (1.0, 0.9998); f* =0.9998
x*(LVPF) = (1.00008, 1.00008); * = 1.00008
x*Ref. [20h=(1. 1); *= 1.
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