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Abstract-This paper describes a class of variable penalty methods for solving the general nonlinear 
programming problems. The algorithm poses a sequence of unconstrained optimization problems with 
mechanisms to control the quality of the approximation for the Hessian matrix. The Hessian matrix is 
proposed in terms of the constraint functions and their first derivatives. The unconstrained problems are 
solved using a modified Newton’s algorithm. The convergence of the method is accelerated by choosing 
variable penalty function parameters which in a given constraint environment. during an unconstrained 
minimization process. best control the error in the approximation of the Hessian matrix. Several pos- 
sibilities for obtaining such parameters are discussed. The numerical effectiveness of this algorithm is 
demonstrated on a relatively large set of test problems. 

INTRODUCTION 

The constrained optimization problem has been approached in several ways as indicated in the 
surveys [ 1,2]. Of the various alternatives, it appears that the mathematical programming app- 
roach: the Sequence of Unconstrained Minimization Technique (SUMT) with penalty functions, 
is the most general and one of the simplest procedures. Among the unconstrained minimization, 
Quasi-Newton Algorithms[3,4] are usually considered to be the most efficient. However, in 
such algorithms the number of iterations required for optimization procedure (one measure of 
computational efficiency) is a linear function of the number of variables. These algorithms, are 
therefore, not suitable for use with functions having a large number of variables. It was recently 
shown[5], however, that Newton’s method applied with an interior penalty function formulation 
can be used to overcome this disadvantage because it is possible to obtain a simple ap- 
proximation of the second derivatives of the penalty function necessary for Newton’s method. 
The proposed approximations were coarse but the idea was interesting. Newton’s method is 
attractive for we know that in most quadratic functions with true Hessian matrix, the minimum 
can be reached in just one step[6,7]. In order to reduce, therefore, the number of iterations in a 
nonlinear problem, a very good approximation of the Hessian matrix is required. 

A variable penalty function is proposed herein, where the shape of the penalty function 
changes from one iteration to another. The penalty function is continuous and possesses 
continuous first and second derivatives over the entire space (feasible or infeasible) where the 
function and the constraints are defined[8]. The algorithm is based on a limited step Newton’s 
formulae]61 and provides easy schemes for controlling the quality of the approximations in 
several possible constraint environments. The approximations are expressed in terms of the 
constraint functions and their first derivatives only. The convergence of the algorithm is 
accelerated by properly assigning values of the variable penalty function parameters which, in a 
given constraint environment, best control the error in the approximation of the Hessian matrix. 
The quadratic extended interior penalty function[5] appears as a special case of the present 
algorithm wherein the error in the approximation of the Hessian matrix is found to be the 
largest. The present algorithm allows relatively smaller values of the penalty parameter r than 
what conventionally is used to start SUMT without jeopardizing the rate of convergence or 
making the associated Hessian matrix ill-conditioned. With the existence of the flexible 
characteristics of the penalty formulation the Hessian matrix steadily gets better and better as 
the minimum is approached. As a result, the total number of iterations required for convergence 
is greatly reduced compared to any standard penalty or extended penalty function methods. 
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1. PROBLEM ST.iTEMENT 

The problem of interest in this paper is to determine the n-vector X* that minimizes the scalar 
function 

f(-r) = f(x,. x2, . . . . X”) (1) 

called the objective function, subject to the inequality constraints 

Ck(X) 2 0, k=l,..../ 

and the equality constraints 

Ck(X) = 0, i=l+l ,....( m (2) 

the function f(x) and Q(X) are assumed continuously differentiable to second order in the 
region 

XL~X~XU, (3) 

where xL and xu are the specified lower and upper bounds. Bounds determine a region of 
computability, and unlike other constraints cannot be violated during an iterative process. 

3,STANDARDPENALTYMETHODS 

The constrained minimization problem (equations 1-3) may be solved by the Sequence of 
Unconstrained Minimization Technique (SUMT)[9] by using standard interior, exterior or 
mixed penalty function formulations[lO-131. In the mixed SUMT procedure (see for example 
Ref. [lo]) the problem is transformed into finding the minimum of a function F(x, r) as r goes to 
zero. Where. 

F(x, 4 =m+ rk$, 4kkwl+;k;+, dJ'[Ck(X)I. (4) 

The set I = (1,. . . . , m} of constraint indices are partitioned into two disjunct subsets I, = 
11,. . . . ) I} and Z, = {Z + 1,. . . . , m} containing pure inequality and equality constraints, respec- 
tively. Any one of the subsets I, or Z, may be empty. The penalty function in equation (4) is 
defined in such a way that it reduces to an interior penalty function, ~[Q(x)], when Z2 is empty, 
and to the exterior penalty function, $[ck(x)], when I, is empty. The function II, in equation (4) 
is chosen as 

$[Ck(X)l = ck*(x); k E I2 (5) 

this, unlike the standard loss function, is continuous and possesses continuous first and second 
derivatives over the entire space where Q(X); k E Z,, is defined. The interior penalty function 4 
is chosen over the feasible domain as 

44ck(x)l = pk(x) for ck(x) > 0 (6) 

the function pk(x) is standard barrier function, because of its barrier properties to prevent 
violation of the constraints. Two well known standard barrier functions are defined as 

Pk(X) = l/cd-d (7) 

and 

Pk(x)= -log [s(x)] (8) 
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which are called the inverse barrier function and the logarithmic barrier function, respectively. 
The interior penalty function characteristic of being defined only in the feasible region 

presents some difficulties. Theoretically, if the starting point is chosen in the feasible domain, 
then the search should stay there until the optimum is reached; however when approximate 
techniques are employed if often happens that intermediate points generated during the 
unconstrained minimization fall outside the feasible domain. 

To overcome these difficulties an extended interior penalty function[5,8 and 141 is often 
proposed. Kavlie and Moe[l4] has suggested a linear extension of the penalty function in the 
infeasible space and Haftka and Starnes has put forward a quadratic extension[5]. Linear 
extended penalty function as shown in Fig. 1 has discontinuous second derivatives and is 
therefore not suitable for a second order optimization algorithm. Quadratic extended penalty 
function[S] does surmount this difficulty however it does not provide any quantitative measure 
on the quality of the approximations it proposes to the second derivative matrix (Hessian). The 
poor approximation of the Hessian matrix retards the rate of convergence and thus requires 
“too many” iterations. The word “too many” has been used to indicate more than what is 
necessary. 

Another problem which is common to most interior and exterior penalty function methods is 
the problem of ill-conditioning when r goes to its limits, the Hessian matrix becomes more and 
more ill-conditioned[l61. To avoid making the problem ill-conditioned right from the start, the 
common strategy, usually followed, for example with interior penalty functions is to start the 
optimization with a large value of r and get close to the optimum before r is reduced to a very 
low value. Thus for small values of r when the problem is ill-conditioned the minimization 
procedure is required to make reasonably small moves. However, the total number of iterations 
required to achieve an optimal solution is usually large because several values of r have to be 
used. On the other hand, if we choose a very small r to start with, we can complete the 
optimization for a single r but because of ill-conditioning the total number of iterations is 
found [ 121 to be even larger. Depending upon a particular problem, there is thus always a certain 
value of r which leads to an optimal solution in a minimum number of iterations. 

A variable penalty function is proposed herein which is designed to minimize the errors in 
the approximations of the Hessian matrix. When used in conjunction with a second order 
method (modified Newton’s method) the formulation has been found quite effective in reducing 
the ill-conditioning nature of the problem and also in lowering down the “optimal” value of r so 
that smaller values of r can be used to start SUMT. 

/ 

Variable penalty functlan 

co constramr function c, 

Fig. 1. Penalty functions. 
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4. L’.ARIABLE PEN.ALTY FUNCTIONS 

Variable penalty functions are the sequence of piecewise continuous penalty functions 
defined over the entire space (feasible or infeasible) where f(s) and Q(X) are defined. The 
extension of the variable penalty function into the infeasible space is accomplished by defining 
a transition or a cut-off point, at which some characteristics of the extended part are matched 
with the part of the penalty function defined strictly in the feasible space. That is. the Sequence 
of Unconstrained Minimizations (SUMT) takes the following form. 

Find I E R” to minimize 

The variable penalty function is defined here as 

I Pk(x)v if ck(x) 2 c0 

ddck(-r)l = 

1 
ek(-r), if ck(_r) d c@ 

(9) 

(10) 

A portion, pk(X), of the above function is defined to be in the feasible space with a cut-off at 
cO(co >O), which is taken here as a standard interior function (see equations (7) and (8)). 
Conceptually, any monotonic decreasing function in ck with continuous first and second 
derivatives can be used for pk(x). ek(x) represents the portion of the variable penalty function 
which extends into the infeasible space. co is the transition or the cut-off point. Corresponding to 
two commonly used interior penalty functions, two distinct classes of variable penalty function 

formulations can be advanced. They are proposed here as: 

I l/c,(x); ck(x) z CO 

4c[(Ck(X)l = I [A(cJco - 1)3 + (ck/cC, - I)‘- (s/c,, - I) + l]/Co; 
(11) 

ck(,r) s CO 

and 

-log [Ck(x)l; Ck(.x) 3 CO 

bc[Ck(x)I = 

[A(Ck/Co- l)3+;(Ck/C,j- I)‘-(Ck/Cfl- I)-Iog Co]; Ck(x) s CO 
(12) 

which are named the inverse variable penalty function (IVPF) and logarithmic variable penalty 

function (LVPF), respectivety. A is a constant to be determined later. It can be checked that, 
in each case, the expressions (11) and (12) satisfy the continuity of pk and its first and second 
derivatives at the transition point, co. The continuity of third derivative is not sought since for 
the application to a second order method it is not essential. There appears in the expressions, a 
free floating constant A and hence the function & is called a variable penalty function. The 
function IL, is same as Ic, in equation (5) but it extends into both feasible and infeasible spaces. 

Newton’s method with approximate second derivatives 
To apply Newton’s method with the SUMT procedure, the point X’ that minimizes the 

function F,>[x, r], equation (9), for a given value of r is found by using an iterative procedure. If 
x’ is the initial guess for x’ at an iteration t a better approximation x’+’ is found from 

X I+’ = x’ - OH-‘VF, (13) 

where VF,, is the gradient of F,. H is the matrix of second derivatives of F, given by 

(14) 

and 19 is the step size from x’ to x’+’ found by means of a one-dimensional search in the direction 
H-‘VF,,. x,’ and x,’ are the ith and jth variable of the n-vector x and t is an integer. 
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Dropping the superscript t and using (9). the equation (14) can be expressed as 

Using the definitions of variable penalty function, $J~,, as introduced in equations (lo)-( 12). we 
find 

(W 

(16b) 

employing the inverse variable penalty formulation (IVPF) and 

a2ck ck 
ck 

-? C -. -31 I dxiaxj ’ CO 
“? I 

d-Q,. / 
- = ., 

on the basis of logarithmic variable penalty function (LVPF). Using the definition of the 
function &, (Eq. (5), we get 

L = 2 ack ack a?$. a2ck 
xz+2Ck - ax,axj , , aXiaXj ’ 

(W 

Because of the factors ckm3 and ck-’ in equations (16a) and (17a), the main contribution to the 
penalty function second derivatives (for (ck/cO) 2 1) is from the constraints, which are nearly 
critical (i.e. ck very small). For these constraints, the second terms in the expression (16a) and 
(17a) can be dropped out since they are multiplied by ck. Part of the contributions to the second 
derivatives also comes from the equations (16b) and (17b) when (Q/Q) s 1. Because of the 
factors coe3 and co-’ appearing before these equations, their magnitudes depend upon the initial 
value of co and the rate at which co goes to 0 as r goes to 0. For the purpose of discussion, we 
introduce the following terms: 

AC,=6A z-1 +2 
( > 

(l9a) 

A,,=3A(z-l)1+2(2-I)-1 

AC?=6A z-1 +l 
( > 

A,,=3A(:-l)‘t($l)-1 

Equations (16b) and (17b) can thus be rewritten as 

a24 LEcS-4 ack acL d'ck 
dX$Xj O 

AC,-LL+coA~,- . 

axi ax, I ax;i?Xj ' 

s = 1 and 2. 

(19b) 

(204 

GObI 

(21) 
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The variable s has been conveniently introduced in the above equation to simultaneously 
represent the two class of variable penalty formulations advanced in this section. s = I. 
corresponds to the equation (16b) and s = 2. corresponds to (17b). The value of c0 is usually 
small compared to I.+ Because of the factor co appearing before the second term in equation 
(21) the major contribution to the second derivatives of the penalty function would be from the 
first term. It is desirable to be able to do without the second term in equation (21) because then 
we can express the second derivatives of 4, namely (~‘&/~x;&Y~) in terms of only the first 
derivatives of clr. 

The second term is a product of three quantities namely cO, he, and (a’daxia.x,). In order to 
minimize its contribution, it is essential to show that one or more of these quantities are either 
small initially or can be made small, so that the product is negligible as compared to the first 
term. There are two quantities in the second term of equation (21) namely CO and AE, over 
which we have some control. Out of those, co is not an effective choice since assuming a small 
value of c0 would increase AE, for a given ck. The other choice is AE,. Because we have an extra 
floating quantity A is the expression of AeS, it is possible to make Ae, sufficiently small by 
adjusting A. The various choices of A are discussed in the next section. The approximation of 
the H;:, is proposed here as 

where 

AC hack .9<, 

I ’ dXi dXj ’ CIJ . 

and 

(22) 

(23) 

Equation (22) includes only the first derivatives of the constraint functions, so that the 
computational effort for obtaining the second derivatives needed for Newton’s method is the 
same as for a first order method. The term AC, in equation (22) reflects the correction to the 
Hessian matrix. Its value as can be seen from equation (19) depends upon the ratio ck/cO and the 
value assigned to 4 

5. DETERMINATION OF A 

In order to establish a suitable value for A, we shall first determine the upper and lower 
limits A can assume without compromising the characteristics of a penalty function. The shape 
of the variable penalty function curves depends on A. This is shown in Fig. 2. In order to insure 
a higher penalty for a higher constraint violation we need a curve increasing monotonically with 
negative ck,s. The slope of the variable penalty function is obtained as 

I 
co-‘[3A($-1)‘+2(:-1)-l] for IVPF 

dek 

ac,= 
(24) 

co-‘[3A(:-I)‘+(:-l)-13 for LVPF. 

+The limits on c,, are obtained in Section 6 
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6.0 

-3 0 -2 0 -1.0 0.0 1.0 

‘k/c, 

Fig. 2. Variable penalty function formulations. 

To get a monotonically increasing function, it is enough to have A negative; since in that case 
we do not have any possible real negative value of ck for which (&&/&) = 0. However, as can 
be seen from equations (19b)-(20b) negative values of A increase the magnitude of the 
associated error he,. We thus, have to limit ourselves for positive values of A. Figure 2 shows 
a plot for ek(x) vs ck/co for VXiOUS pOSitiVt2 values of A. For such positive values of A, the 
penalty function does not show a strictly increasing monotonic behavior. It is thus important to 
select a positive value for A which insures an increasing penalty behavior at least up to the 
most negative constraint that we may encounter. 

This requirement can be set as 

(25) 

where d* is the most negative constraint ratio and do is a value of (C&/CO) for which 
(&$/ack ) = 0. 

A limiting situation would be when do equals d*, i.e. the penalty for the most critical 
constraint violation is a maximum at the value specified by the most negative possible 
constraint. The range of A can be established using this limiting case. This gives, 

AIl-2(d*-1) 
3(d* - 1)’ 

for IVPF 

(26) 
A&(d*-I) 

3(d* - 1)’ 
for LVPF 

where d* is the smallest possible ratio, ck/cO, that we obtain in a particular problem. 
For the possible range of d*, i.e. 0 5 d*< - =, the bounds on A can be established. 

O<AsI for IVPF 

0 < A I 213 
(27) 

for LVPF. 
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A = 0 corresponds to the case when we allow for an infinitely negative d*. in this particular 
situation (A = 0), the inverse variable penalty function formulation (IVPF) degenerates to a 
quadratic extended interior penalty function, introduced by Haftka and Starnes[S]. A = 1 and 
.4 = 2/3 correspond to the case when d* is zero. Particularly for this value of A(1 or 2/3) as can 
be seen from the plot (Fig. 3) the error term AE~, for s = 1 or 2, is very small. In the strategy for 
choosing best A, we therefore keep A to be a constant and equal to 1 or 2/3 in the respective 
variable penalty formulations. This value is not changed as long as the intermediate x stays in 
the feasible region (c~ 3 0). The best possible choice of A when constraints are violated ( ck < 0) 

is governed by the following criterias. 
Minimization of error AE,: Figure 3 shows the error term At-, for each of the variable penalty 

formulations expressed as a function of cJcO. Several curves are indicated in each case 
corresponding to several values of A. The curve corresponding to, A = 0, is a straight line for 
which the error is largest for all values of ck. In order to meet the characteristics of the penalty 
function, a particular value of A should be chosen such that: (a) A is a constant and the same 
for the set of constraints which are encountered during an intermediate unconstrained mini- 
mization process. (b) A higher penalty for higher constrained violation is insured and: (c) The 
associated error he5 is small. 

Since various possibilities for meeting the requirement (c) exist, there could be several 
possible alternatives on which A can be based. 

One of the simplest procedures to find a suitable A is from the condition that AE, = 0, for the 
most critical constraint. It can be easily checked that the requirements (a) and (b) are also 

for IVPF 

for LVPF (28) 

satisfied. This condition leads to a value for A as 

A = 1 - 2(c*/co - 1) 
3(c*/co - 1)2 

or 

AJ-(c*/cO-l) 
3(c*/c0 - 1)2 

Ck/Co - 

A=l/6 

----- Plots for Ae, CIVPFI 

.-40 -Plots for AC, (LVPF) 

-50 

-60 

Fig. 3. Plots for error functions: h, V, CL/CO. 
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where 

--m<C*~C~ fork=l,....l. 

Another strategy that was found to be effective for choosing a relatively stable value of A 
which reduces AE, for most constraints, is to require 

$, AG = 0. (29) 

This provides an expression for A as 

A = [I - 213 2, C&I,]/~, (Q/CO - 1)’ for IVPF, 

and 

A = [ 2/31- l/3 A$, (&I)]/~$, (CklcO- 1)’ for IVPF, 

where 1 is the number of inequality constraints. Sometimes, when constraints are not evenly 
distributed, a situation could arise when a large number of constraints are clustered in a zone 
far from the most critical constraint. The value suggested by (29) for A may not be suitable in 
that situation. 

Another value of A for a given constraint range d* < ck/cO < 0 which avoids the above 
problem, may be found by requiring that the maximum value of AC, is minimal over that range. 
This is equivalent to the requirement that the largest positive value, obtained at ck/co = d* is the 
same as the largest negative value obtained at the point where 

This can be expressed as 

k(Ck/Co = do)= - fk,T(Ck/Co = d*) (31) 

where 4, is an intermediate point at which (aAeJ&J = 0. Using equations (19) and (20) it is 
possible to solve equation (31) explicity for A as 

A = - (d* - 2) + v(d* - 2)2+ (d* - 1Y 
3(d* - 1)’ 

for IVPF 

and 

A = - (d* - 3) + q/(d* - 3)‘+ (d* - 1)’ 
6(d* - 1)’ 

for LVPF. (32) 

Of the three values for A found from equations (28), (30) and (32), the one smallest in 
magnitude was used in implementing the algorithm, in the respective cases. 

Positive definite characteristic. The possible choices for A expressed by equations (28), (30) 
and (32) do not guarantee a positive definite Hessian matrix. As we get close to the optimal 
solution it is desirable that we have the positive definite character to the approximated Hessian 
matrix. 

Using equations (22) and (23) we can write H,j as 
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s indicates the type of the formulations and I(q) is a generalized step function defined as 

I(T) = 1, t7>0 

I(771 = 0, q co. 

Denoting for convenience 

(34) 

We can rewrite the contribution to the Hessian matrix Hij in equation (33) from the constraints 
as 

[$,Abk +fk~,](2$$). 
I I 

(35) 

It can be checked that a sufficient condition for H being at least semi-positive definite+ is 

Ab,, 30 fork=1 ,...., 1. (36a) 

To satisfy equation (36a) we require that 

AC,20 for s = 1 or 2 (36b) 

for the smallest possible value of Q/Q; d * c(cJcO) SO, that we may encounter. Using equation 
(36b), the possible choice of A in each of the formulations (S = 1 or 2) can be established, that is 

1 
AS3(1-d*) 

for IVPF 

1 
As6(1-d*) 

for LVPF. 

(37) 

Note that the values of A predicted by the above formulae when there is no negative 
constraints are l/3 for s = 1 and l/6 for s = 2. For these values of A, the error function Ae, is 
shown in Fig. 3. As indicated the error for committing the positive definiteness character to the 
Hessian matrix is still smaller than the largest error which is possible when A = 0. 

6. LIMITS ON BEHAVIOR OF c,, WITH r 

To complete the definition of variable penalty function, a relation that defines the cut-off point 
CO between the two constraint function in equations (11) and (12), is required. As r goes to zero, the 
following two conditions should be satisfied. 

(i) re&x)+O for any Q(x) >O; k E I,. 

This condition represents a vanishing contribution of the penalty terms in the feasible domain. 

(ii) rek(x)+m for any Q(X) < 0; k E I,. 

This represents an increasing penalty for constraint violation. It can be easily verified that the 
first condition is satisfied because ek(x) < pk(x) and rpL(x) goes to zero as r + 0 for any value of 
ct. The second condition is equivalent to the requirement that 

rA 
(--~--fm as r+O. 
Cog 

tit is assumed that minimum of the function f exists. 
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If we assume that A is a constant then the above condition means 

c~/~“~+O as r+O for s = l(IVPF) 

and 

cl/r”‘+0 as r+O for S = 2(LVPF). (38) 

Equation (38) identifies one limit on the behavior of cO. If co is allowed to vary as some power 
to r, say q such that 

co = LW. 

Equations (38) and (39) lead to 

r -49+1 --*cc as r+O 

and 

This requires 

and 

r-3q+l + m as r+O 

-4q+l<Oorq>a 

-3q+l<Oorq>$ 

(39) 

for s = 1, 

for s = 2. 

for s = 1. 

for s = 2. (40) 

Another limit of q can be found by requiring the minimum point xr to move in the range 
where &[c&)] is defined by the portion of the variable penalty function s(x) most of the time 
rather than by Pi. This requirement is desirable because the cubic definition of c#JJc~(x)] may 
be expected to be better behaved than the P&Y) [i.e. I/Q or -log cJ form of the function. As 
shown in the Appendix, Q(X) does not go to zero faster than t(“‘) for IVPF formulation and 
faster than r for LVPF formulation. Therefore, if co goes to zero faster than r(“*) or r in the 
respective cases, the minimum of F&r, r) will drift away from the cubic range as r-to. 

The transition point behavior for the variable penalty functions as suggested by equation 
(39) can thus be expressed as 

co=LW 

where D is a constant and the range of q is 

(41) 

for IVPF formulation 

and 

&q-Cl for LVPF formulation. 

7. RATE OF CONVERGENCE AND ILL-CONDITIONING 

The advantages of the conventional interior penalty function method that it does not require 
the solution of the constrained minimization problem to be a Kuhn-Tucker point, the latter is 
CAMWA Vol. 6. No. 1-G 
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actually provided by the calculation (see for examples [9] and [ 121). are offset by its two 
important disadvantages. 

(1) The rate of convergence is dependent on {r’}. For the standard inverse barrier function 
we have 

/xt -x*11 = O([r’]“‘?‘) (42) 

at best, and for the log barrier function we have 

[[XL - x*11 = 0( r’) (43) 

at best. This implies that for a fixed r’ sequence, the rate of convergence depends on the barrier 
function chosen. The “obvious” approach of choosing a fast converging r’ sequence leads to 
costly minimizations of F(x, r’) for each t. Osborne and Ryan[l2] have considered the 
possibility of improving the rate of convergence by a careful choice of the barrier function. 
This is what we achieve by introducing a piecewise variable penalty function with a cut-off at co 
such that co+0 as r-0. Each class of variable penalty functions proposed in equations (1 I) 
and (12) actually represents a family of the functions governed by the choice of the parameter 
A. Some of the choice are restricted by the conditions outlined in Section 5 but still a large 
group of penalty functions are available. The flexibility in the choice of the penalty functions 
leads to a rate of convergence that may be defined as follows: 

JJXk -x*11 = O([r’l=) (44 

where 

1 
(Y>- 

2 
for IVPF 

and 

Cl>1 for LVPF. 

The above observation is reflected in numerical results which show that a reasonable con- 
vergence can be achieved even with fairly fast converging choice of r’ sequence. 

(2) The second disadvantage of penalty function methods involves the increasing difficulty 
of minimizing F(x, r’) as r’ becomes small, this is reflected in numerical examples in which the 
number of unconstrained minimization iterations required to find x’ does not decrease notice- 
ably even though IJx’ - x’-‘11 is decreasing as r increases. It has been suggested (Lootsma[2], 
and Osbome[l2]) that this behavior can be at least partly explained by examining the condition 
number of the Hessian of F(x, r) at its minimum. Fletcher and McCann]191 have tried to 
exploit the behavior of some Hessian matrices to accelerate the computational process. It is 
possible to show that the condition number of V’F(x, r), in the case of standard penalty 
methods, is given by 

P(r) 
/Ix’ - x*ll 

(45) 

where P(r) > 0, is bounded. Clearly with the choice of variable penalty functions where the rate 
of convergence is governed by the relation proposed in equation (44), the ill-conditioning 
behavior of the problem is expected to be reduced. This observation is reflected in numerical 
results which shows that minimum of F,(x, r) can be achieved in a small number of iterations 
irrespective of the initial choice of the penalty parameter r” to a certain extent. 



Variable penalty methods for constrained minimization 

8. NUMERICAL EXPERIENCE 

91 

The algorithms described in the previous sections have been implemented in a digital com- 
puter program called ‘LEAD’. An extensive set of test problems are considered. Each one of 
the problems is solved under three or more sets of values for the initial parameters of the 
penalty methods, such as r’, co and A,. A, is the ratio of r used for two consecutive 
unconstrained minimization process, i.e. 

Ar = r-‘/r’+‘. 

This section presents the results of this numerical experience. Most of the problems have been 
drawn from the literature and it is hoped that the set is fairly representative in view of its 
mathematical complexity and nonlinearity. The problems, however, have two significant attri- 
butes which are distinct from those commonly encountered in engineering practice. 

First, the function evaluation process is relatively inexpensive, and errors in the evaluation 
process are of the order of machine accuracy. Similarly, accurate gradients can be obtained 
cheaply for the test problems by directly evaluating corresponding analytical derived partial 
derivative expressions. Practical problems, on the other hand, may require that the function and 
gradient information by evaluated using numerical methods. For the purpose of functionally 
testing the algorithm for various values of co and r”, least effort is given here to determine the 
overall behavior of optimization process on such numerical procedures. The use of these numerical 
techniques is further subject to numerous variations which may obscure the objective of this 
paper. Analytical derivatives are therefore always employed. 

Secondly, the required second derivatives of the function, f, are obtained from the forward 
difference formulae in terms of the gradients, which are evaluated using the analytical means. 
The second derivatives of the constraints are based on the approximations proposed in terms of 
the first derivatives (see Section 4). For structural problems the algorithm is expected to behave 
much better since there is no approximation involved in computing the second partial derivatives 
of the function which are unconditionally zero.+ Because, the cost of function and gradient 
information in an iteration varies very little from one unidimensional search procedure to other 
(assuming that all procedures are efficient and are based on the analytical information of the 
functions and their first derivatives only), the major computational expense of the optimization 
algorithm largely depends upon the number of times such procedures are required to be 
performed.$ In the present case we have therefore imposed the number of iterations as a 
measure of the algorithm effectiveness. It is assumed that an iteration consists of evaluating a 
Hessian matrix, finding a suitable search direction and finally performing an unidimensional 
search. The transition point parameter, co, was controlled by a value of q = (l/2) for IVPF and 
a value of q = 1 in the case of LVPF formulation. 

The test problems are stated in the Appendix B with references where applicable. This also 
includes the solution points found ‘from the variable penalty function algorithms (namely 
IVPF and LVPF). The salient results are presented in condensed form in Table 1 using 
IVPF and in Table 2 using LVPF algorithms. Specifically, we present the total number of 
iterations and the number of unconstrained minimizations required for convergence. Several 
initial starting parameters are considered for each problem in order to show their effects on the 
results. For all problems, the optimization process was terminated when penalty weight was 
reduced to less than 0.01 percent of the functional value. From the results in Tables 1 and 2 it 
can be inferred that in general both methods are competitive but inverse variable penalty 
function (IVPF) behaves slightly better than the logarithmic variable penalty function. It can be 
seen that in most cases the optimum is reached in fairly small numbers of iterations, except 
problem 11.2. The poor performance of the algorithms in the case of Problem 11.2 is partially 
attributed to a choice of very large initial value (starting function value 909.0 while the 
minimum is at 0.25) and is partially due to the presence of an ill-behaved function (the so called 
banana shaped function). The complexity of this problem is further increased by the use of a 

+The weight of the structure is usually linear functions of design variables. 

*In a structural problem for example. one iteration represents a fresh analysis which is very expensive as opposed to 
the functions or the weight evaluations which are based on the constant mass derivatives. With such application in mind, 
the derivatives of the functions and the constraints are computed only at the beginning of each iteration, 
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set of linear constraints which funnels the feasible region of the solution space to a narrow 
band. This can be explained very well from the results of the Problem 11.3 which is a little 
variation of the Problem 11.2. Here, one of the linear constraints, cs, of Problem 11.2 is simply 
replaced by a quadratic constraint function but the effect is that it brings down the number of 
iterations to less than half of its earlier value (which was experienced in Problem 11.2). It is 
worthwhile to note that severai initiai starting vaiues of r’ are convenient to use in ihe 
algorithms while its effects on the number of iterations are innocuous. 

9. CONCLUSIONS 

Two kinds of variable penalty function methods (VPF) are introduced which minimizes the 
error in the approximation of the Hessian matrix resulting from using only the first derivatives of 
the function and the constraints. It permits consideration of initial points outside the feas- 
ible domain and the mechanisms for quick recovery, which are useful, as approximate 
techniques used during the optimization process often result in incursions into the infeasible 
domain. The sensitivity of the number of iterations on variations in r” and co has 
been minimized. The algorithm permits relatively smaller value of the penalty parameter r” than 
what conventionally has been used for standard penalty formulations. In the process neither the 
rate of convergence is jeopardized nor is the associated Hessian matrix found to be badly 
ill-conditioned. The fact that a relatively small number of iterations are required to solve the 
overall problem, as illustrated by the results presented in Tables 1 and 2, tends to corroborate 
the above assertions. 

Ack,low/edgemenf-The author thanks Professor R. T. Haftka of MMAE department, Illinois Institute of Technology, 
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APPENDIX A: BEHAVIOR OF cr(.r) AS r-0 
The variable penalty method with the inequality constraint (k E I,) consists of finding the minimum I* of function 

F,(x, r) as r goes to zero where 

F,(x. r) = f(x) + f C pk(x). 
I=, 

(‘4.1) 

The above equation follows from expression (9) where pk(x) is defined by (7) or (8). With the assumption that c0 varies as 
the power of r, i.e. 

cg = OF, 4 > 0 and t.4.21 

with xr denoting the point in solution space where F;(x. r) attains its minimum value for a given value of r, it may be 
shown following (See for example Refs. [9], [ 121) that as r * 0 

and 
(i) Min F, (x, rl-+f(x*) 

(ii) I’ + .r*. 

By defining a function p such that 

and 

I/P = i I/c&l for IVPF 
Ir=l 

log P = $ log ]c&xll for LVPF 
L=l 

It is possible to write equation (A.11 as 

(A.31 

FJx, ri = f(x) + dp for IVPF 
and 

F,(x, r) = f(x) - r log p for LVPF. 

The behavior of the Q(x’) as r+O, can be investigated by making the following assumptions 

(A.41 

(i) f(x) and c&l, (k = 1.2.. .I) are continuous and have continuous first derivatives where the functions and the 
constraints are defined. 

(ii) Two positive constants, do and rO, can be found at x = x’ such that 

for all f < r, 

and x, is a component of the vector x’. 
Since F,(x, r) attains its minimum at x’. 

and 

r ap = o; aFu = af 
ax, ax, p* ax, 

i=l....,n for IVPF 

i=l,...,n for LVPF. 

The equation (A.6) implies 

for IVPF 

and 

for LVPF. (A.71 

Using equations (A.3) and (A.7), we can express 

(A.0 

(Ah) 

& = c l,ck(x’) = (~/+?)“‘:‘+< dglliZ)r-lliZ) 

for inverse penalty function (IVPF) and 

log [Ilpfx’)l = c log [I/C~(X’)l = log [(~/~)r~‘]~log(dor~‘) 

for logarithmic penalty function (LVPF). 

(A.8) 

CA.91 

The summations Z in equations (A.8) and (A.9) are taken over ail the constraints for which q(x) 2 cO; k E I,. where 
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co+0 as r-+0. In order to satisfy the inequality in the equations (A.8) and (A.9) it is sufficient to insure that each Q in the 

summations satisfies 

ck 3 d,r""' for WPF 
and 

cr 3 d>r. for LVPF (A.10) 

where d, and d: are some positive constants. Consequently c~(x’), k E I,. does not go to zero faster than r”“’ in the case 
of IVPF, and faster than r in the case of LVPF. 

APPENDIX B: EXAMPLES ON CONSTRAINED MINIMIZATIONS 

This Appendix contains the test problems chosen to assess the effectiveness of the nonlinear programming algorithm 
described. No scaling of the variables is used. 

The points x* presented are assumed to have converged in the sense described in the Section 8. When the exact 
solution is known its value is presented following the computationally obtained value, which is rounded off to four decimal 
places. 

Problem II.1 Minimize 

f(x) = 2 - (l/120)x,x~x,x4xc. 

subject to 

Q(X) = xi 2 0. k=l,...,S, 

Q+dX) = k-XI 20: - IOSXk c IO, k=l,...., 5. 

Starting point: x0 = (2,2.2.2.2) 

Solution point: x*(IVPF) = (0.9999, 2.0, 2.9999, 3.9988, 4.9994); f’= l.ooo5 

x*(LvPF) = (1.001. 1.9991. 3.0003, 3.999.4.9996); f’= 1.001 

x*(Ref.[21]) = 1. 2. 3. 4, 5; f* = I. 

Problem I I.2 Minimize 

f(x) = 100(x2 - x,2)2 + (I - x,)2, 

subject to 

c,(x) = x22 + x, G= 0 

cz(x)=x,2+xz~o 

fl(X)=-X,++O 

cI(x)=x,+;20 
cc(x) = -x2 t I 2 0 

Starting Point: x0 = (-2, I) 

Solution Point: x*. f* 

Problem 11.3 Minimize 

x*(IVPF) = (0.49999, 0.2499): f’ = 0.25 

x*(LVPI=) = (0.4999, 0.2499); f” = 0.25 

x*(Ref. [21]) = (0.5, 0.25); f * = 0.25. 

f(x) = loo(x2-x,?)~ + (1 -x1)2, 

subject to 

c,(x) = x22 t x, 3 0 

C?(X) = XI2 + x2 2 0 

I 
c~(x)=-x,+-~o 

2 

C1(x)=x,+;30 

c~(x)=x,2+x22-1~o 
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Starting Point: x0 = (-2. I) 
Solution Point: x*, f* 

B. PRASAD 

Problem 11.4 Minimize 

x*(IvPF) = (0.5, 0.86604): f” = 38.200 

x*(LvPF) = (0.5. 0.86602): f* = 38.1% 

x*(Ref. [21]) = (0.5, 0.86602): f* = 38.198. 

subject to 

c,(x)=x~-l30 

C(X) = x,x: - I 20 

c~(x)=I-x~~o 

- 10 <Xt < IO; k=l.3 

Starting Point: x0 = (2.2.2) 

Solution Point: x*, f* 

x*(IVPF) = (0.5772, 1.732, 0.0): f* = 5.999 

x*(LVPF) = (0.5774, 1.7321, 0.0): f* = 6.005 

x*(Ref. [21]) = (0.57735, 1.7320. 0.0); f* = 6.0. 

Problem 11.5 Minimize 

subject to 

f(x) = 2 - S,XZX~, 

c,(x) = x, + 2x2 +2x,-x, = 0 

Q.(x) = xk 2 0 k= 1.2.3.4, 

l&+,(x)= I-xk>o. k= 1,2,3, 

cg(x) = 2 - xq 2 0, 

- 10 GXk s 10, k = 1.3. 

Starting Point: x0 = (2,2,2,2) 

Solution Point: x*, f* 

x*(IvPF) = (0.6666, 0.3333, 0.3333, 2.0001); f* = 1.926 

x*(LvPF) = (0.6666, 0.3333, 0.3333, 2.000); f* = 1.926 

x*(Ref. [21]) = (0.66666, 0.33333, 0.33333, 2): f* = 1.9259. 

Problem I I .6 Minimize 

subject to 

/(x) = x,? + xzZ + 2x,’ +x42 -5x, -5x: - 21x, + 7x4. 

c,(x)= -x,’ - xz2 - x3’ - xq’ -x, +x2 - x3 +x4 t 8 3 0 

c?(x)= - x,Z- 2x2’ -x1’-2x,2+x, tx4 t 1030 

c,(x)=-2x,~-xz~-x,~-2x,+xztx~+530 

Starting Point: x0 = (0, 0.0, 0) 

Solution Point: x*,f* 

Problem I I .7 Minimize 

x*(IvPF) = (0.0, 0.9995, 2.0001, -1.00); /*= -43.9981 

x*(LVPF) = (0.0, 1.004. 1.998, -1.00): f*= -43.9926 

x*(Ref. 1211) = (0. 1.2, -I); f* = -44. 

f(x) = (x, - ?)Z f (x2 - I)‘; 
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c,(x)= -x,:-t x2 3 0 

c?(x)= -x, -x2 + 2 30: 

Starting Point: x” = (2,2): 

Solution Point: x*, f* 

x*WPF) = (1.0, 0.9998); f* = 0.9998 

x*(LVPF) = (1.00008, 1.00008); f* = l.OOlM8 

x*(Ref. [20)) = (1. 1); f* = 1. 


