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We consider stimulated pair production employing strong-field QED in a high-intensity laser background.
In an infinite plane wave, we show that light-cone quasi-momentum can only be transferred to the
created pair as a multiple of the laser frequency, i.e. by a higher harmonic. This translates into discrete
resonance conditions providing the support of the pair creation probability which becomes a delta-comb.
These findings corroborate the usual interpretation of multi-photon production of pairs with an effective
mass. In a pulse, the momentum transfer is continuous, leading to broadening of the resonances and sub-
threshold behaviour. The peaks remain visible as long as the number of cycles per pulse exceeds unity.
The resonance patterns in pulses are analogous to those of a diffraction process based on interference
of the produced pairs. We finally comment on the dependence of the peak positions, and in turn the
effective mass, on the pulse shape.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Since Sauter’s resolution of Klein’s paradox it has been known
that the vacuum is unstable to pair production in the presence
of a homogeneous electric field exceeding the critical value E S =
m2/e � 1.3 × 1018 V/m, when the energy acquired by an elec-
tron traversing a Compton wavelength equals its rest mass [1,2].
The view that the critical field was too large to ever be pro-
duced in a laboratory has recently been challenged with the advent
of ultra-high power lasers capable of reaching E ∼ 10−2 E S [3,4].
With plasma tools such as high-harmonic focussing [5] the Sauter–
Schwinger limit may come within reach during the next decade.

While the strongest electric fields now available remain below
the Schwinger limit, pairs have nevertheless been created in the
laser experiment SLAC E-144 [6]. Here, the SLAC electron beam
was collided with a low intensity optical laser to generate high en-
ergy (‘probe’) photons. These probe photons then combined with
the laser to produce electron positron pairs. While nonlinear in-
tensity effects were unambiguously detected, the experiment did
not offer a concrete demonstration of effects stemming from the
electron mass shift [7].

The analysis of the SLAC experiment was based on the infi-
nite plane wave results of [8–10], as the picosecond laser pulse
contained around 1000 cycles of beam. In the next generation of
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experiments, to be performed at facilities such as CLF and ELI
[4], laser pulses will have femtosecond duration, corresponding
to O(1)–O(10) beam cycles. Thus, the use of ultra-short pulses
now makes it necessary to go beyond the approximation of in-
finite pulse extent. It is well known that the pair creation spectra
depend very sensitively on the details of the laser field, as is appar-
ent from considering even the simplest constant field models – for
constant electric fields see [11–15], for magnetic fields [16–19] and
for crossed fields see [18,20]. The impact of pulse shape and du-
ration has recently been extensively investigated in the context of
vacuum pair production [21–23] using purely electric fields which
remain spatially homogenous but become time dependent [24,25].
These investigations have revealed a rich substructure in the spec-
trum of pairs produced in electric fields, caused by finite beam
duration.1

Here we extend these finite volume studies to photon–laser col-
lisions, i.e. “stimulated” pair creation [12], using strong-field QED
in this particular context for the first time. In contrast to the
above approaches we do not neglect the effects of the magnetic
field, which are particularly important at high frequencies [32], and
therefore model the laser by plane waves of finite temporal (lon-
gitudinal) extent. Note also that the plane wave obeys Maxwell’s
equations in vacuum, unlike a time dependent electric field.

We briefly address transverse size effects. One expects the fol-
lowing analysis to be valid provided that the incoming high-energy
photons only probe the near-axis region well within the waist

1 For related investigations into nonlinear Compton scattering see [26–29] and for
ionisation see [30,31].
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size of the high-intensity laser. With a tight focus (small waist
size), as is usually required for high intensity, the produced pairs
would be rather sensitive to the finite transverse extension of
the laser beam. On the other hand, a weakly focused laser will
appear approximately as a plane wave (of finite longitudinal ex-
tent) to the pairs. In this case, finite transverse size effects should
be minor, and the plane wave (or time dependent electric field)
model should be a reasonable approximation. One finds in non-
linear Compton scattering (the crossed process of stimulated pair
production) that in the strongly focused case where the incom-
ing electron beam radius is larger than the laser waist, finite size
effects generically lead to broad and unstructured spectra. For a
sufficiently weak focus, on the other hand, spectral substructure
remains identifiable [28].

The Letter is organised as follows. We begin with the general
expressions for pair production in a plane wave. We then briefly
review the well-known results for an infinite plane wave (IPW).
Comparing these results with pair production in a pulsed plane
wave (PPW), we will see how the mass shift arises when the
momentum transfer is quantised. We will also show that the be-
haviour of the momentum transfer is intimately related to the fine
structure of the emission rate, and that pair production in a PPW is
essentially a (multiple slit) diffraction process. The emission rates
in a PPW exhibit below threshold behaviour relative to the IPW
case.

2. Plane waves and pair production

We model the laser by a plane wave of frequency ω, i.e. a
function of the invariant phase k · x (ω = |k|), with field strength
Fμν = ḟ j(k · x)(kμa j

ν − a j
μkν), j ∈ {1,2}, and a dot is differentia-

tion with respect to k · x. The polarisation vectors obey ai · a j =
−(e2a2/m2)δi j , defining an invariant, dimensionless amplitude a.
The associated gauge potential is Aμ(k · x) = f j(k · x)a j

μ .
The total pair creation probability can, in principle, be calcu-

lated via the (imaginary part of) the polarisation tensor in this
plane wave background. The combined space and time dependence
makes this a very hard problem, and there has been only limited
progress so far [33,34]. It seems simpler to directly calculate the
scattering amplitude for pair production, via strong-field QED us-
ing Volkov solutions of the Dirac equation [35,36]. The tree level
amplitude for production of an e−e+ pair of momenta pμ and p′

μ ,
stimulated by a probe photon of polarisation ε and momentum k′
is

S f i = −ie

∫
d4x Ψ̄

(−)
p e−ik′·x/εΨ

(+)

p′ , (1)

where Ψ̄
(−)
p and Ψ

(+)

p′ denote the outgoing Volkov electron and
positron, respectively. The Volkov electron is

Ψ
(−)
p = e−i S

(
1 + e

k · p
/k/A

)
up ≡ e−i SΓpup, (2)

where p is its asymptotic momentum, up is a free Dirac spinor and
S is the Hamilton–Jacobi action,

S = p · x − 1

2k · p

∞∫
k·x

2e A · p − e2 A2 ≡ p · x + I p . (3)

Noting that the integrand in (1) depends nontrivially only on k · x,
we introduce light-cone coordinates x± = x0 ± x3, x⊥ := (x1, x2),
and take the laser to propagate in the x3 direction so that k · x ≡
ωx− . The scattering amplitude then reduces to a light-cone Fourier
integral over k · x of M(k · x) ≡ ūpΓ p/εΓ−p′ v p′ ei(I p−I−p′ ) , with the
light-cone three momenta p := (p+, p⊥) conserved, as follows
from (2) being an eigenfunction of p. Then (1) becomes

S f i = 1

k−
δ3(p′ + p − k′) ∫

d(k · x)ei(y+y′−x′)k·x M, (4)

where we have introduced three boost invariant light-cone mo-
mentum fractions, y, y′ and x′ for the electron, positron and probe
photon respectively. They appear through the sum

y + y′ − x′ ≡ p−
k−

+ p′−
k−

− k′−
k−

, (5)

which we will see contains all the physics, and which we note is
Fourier conjugate to the invariant phase k · x. We can now look at
specific examples.

3. Pair production in an IPW

It is well known that pair production in an IPW is a sum over
processes supported on [8–10]

qμ + q′
μ = nkμ + k′

μ. (6)

Here n is the number of laser photons taken from the beam and qμ

is the average, or ‘quasi’, momentum of the electron over a laser
period which results classically from its rapid quiver motion in the
laser field [37]. The quasi-momentum may be calculated from the
classical orbit, and in an IPW is

qμ = pμ + m2a2
0

2k · p
kμ, (7)

with a0 the dimensionless intensity parameter, often written a0 =
eE/ωm in the lab frame, and which equals a (a/2) for circularly
(linearly) polarised waves [38]. Squaring the quasi-momentum
gives the celebrated electron mass shift, q2 = m2(1 + a2

0) =: m2∗
[39]. Hence, (6), summed over n, describes the multi-photon pro-
duction of a heavy pair with rest masses m∗ . It follows from
squaring (6) that a minimum number of laser photons is required,
namely the first integer bigger than s∗

0 ≡ 2m2∗/k · k′ . Hence, the ef-
fective mass blue-shifts the energy threshold2 from 2m2/k · k′ .

To explain how these structures (including the meaning of a
number of photons coming from a classical background field) arise,
we must discuss the relevance of the quasi-momentum for the
scattering amplitude (4). Recall that S = p · x + I p and I p depends
on k · x ≡ ωx− . For an oscillatory field the integrand of I p decom-
poses into a constant average (or “light-cone zero mode” [41]) and
a periodic, oscillating fluctuation δ I p . The average over a cycle is
the longitudinal component of the quasi-momentum, so we write

S = p · x + (q− − p−)x− + δ I p . (8)

If we use a bar to denote quasi-momentum fractions, i.e. ȳ ≡
q−/k− instead of y = p−/k− , then (4) becomes

S f i = 1

k−
δ3(p′ + p − k′) ∫

d(k · x) ei(ȳ+ȳ′−x′)k·xM, (9)

where M = M but with I → δ I . Now, we have the Fourier integral
of a purely oscillatory, periodic function M , which may of course
be represented as a Fourier series, M(k ·x) = ∑

n M̃ne−ink·x . Plugging
this into (9) we finally obtain

S f i = 1

k−
δ3(p′ + p − k′)∑

n

M̃nδ
(
ȳ + ȳ′ − x′ − n

)
. (10)

2 In nonlinear Compton scattering, the mass shift leads to a red-shift of the Comp-
ton edge [40].



252 T. Heinzl et al. / Physics Letters B 692 (2010) 250–256
This rather neatly expresses the important and general result that
the scattering amplitude is a 4d delta comb, irrespective of the de-
tailed functional dependence of the IPW on k · x (as long as it is
periodic). The argument of the comb, ȳ+ ȳ′ −x′ , contains the longi-
tudinal momentum transfer from the probe photon to the pair, (5),
and also the average transfer from the laser to the pair (8) which
shifts p− to q− (p′− to q′−). Hence, the delta comb quantises the
total longitudinal momentum transfer to the pair, forcing it to take
integer values via ȳ + ȳ′ − x′ = n ∈ Z, which is equivalent to

q− + q′− − k′− = nk−. (11)

Since the IPW quasi-momenta (7) differ from the asymptotic mo-
menta only in the minus component (and since p is conserved), it
follows that (10) has support on precisely the sum of delta func-
tions enforcing (6). So, the quantisation of longitudinal momentum
transfer has the appearance of an integer number of photons being
absorbed from the laser and used to create heavy particles of rest
mass m∗ . In an IPW, therefore, the mass shift and photon num-
ber are rather closely related. Note that our interpretation, and
Eq. (11), are consistent with the quantum optics law that photon
number and phase are conjugate variables.

The emission rate, calculated from |S f i |2, inherits the delta
comb structure of (10) with M̃n → |M̃n|2, and so becomes an inco-
herent sum. The support of the delta function in (10) or, equiv-
alently, light-cone momentum conservation (11), may hence be
viewed as (idealised) resonance conditions leading to peaks of zero
width, for instance, in the triple differential rate, i.e. the rate as
a function of p′⊥ and n. Such resonances have been predicted be-
fore in discussions of purely time-dependent electric fields [42–46]
which may be viewed as simple models for counter-propagating
laser fields. A more realistic version of the latter (taking into ac-
count the magnetic field) has recently been studied by numerically
solving the Dirac equation. A resonance condition very much akin
to (11) has been found [32]. Clearly, one expects modifications
such as line broadening in a more realistic situation, in particular
upon taking into account finite pulse duration which is the subject
of the following sections.

4. Pair production in a pulse

A pulsed plane wave is described by a field strength Fμν =
Fμν(k ·x) that goes to zero for sufficiently large modulus |k ·x|. Typ-
ically, it will contain a finite number of cycles, N , modulated by a
smoothly vanishing envelope function. For the purposes of this Let-
ter we take our fields to vanish outside of k · x ∈ P ≡ [0,2π N]. One
expects that in the limit of long pulses, i.e. large N � 1, the physics
in a PPW approaches that of the IPW. This was the conclusion of
Kibble [47] who, in the sixties, ended a controversy on the unphys-
ical nature of IPWs by arguing that they were sufficient to describe
the long pulses which were then state-of-the-art: the width 	ω of
these pulses in frequency space3 obeyed 	ω � ω, which is equiv-
alent to N � 1. However, modern high intensity lasers typically
have pulses that contain only few cycles, N = O (1) such that an
IPW can only yield a rather crude idea (at best) of the ongoing
physics in this case. In particular, the appearance and interpre-
tation of quasi-momenta and effective mass as averaging effects
seem to become questionable. The extent to which these ideas can
be applied to pair production in pulses will be examined in this
and the next section.

The simplest “pulse” is obtained by retaining periodicity
within P , i.e. truncating the IPW fields. (Edge effects may be

3 Recall that the Fourier transform of a monochromatic IPW is a delta function,
corresponding to zero width.
present if the fields do not vanish smoothly, though these should
become negligible in the large-volume limit, i.e. with increas-
ing N .) Thus, we assume for now that Fμν is regularly oscillating
for 0 � k · x � 2π N , corresponding to a wave train of N identical
cycles [48]. We will drop this slightly over-simplistic assumption
and add smooth envelopes in due course.

For a PPW the representation (4) of the S-matrix element re-
mains valid, as the only prerequisite there was dependence of
the background on k · x. Quasi momentum fractions then appear
through the decomposition (8). For the cutoff pulses in question
the quasi-momenta do not necessarily match those of the IPW, but
the mass shift typically does. Accordingly, we end up with (9), but
with M no longer being strictly periodic. Therefore, performing the
phase integral no longer yields a delta comb as in (10). Reducing
the integral to a sum over single cycles, one may show that (9)
takes the form

S f i = 1

k−
δ3(p′ + p − k′) sin Nπz

sinπz
M̃0, (12)

where M̃0 is the contribution from a single cycle, giving an enve-
lope, and we abbreviate the longitudinal momentum transfer as

z ≡ ȳ + ȳ′ − x′, (13)

from here on. Fourier expanding the single cycle contribution to
aid the interpretation we find

M̃0 =
∑

l

Ml
0 sincπ(z − l). (14)

Squaring S f i , there are no cancellations between terms as in the
IPW, and so the emission rate is a coherent sum, containing in-
terference terms. We recognise the product of the sinc function
in (14) and the rapidly oscillating ratio of sines in (12) as the root
intensity distribution of light scattering through a finite aperture
containing N slits. Thus, pair production is essentially a diffrac-
tion process: finite beam duration corresponds to a finite aperture,
while the N cycles of the pulse correspond to N slits. The emis-
sion spectrum will therefore take the form of a diffraction pattern,
deriving from the interference not of light but of pairs produced at
different points in the beam [49]. (Compare the proposal in [50] to
perform the double slit experiment by polarising patches of vac-
uum to create a grating.) Interference is seen through the ratio of
sines (12), which has maxima when the momentum fraction trans-
fer is an integer, z ∈ Z, and N − 2 additional surrounding maxima
of smaller amplitude, resulting in the substructure discussed in the
introduction (see also the figures below).

As expected, the peaks signal the persistence of the IPW reso-
nances with the previous delta comb now acquiring finite widths.
The longitudinal momentum (fraction) transfer is now continuous,
but peaks are still located at z = n ∈ Z. The resonance condition
thus remains valid and one may loosely think of z as something
like a continuous photon number. As z involves quasi-momentum
fractions, see (13), the peaks still look like the production of
mass m∗ , rather than m, pairs. However, the continuous nature of
z together with the line broadening phenomenon implies that the
sharp IPW cutoff 2m2∗/k · k′ becomes washed out as well: in other
words, there is sub-threshold behaviour! This is completely consis-
tent with Kibble’s reasoning since a PPW contains higher frequency
components than a monochromatic IPW which obviously lower the
threshold. In fact, the reduction is quite significant: the threshold
is reduced to 2m2/k · k′ , independent of the geometry of the pulse.

The threshold reduction can be observed in the detection of
pairs at lower energies than the minimum implied by (6), i.e. with
energy lower than is required to produce the effective mass or,
equivalently, reach the first resonant momentum transfer. To see
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this, and the preceding, effects explicitly we turn now to the dis-
cussion of examples

5. Examples

In what follows, we will study PPWs representing a slight gen-
eralisation of a model recently suggested by Mackenroth et al. [29].
We consider a linear polarised wave by setting f2 = 0, and con-
sider the family of gauge potentials

f1(k · x) =
{

sinK ( k·x
2N ) sin(k · x), k · x ∈ P ,

0, otherwise,
(15)

where the envelope is characterised by an integer K .

5.1. Example 1: Regular wave train (K = 0)

We begin with K = 0 corresponding to a finite wave train of
N cycles [48] i.e. a “mutilated” IPW sharply cut off outside of P .
The potential (15) is then continuous, while the field strength is
ḟ1(k · x) = cos k · x inside P , zero outside, and therefore has hard
(step function) edges. These are unphysical, but we will see how
their effects come to disappear in the large-N limit. For this exam-
ple, the quasi-momenta are as in (7), and the mass shift remains
the same as in an IPW: q2 = (1 + a2/2)m2 = (1 + a2

0)m
2.

Fig. 1 gives the triple differential rate for pair production in
N = 1,2 and 4 cycles of the beam, plotted as a function of |p′⊥|/m
for fixed transverse angle φ = 0 and half maximum light-cone
component p′+ = ω′/2. In accord with the discussion of focussing
in the introduction, the intensity is not too high (this is also useful
for quick numerical calculation of the rates). Vertical (black) lines
are the four lowest terms of the IPW delta comb (the remaining
contributions stand to the right). There is a rich structure even in
the single cycle contribution which must be dominated by finite
pulse duration, and in this case edge, effects. As we go beyond
one cycle (for which the ratio of sines in (12) is unity) the shape
of the differential rate changes significantly. When N > 1, we have
interference effects which are analogous to those appearing when
one goes from single to multiple slit diffraction: resonance peaks,
centred on the conservation of quasi-momentum as in (6), with
N − 2 surrounding subpeaks. As is clear from the properties of the
sin / sin factor in the rates (and as shown in the plots), the strong
peaks dominate in the limit of a large number of cycles, exactly
reproducing the IPW delta comb.

We also observe the threshold reduction, through the produc-
tion of pairs with energy lower than that allowed in the IPW: this
is seen as the non–zero signal to the left of the first possible IPW
resonance at |p′⊥|/m = 1. Thus, this simple example contains all
the promised features. Let us now move on to more physical ex-
amples without edge effects.

5.2. Example 2: Pulses with smooth envelopes (K > 1)

For our second example we add a smooth envelope function.
It should be expected from results on vacuum pair production
[21,51] that the resulting spectra will be highly sensitive to the de-
tails of this envelope, i.e. for our example family (15), on the value
of K . We will see, however, that all the features associated with
the diffraction pattern and predicted above continue to appear in
the rates. Following [29] we adopt K = 4 hence adding a sin4 en-
velope to the previous wave train (K = 0). The field strength Fμν is
now smoothly vanishing at the edges of the pulse. The rate for this
pulse is shown in Fig. 2. Even though the pulse no longer consists
of identical cycles, all the features of the diffraction pattern remain.
(i) There is sub-threshold behaviour relative to the IPW results (the
Fig. 1. Triple differential rate, units of e2m2nγ /32π2ω′ , as a function of transverse
e+ momentum. Linear polarisation, a0 = 2, ω′ = 250 GeV. N = 1, 2 and 4 cycles
of the laser (descending), corresponding to 4 fs, 8 fs and 16 fs pulses respectively.
Black (vertical) lines are the IPW delta comb (quasi-momentum conservation reso-
nances). The non-zero signal to the left of |p′⊥|/m = 1 is production below thresh-
old.

black lines). (ii) The form of the rate changes dramatically above
one cycle of the beam, with rapidly oscillating substructure setting
in. (iii) This leads to a series of strong peaks. The envelope in (15)
naturally smooths out many features of the spectrum, and the fine
structure of the diffraction pattern sets in a little slower than in
our previous example, so we have plotted 1, 4 and 8 cycles of the
laser.

We note that, in these plots, the strong peaks of the rates do
not exactly track the IPW resonances as in the K = 0 example,
which is an indication of (physical) finite size effects affecting the
quasi-momentum. This is the topic of the next section. Reassur-
ingly, though, our interpretation of pair production in pulsed plane
waves as a diffraction-like process, and the resulting features of the
positron emission spectra, are shown to hold for realistic pulses as
well. For additional confirmation of this, we display in Fig. 3 the
eight-cycle rate for the pulse with the K = 2 envelope. The field
strength is again smooth. The sub-threshold behaviour and inter-
ference pattern remain, but clearly differ from those in Fig. 2.

Comparing these figures with Fig. 1, we see that the enve-
lope seems to most strongly affect the spectra at low energies,
i.e. the sub-threshold region where, particularly for the final panel
of Fig. 2, it appears as though there are two overlapping diffrac-
tion patterns. The high energy part of the spectra shows a fairly
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Fig. 2. Triple differential cross section for the pulse (15), K = 4, field amplitude
a = 2

√
2 to match the intensity parameter above. N = 1, 4 and 8 cycles of the laser

(descending), corresponding to 4 fs, 16 fs and 32 fs pulses respectively. The diffrac-
tion pattern remains. Sub-threshold behaviour remains.

Fig. 3. Triple differential cross section for the pulse (15) with K = 2. Other param-
eters as in Fig. 2 and 32 fs duration. The rate again exhibits both the diffraction
pattern and sub-threshold behaviour.

smooth falloff punctuated by high peaks. (For K = 4, N = 8, we
have confirmed that the low energy substructure extends into the
high energy regime as the number of cycles increases.) One expla-
nation for the differences in form of the substructure, relative to
that in Fig. 1, may be as follows. Going from an IPW to a regular
wavetrain generates a spread in frequencies in the beam [47]. In
terms of the Fourier transform of the field, this amounts to regulat-
ing a delta function, so that the frequency spectrum is still peaked
around the single IPW frequency. This gives a diffraction pattern,
Fig. 4. The K = 4, 32 fs pulse from Fig. 2, with the peaks identified through quasi-
momentum resonances.

as we have seen. The Fourier transforms of pulses will be typically
dominated by several different (broadened) frequency components.
Hence, we suspect that, roughly, each important frequency is gen-
erating its own interference pattern and these are superimposed to
produce the substructure.

The plots illustrate both an expected sensitivity to the pulse
envelope, and the robustness of our general statements. Let us
now turn to the positions of the strong peaks, which again do not
match the IPW results.

6. The mass shift in a pulse

In an IPW, the quasi-momenta are defined by taking an av-
erage over a cycle. The separation of terms into quasi-momenta
and oscillations in the quantum calculations is simple because the
fields are purely oscillatory and therefore the integrals appearing
in the Volkov exponent naturally split into linear and oscillatory
parts. Once an envelope is added and periodicity is lost, however,
there is no single natural definition of an ‘average’ from which to
construct the quasi-momentum, and identifying which average the
pair production rates are sensitive too is a hard (but interesting)
problem. However, our diffraction patterns potentially offer us a
way to reconstruct the quasi-momentum and mass shift. This is
possible because extracting some average part in the Volkov expo-
nent will give an expression for the quasi-momentum transfer to
the pair, z. This is a quadratic function of r ≡ |p⊥|/m, with the co-
efficients of the linear and constant terms depending on the pulse
averages. Let us simply write z(r) for the transfer. We assume, in
keeping with our discussion, that the resonance condition is that4

z(r) = n ∈ Z. By locating the positions of the resonance peaks in
the production rates, one could in principle reconstruct z(r), and
from it the quasi-momenta and the mass shift.

Let us make a first attempt at embarking on this programme.
We focus on the example of K = 4 and N = 8, for which the rate
is shown in the final panel of Fig. 2, and we fix all remaining pa-
rameters as in that plot from here on. We proceed by numerically
identifying the positions r1 and r2 of the two tallest consecu-
tive peaks. This provides us with two equations z(r1) = n ∈ Z and
z(r2) = n + 1 for the consecutive strong peak, with which to iden-
tify the two unknowns in z. However, it is not clear which integers
should be chosen. We take here the lowest allowed integers such
that the predicted average of the positive term in the Volkov ex-
ponent (the −A2 term) is positive, for consistency. This assigns the
peaks to the fifth and sixth resonance positions, which looks rea-
sonable from the plots. The resulting averages are

〈 f1〉 � 0.02,
〈
f 2

1

〉 � 0.08. (16)

4 To illustrate, this condition reduces to z(r) = r2 = n ∈ Z for the IPW, see also
Fig. 1.
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With these, we can see what z(r) ∈ Z predicts for the resonance
positions for other integers. The results are shown in Fig. 4. The
two red lines show the “initial data”, i.e. the locations of two nu-
merically identified resonances. The vertical black lines show the
resulting predictions for the first nine resonances in the pulse. The
prediction for the lowest resonance is clearly incorrect – as noted
above, the low energy part of the spectra seem to be most sensi-
tive to finite size effects, and it seems that a deeper investigation
is required here. Aside from this, though, every one of the predic-
tions lies precisely on the peaks of the emission rates, in contrast to
the IPW predictions. One can go further, and from the Volkov ex-
ponent reconstruct the quasi-momentum, and square it to obtain
the mass shift. In terms of the usual intensity parameter a2

0 = a2/2
for linear polarisation, our results imply that

q2/m2 ≈ 1 + (0.075 ± 0.005)a2
0, (17)

the error being estimated by varying the chosen initial peaks and
the assignments of integers n to the peak positions. Thus, we
seem to have a reduction of the effective mass, in this particu-
lar pulse, by an order of magnitude as compared to the IPW result,
q2/m2 = 1 + a2

0. This is in line with our previous argument that
it is the free, rather than IPW effective, mass which really sets
the scale for pulsed pair production. We should stress that the
method applied here is a first attempt, and there may be more el-
egant approaches. Nevertheless, these initial results are extremely
promising. In the future we hope to comment more on the mass
shift in pulses.

7. Conclusions

We have given a new interpretation and understanding of the
electron mass shift in strong-field pair production. We have seen
that pair production in a plane wave of finite temporal extent is
a diffractive process. The positron emission spectrum can be in-
terpreted as an interference pattern, with a rich substructure. The
rate exhibits resonant behaviour when the laser averaged light-cone
momentum transfer to the pair is a multiple of the laser frequency.
This resonance condition is equivalent to the momentum conser-
vation of a multi laser-photon (higher harmonic) process which
creates a pair of effective mass m∗ . However, the rates are not
completely suppressed away from these conditions, as in the IPW
case, and thus the pulsed rates exhibit line broadening and signifi-
cant below-threshold behaviour, with the electron rest mass, rather
than the effective mass, setting the scale. For a large number of
cycles the diffraction pattern resembles the delta comb of the IPW
limit, centred on the resonant values of momentum transfer. This
corresponds to the loss of the coherent (interference) terms in the
pair production rates.

We have observed, though, that the resonance pattern does not
exactly match the IPW results when the pulse has a smooth en-
velope. This can be attributed to the quasi-momentum in a pulse
differing from that in an IPW. While it is not immediately clear
how to identify the quasi-momentum once periodicity is lost, the
persistence of the diffraction pattern implies that some preferred
momentum remains in the game. As a first step to identifying this,
we used a numerical method to reconstruct the quasi-momentum
from the distribution of strong peaks in our spectra. The implica-
tion is that the effective mass can be lowered in pulses. We will
return to this in a future publication.

Phenomenologically, pair creation certainly requires high en-
ergy probes to stimulate the process. With regards to the laser
parameters, it seems reasonable to work at moderate a0 = O (1)

which, in turn, allows for longer pulse duration and therefore a
large number of cycles per pulse, N � 1. In this regime, finite pulse
duration effects should be under control. This will require some
fine tuning for which the present results should provide a solid
basis.

Above, we considered the triple differential rates, which, unless
the pair yield is very high, would be challenging to measure ex-
perimentally. Our focus was on these rates because they are the
simplest to plot and understand. It is of course possible to inte-
grate up and thus obtain the double and single differential rates,
and the total probability. These will be the subject of a future
study.
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