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ABSTRACT 

This paper presents new necessary and sufficient conditions for a family of 
interval polynomials to have only real distinct roots. These new conditions require 
only a finite number of computations. 

1. INTRODUCTION 

Consider a family of real nth degree interval polynomials 

Z( 8) = tnsn + t”_p”--l + * . . + t,, (1) 

where oi Q tj Q pi, (i = 0,. . . , n) and 0 < LY,. Recently, Soh and Berger [3] 
have shown that Z(s) has only real, negative, and distinct roots in the range 
[(, T] if and only if two specified polynomials in Z(s) have only real, negative, 
and distinct roots in the range [t, T]. A similar result for Z(s) to have only 
real, positive and distinct roots in the range [t, r] exists [3]. However, that 
the two specified polynomials in Z(s) given by Soh and Berger [3] have only 
real and distinct roots does not necessarily imply that Z(s) has only real and 
distinct roots. 

For example, let 

Z(s) = s2 + t,s +2, 
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where 

-3<t,<3. 
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The two specified polynomials given by Soh and Berger [3] are 

P(s) = s2 -3s+2=(s-l)(s-2) 

and 

P(s)=s2+3s+2=(s+l)(s+2), 

which have only real and clistinct roots. However, 

P(s) = s2 +2 

in Z(s) clearly has imaginary roots. 
This paper derives new necessary and sufficient conditions for the family 

of interval polynomials Z(s) to have only real, distinct roots. These new 
conditions also require only a finite number of computations. 

2. NOTATION 

Let 

a(s) = 2 a$, a,+O, 
i=O 

and 

b(s) = 5 bid. 
i=O 

The resultant matrix R(a, b) associated with the polynomials a(s) and b(s) 
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is defined as the 2 m X 2 m matrix 

R(u,b) = b, b, . + . b,_, b, 

bob; . * bm-1 brn 

Let P,(s) and P,(s) be the two polynomials in I( s> such that every 
polynomial P(s) E Z(s) satisfies 

P,(x) a P(x) > P2(x) (2) 

for all real nonpositive x. Similarly, let Z’,(s) and Z’,(s) be the two polynomi- 
als in Z(s) such that every polynomial P(s) E Z(s) satisfies 

for all real nonnegative 
P,(s) (i = 5,6), let 

@=R(u,b), u(s)= 

P3(x) > P(x) 2 PJX) (3) 

x. For the polynomials P,(s) (i = 1,2,3,4) in Z(S), 

pi(') 

&i(s) 
b(s) =T; 

R;= R(u,b), u(s) = q(s) 
&i(s) 

b(s)=(s+-p 

&i(s) 
R;=R(u,b), u(s)=(s-T)(s-_~)~, b(s)=Pi(s). 

Similarly, let the above resultant matrices without subscript i (that is, R’, 
R2, and R3> be associated with a polynomial P(s) in Z(s). 

Let 

A, = (1 - ‘)A, + rA,, O<r<l, 

represent a convex combination of two p X p real matrices A, and A,. 
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Similarly, let 
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Ak=A,+kA, 

denote a linear combination of the two real matrices. Finally, AZ,(B) will 
denote the maximum positive (real) eigenvalue of a matrix B. In case B has 
no positive eigenvalues, we adopt the convention h:,,(B) = Of. Similarly, 
h,,(B) will denote the minimum negative (real) eigenvalue of matrix B, and 
if B has no negative eigenvalues, we take A,,(B) = O-. 

3. SUPPORTING RESULTS 

In this section, we develop the tools necessary for attaining the ultimate 
objective. 

LEMMA 1 (Fu and Barmish [4]). Suppose A, is nonsingular. Then 

(i> A, is nonsingular for all r E [0, l] if and only if Ai i A I has no 
eigenvalues on ( - 03, 01: 

(ii) the maximal range (k min, k ,,I for all A, 

by 

1 

kmin = Aii,( - A,‘A,) 

and 

to be nonsingular is given 

1 
k 

max = A;,( - A,‘A,) ’ 

LEMMA 2. Let M be a connected set of n th degree real polynomials. 
Then every P(s) E M has only real and distinct roots if and only if 

(i> there exists at least one polynomial P,(s) E M with all its roots real 
and distinct ; 

(ii) the associated resultant matrix R’ for all P(s) E M is nonsingular. 

Proof. Necessity: The necessity of condition (i) is obvious. To prove the 
necessity of condition (ii), we recall that the resultant matrix R’ is nonsingu- 
lar if and only if a(s) = P(s) and b(s) = dP(s)/ds do not have common 
roots [2]. 
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It has been established that if all the roots of P(s) are real and distinct, 
then all the roots of dP(s)/& are also real, distmct, and different from the 
real roots of P(S) [l]. Therefore P(s) and dP(s)/& do not have common 
roots if all the roots of P(s) are real and distinct. This implies that the 
associated resultant matrix R’ is nonsingular. 

Sufficiency: Proceeding by contradiction, suppose (i> and (ii> hold but 
there exists P,(s) E M which does not have all its roots real and distinct. We 
need to show that there exists some P(s) E M such that the resultant matrix 
R’ is singular. There are two possibilities for the root locations of P,(s): 

(a) P,(s) has only real roots, with at least one multiple real root. 
(b) P,(s) has at least one root which lies off the real axis. 

For case (a), the associated resultant matrix R’ for P,(s) is singular. This is 
because P,(s) and dP,(s)/& h ave at least one common root if P,(s) has at 
least one multiple real root [l]. For case (b), by the connectedness of M, we 
can construct a continuous path P in M connecting P,(s) and P,(s). Then P 
induces at least one continuous path in the complex plane connecting a real 
root of P,(s) with the root lying outside the real axis. This guarantees the 
existence of some P(s) E f with P(s) having a multiple real root. This is 
because roots can only leave the real axis in pairs. This implies that the 
associated resultant matrix R’ for P(s) having a multiple real root is 
singular. n 

LEMMA 3. Let M be a connected set of n th degree real polynomials. 
Then every P(s) E M has only real, distinct roots, with h roots lying in the 
real segment ( - 03, T) and n - h roots lying in the real segment (r, CQ), if and 
only if 

6) there exists at least one polynomial P,(s) E M having only real, 
distinct roots with h roots lying in the real segment (-a, T) and n - h roots 
lying in the segment (r,m); 

(ii) the associated resultant matrix R2 fw all P(s) E M is nonsingular. 

Proof. First note that the resultant matrix R2 is nonsingular if and only 
if a(s) = P(s) and b(s) = (s - 7) dP(s)/ds do not have common roots [2]. 
This implies that the resultant matrix R2 is nonsingular if and only if the 
resultant R’ is nonsingular and P(s) does not have a real root equals to T. 
The proof then follows similar arguments to those used in the proof of 
Lemma 2. H 
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LEMMA 4. Let M be a connected set of n th degree real polynomials. 
Then every P(s) E M has only real, distinct roots, with h roots lying in the 
real segment (t,~), p roots lying in the real segment (-m,.$), and 9 roots 
lying in the real segment (T,“), where h + p + 9 = n, iLf and only if 

(i) there exists at least one polynomial P,(s) E M having only real, 
distinct roots with h roots lying in the real segment (&,r), p roots lying in the 
real segment (-a~, t), and 9 roots lying in the segment (r,~), where 
h+p+q=n; 

(ii) the associated resultant matrix R3 fm all P(s) E M is nonsingular. 

Proof. First note that the resultant matrix R” is nonsingular if and only 

if a(s) = (s - TXS - l)dp(s)/ds and b(s) = P(s) do not have common roots 
[2]. This implies that the resultant matrix R3 is nonsingular if and only if the 
resultant matrix R2 is nonsingular and P(s) does not have a real root equal 
to 5. The proof then follows similar arguments to those used in the proof of 
Lemma 2 and Lemma 3. W 

LEMMA 5. The family of interval polynomials Z(s) has only real and 
distinct roots if and only if 

(i) (1 - r)P,(s)+ rP,(s) has only real and distinct roots in n disjoint real 
segments f3r all r E [O, 11; 

(ii) (1 - r)P,(s>+ d’,(s) has only real and distinct roots in n disjoint real 
segments fm all r E [0, 11. 

Proof. Sufficiency: First note that every polynomial P(s) E Z(s) satisfies 

P,(x) 2 P(x) 2 Pz(r) (4) 

for all real nonpositive X, and 

P3(x) > P(x) > PJX) (5) 

for all real nonnegative X. It follows that the graph of P(x) lies within the 
envelope given by 

[min{Pdx), P4(X)),m4Pl(x), P,(r))]. 

Therefore conditions (i) and (ii) guarantee that the envelope intersects the 
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real axis in the n disjoint real segments. This implies that every P(s) E Z(s) 
has only real and distinct roots. 

Necessity: Every polynomial P(s) E I(S) can be rewritten as 

P(s)=H(s2)+SG(s2), 

where 

H,(A2) a H(A2) 2 N,(P), A real, 

and 

G,(A2) aG(A2) aG2(A2), A real. 

From (4) and (5), 

P,( S> = H,( s”) + sG,( s2), 

~2(s)=H2(s2)+~GI(s2), 

p3( S) = H,( 8”) + sG,( s”), 

&(s) = H,( 8”) + sG,( s”). 

Let 

PO(S) = 

P,(s) + p2w 

2 . 

From (8)-(121, P,(s) can also be written as 

po(s) = p3w + Us) 
2 . 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Suppose P,(s) has only real and distinct roots. Then the graph of P,,(x) 
intersects the real axis at n distinct locations. Consider the graphs of 

G&-)=(1-r)P,(x)+rP,(r) 
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and 
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H(x,r)=(l-r)P,(x)+rP,(x) 

G(x,$) = H(x,;) = PO(x), (13) 

there exists a number t* <i such that the graphs of G(x, r) and H(x, r) 
intersect the real axis in n disjoint real segments for all r E [$ - 5, f + 51, 
Q<&<C$*. 

Suppose the graphs of G(x, r) and H(x, r) do not intersect the real axis 
in n disjoint segments for all r E [!j - [ *, i + 5 * 1. That is, two of the tz 
disjoint real segments become one at 5 = &*. From (4), (5), and (13), 

G(x,~-5)~G(x,r)~G(x,~+5‘) x GO, 

G(x,$-5)>/H(r,r)~G(r,~+5) x < 0, 

H(x,~-5)~H(r,r)~~H(x,~+5) x >o, 

N(x,+-t)>G( x,f-) aH(x,++C), x 2 0, 

for all r E [i - 5, f + 61, 0 < 5 < i. It follows that at least one of the graphs of 

G(x>$-t*), G(x,++t*) 

does not intersect the real axis n times. Instead, the graph has a turning 
point touching the real axis. This implies that the polynomial corresponding 
to this graph has a multiple real root. Hence, conditions (i) and (ii) are 
necessary for the family of interval polynomials I(S) to have only real and 
distinct roots. n 

REMARK. From the proof of Lemma 5, it also follows that the family of 
interval polynomials I(s) has only real and distinct roots if and only if the 
convex combinations of polynomials in conditions (i) and (ii) of Lemma 5 
have only real and distinct roots. Similarly, the family of interval polynomials 
Z(s) has only real and distinct roots distributed on the real axis in a specified 
manner if and only if the convex combinations of polynomials in conditions 
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(i) and (ii) of Lemma 5 have only real and distinct roots distributed in the 
specified manner. 

4. MAIN RESULTS 

We now derive the necessary and sufficient conditions for a family of 
interval polynomials Z(s) to have only real and distinct roots. These condi- 
tions require only a finite number of computations. 

THEOREM 1. The family of interval polynomials Z(s) has only real and 
distinct roots $and only if 

(i) P,(s) and P,(s) have only real and distinct roots; 
(ii) (R’)-‘Ri and (R~)-‘R~ have no eigenvalws on (-m,O]. 1 

Proof. From Lemma 5 and the remark on it, the family of interval 
polynomials Z(s) has only real and distinct roots if and only if 

(l-I-)P,(s)+rP,(s), r E CO,ll, 

and 

(l-r)P3(s)+rP4(s), r E [O, 11, 

have only real and distinct roots. From Lemma 2, 

Cl- r)Pds) + rP2(s), r E LO, 11, 

have only real and distinct roots if and only if 

(a> P,(s) has only real and distinct roots, 
(b) (1 - r)Ri + rRi is nonsingular for all r E [0, 11. 

Using Lemma 1, 

(1-r)Ri+rRk 

is nonsingular for all r E [0, l] if and only if (R:)-‘R’, has no eigenvalues on 



130 C. B. SOH 

(- m,O] and R: is nonsingular. Since P,(s) having only real and distinct roots 
implies that R: is nonsingular (see Lemma 2), 

have only real and distinct roots if and only if P,(s) has only real and distinct 
roots and (R:)-‘Rk has no eigenvalues on (-m,O]. Similarly, 

have only real and distinct roots if and only if P,(s) has only real and distinct 
roots and (R\)-‘Ri has no eigenvalues on (-m,O]. It follows that the family 
of polynomials Z(s) has only real and distinct roots if and only if conditions 
(i) and (ii) of Theorem 1 are satisfied. a 

REMARK. For the special case where the real and distinct roots are 
restricted to be negative, Soh and Berger [3] have shown that P,(s) and 
P,(s) having only real, negative, and distinct roots in the range [c, r] are 
necessary and sufficient conditions for the family of interval polynomials Z(s) 
to have only real, negative, and distinct roots in the range [[, r]. Similarly, 
P,(s) and P,(s) having only real, positive, and distinct roots in the range 
[[, T] are necessary and sufficient conditions for the family of interval 
polynomials Z(s) to have only real, positive, and distinct roots in the range 
[t,r]. However, it has been shown in the introduction that P,(s), P,(s), 
P,(s), and P,(s) having only real distinct roots does not necessarily imply 
that the family of interval polynomials Z(s) has only real distinct roots. 

THEOREM 2. Every polynomial in the family of interval polynomials Z(s) 

has only real, distinct roots, with h roots lying in the real segment ( -m, 7) 
and n - h roots lying in the real segment (r,m), if and only if 

(i> P,(s) and P,(s) have only real and distinct roots distributed in the 
same manner; 

(ii) OI:>-~RZ, and (R2,)-‘R2, have no eigenvalues on (-m,Ol. 

Proof. The proof is similar to the proof of Theorem 1, using Lemmas 1, 

3,5 and the remark on Lemma 5. n 

THEOREM 3. Every polynomial in the family of interval polynomials Z(s) 
has only real, distinct roots, with h roots lying in the real segment ((.T), p 
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roots lying in the real segment ( - a,(), and q roots lying in the real segment 
(r,~), where h + p + q = n, if and only if 

(i) P,(s) and P,(s) have only real and distinct roots distributed in the 
same manner ; 

(ii) <Rf)-lRi and (Ri)-‘Ri have no eigenvalues on !-m,O]. 

Proof. The proof is similar to the proof of Theorem 1, using Lemmas 1, 
4,s and the remark on Lemma 5. n 

We now consider the linear combination of an nth degree real polynomial 
P,(s) and an mth degree real polynomial P,(s), where n > m. Let k+ be the 
positive value of k such that 

Pds) = P,(s) +kPs(s) 

is of order less than n. In case there is no such positive value k+ =w. 
Similarly, let k- be the negative value such that P,(s) is of order less than 
n. In case there is no such negative value, k- = - 03. 

THEOREM 4. Suppose P,(s) has only real and distinct roots. Then the 
maximal range (k min, k max ) fw the family of n th degree polynomials P,(s) to 
have only real and distinct roots is given by 

and 

k max 

The resultant matrix Rk is obtained by treating P,(s) an an n th degree 
polynomial fm the purpose of conformability of matrix multiplication. 

Proof. First, note that it is necessary to have kmin 2 k- and k,, Q k+ 
to guarantee that all P,(s) will b e nth degree. Therefore, we assume 
kmin> k- and k,, < k+ in the remainder of the proof Since P,(s) has only 
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real and distinct roots, in accordance with Lemma 
distinct roots for all k E (k,i,, k,,) if and only if 
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2, Pk(s) has only real and 

is nonsingular for all k E ( k,in, k ,,>. The maximal range ( kmi,, k,,) is then 

obtained using Lemma 1, part (ii). n 

THEOREM 5. Suppose P,(s) has only real and distinct roots, with h roots 
lying in the real segment (- CQ, r) and n - h roots lying in the real segment 
(7,~). Then the maximal range (kmin, k,, ) for every polynomial in the family 
of n th degree polynomials P,(s) to have only real and distinct roots dis- 
tributed in the same manner is given by 

kmin=max k 
{ -5$&j%$] 

and 

k,, = min k+, 

The resultant matrix Rg is obtained by treating P,(s) as an n th degree 
polynomial for the purpose of conformability of matrix multiplication. 

Proof. The proof is similar to the proof of Theorem 4, using Lemma 1 

and Lemma 3. l 

THEOREM 6. Suppose P,(s) has only real and distinct roots, with h roots 
lying in the segment (5.~1, p roots lying in the real segment C-m, 51, and q 
roots lying in the real segment (7, m>, where h + p + q = n. Then the maximal 

range (k,i,, km,) f or every polynomial in the family of n th degree polynomi- 
als P,(s) to have only real and distinct roots distributed in the same manner is 
given by 

kmin = max k-, 
A,J - (::)1R:] 
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and 
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k max 

The resultant matrix Rz is obtained by treating P,(s) as an nth degree 

polynomial fm the purpose of conformability of matrix multiplication. 

Proof. The proof is similar to the proof of Theorem 4, using Lemma 1 

and Lemma 4. n 

5. CONCLUSION 

We have obtained necessary and sufficient conditions (requiring only a 
finite number of computations) for a family of interval polynomials to have 
only real and distinct roots. These results complement the necessary and 
sufficient conditions obtained by Soh and Berger [3]. 

REFERENCES 

S. Barnard and J. M. Child, Higher Algebra, Macmillan, New York, 1959. 
P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic, 
Orlando, Fla., 1985. 
C. B. Soh and C. S. Berger, Strict aperiodic property of polynomials with 
perturbed coefficients, IEEE Trans. Automat. Control. 34:546-548 (1989). 
M. Fu and B. R. Barmish, Stability of convex and linear combinations of 
polynomials and matrices arising in robustness problems, in Proceedings gf the 
1987 Conference on lnfonnation Science and Systems, Johns Hopkins Univ., 
Baltimore, 1987. 

Received 9 November 1989;final manuscript accepted 12 March 1990 


