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Thepast decade,membrane signaling lipids emerged asmajor regulators of ion channel function.However, themo-
lecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and
assays to quantify andmeasure lipid binding in amembrane. How does a lipid–ligand bind to amembrane protein
in the plasmamembrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid
binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This re-
view focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the in-
tersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona
fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to
the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel.
The systememploys a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization.
I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation
and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Signaling lipids are important regulators of ion channels and exert a
central role in tissue function including functional heartbeat, neuronal
signaling, kidney dialysis, sight, smell, pain, and touch [1–5]. In the
past, most biochemist and ion channel experts viewed lipids as un-
wieldy, hydrophobic molecules physically supporting ion channels in
a cell membrane or liposomes but not as ligands. Recent past models
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of lipid signaling to ion channels suggested that the formation of anionic
lipids caused a change in the plasma membrane surface charge. Little
was known about how lipids engaged and disengaged the channel or
how the contact of a lipid with protein might affect the conformation
of ion channels in the membrane. A lack of binding constants for lipids
and ion channels challenged our ability to think about lipids as ligands.
Aspects of this problem remain an important hurdle.

In 1998, Hilgemann and colleagues [6] eloquently showed that a sig-
naling lipid could directly activate an ion channel. The lipid, phos-
phatidylinositol 4,5-bisphosphate (PIP2), a minor constituent of the
plasma membrane, was required and sufficient for the activation of a
potassium channel [6]. Despite more than a decade of experimentation,
the nature of PIP2 binding remained clouded by an inability to accurate-
ly measure its concentration in themembrane and directly detect bind-
ing to protein. Simple terminology such as lipid concentration and
affinity are difficult to define for insoluble molecules in an aqueous en-
vironment [7]. Absent a well-characterized ligand protein interaction,
the initial non-specific theories of surface charge andmembrane curva-
ture dominated [8,9] but struggled to account for the specificity of sig-
naling lipids in many systems. Recently, a more accurate model
emerges that includes structural and pharmacological evidence that
lipids bind to and activate ion channels analogous to classic ligand-like
agonist properties [10,11].

Herein, a model of lipid agonism is built on PIP2 and inward rectify-
ing potassium (Kir) channels. Aspects of many other classes of channels
and signaling lipids appear to function in a similar way; select examples
are included throughout this review. The intent of this review is to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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facilitate an understanding at the interface of ion channel activation and
membrane lipid biology, although neither field is reviewed in a compre-
hensive way.
2. The signaling lipid PIP2 is an agonist that gates ion channels

PIP2, arguably the best-studied signaling lipid, is comprised of an
inositol head group (the named feature), a phosphoglycerol backbone,
and two acyl chains (Fig. 1A). PIP2 bears four negative charges and is a
permanent and minor component (b1%) of the Eukaryotic plasma
membrane inner leaflet [9,12].
2.1. PIP2 ion channel physiology

PIP2 signaling dictates the activatable state of a plethora of ion chan-
nels [2,13,14] (Fig. 1) with broad reaching cellular function. The first in-
dication that a channel is PIP2 dependent usually arises when a channel,
excised from the plasmamembrane (e.g., inside out patch), steadily de-
creases in conductance until the channel inactivates. This is known as
“rundown” [2,15]. The excised patch lacks the cytosolic factors to main-
tain sufficient PIP2 levels in the membrane to support ion channel func-
tion; hence, the channels in the patch close. Adding ATP and Mg was
shown to delay rundown [15]. Presumably, PIP2 synthesizing enzymes
are excised in the patchwith the channels and that these enzymeutilize
the ATP to replenish PIP2 [2,15]. Adding back a soluble PIP2 analog
dioctanoyl PIP2 (C8PIP2) rescues activity [2,14] of many ion channel
types [16–19]. In a second method, PIP2 scavengers (e.g., polyamines
or PIP2 antibodies) are used to deplete or mask PIP2 availability [20–
22]. Polyamines are positively charged polymers that bind via avidity
to the multiple negative charges of PIP2. More complete descriptions
of PIP2-dependent ion channels and PIP2 cellular function are reviewed
by Suh and Hille [2,11], Xie [5], and McLaughlin [9]. Recently, a voltage-
sensitive phosphatase (Ci-VSP) was shown to provide direct control
over PIP2 signaling in the membrane [23–25]. When Ci-VSP is co
transfected with Kir [23–25], Kv7.1 [26], Cav2 [27,28], and TRP [29,30],
channels are voltage-dependent consistent with Ci-VSP regulation of
Fig. 1. PIP2 lipid regulation of ion channels. (A) The chemical structure of plasmamembrane PIP
position (red). (B) A cartoon representation of a PIP2 lipid-gated ion channel. PIP2 is shown bo
channelswith lipid gating properties. Kir2.2 and 3.2 are themost clearly “lipid gated.”A second g
gating also requires either voltage or a second ligand. A third group of channels behave similar t
exemplary and not comprehensive.
PIP2. This method provides better control of PIP2; however, indirect ef-
fects of PIP2 remain a possibility.

In order to directly show PIP2 modulation, an ion channel can be pu-
rified and reconstituted (reinserted) into lipid vesicles with a known
lipid composition. A lack of purified ion channels limited this technique,
but recent advancements inmembrane protein expression and purifica-
tion [31,32] has overcome this problem for select channel types [33–37].
The nAChRwas among the first channels to show direct dependence on
a lipid for activation, phosphatidic acid (PA) [38]. Recently, PIP2-depen-
dent channels were reconstituted into lipid vesicles and shown to re-
spond directly to PIP2 modulation. This includes GIRK [39,40], TRPV1
[41], TRPM8 [42], and Kir2.1-2 [43] channels.

2.2. PIP2 ion channel structure

Despite robust channel modulation by indirect methods, absent a
crystal structure, an understanding of the molecular action of PIP2 and
the precise binding site remained speculative. In 2011, an X-ray crystal
structure complex of Kir2.2 with PIP2 revealed a PIP2 binding site in the
channel's transmembrane domain [10] (Fig. 2). The glycerol backbone
and 1′ phosphate of PIP2 capped the first transmembrane spanning
helix (TM1) of Kir. An intimate coordination of the 5′ inositol phosphate
in the distal end of the second transmembrane spanning helix (TM2)
accounted for PIP2 specificity. Moreover, a conformational change ap-
peared to initiate or open the ion conduction pathway. Basic residues on
a linker between the transmembranedomain and cytoplasmic domaindi-
rectly contacted PIP2, but distal basic residues proposed in the CTD [44]
did not; rather, they were buried and stabilized proper folding of the cy-
toplasmic domain structure [10]. Prior to the Kir2.2/PIP2 complex, struc-
tures of PIP2/protein complexes were limited to soluble membrane
localization domains, which lack a transmembrane domain and share
few if any functional similarities with ion channels. A lack of appropriate
structural examples and an understanding of how lipids and proteins in-
teract in the plasma membrane hindered a complete mechanistic inter-
pretation of PIP2 data. Furthermore, early studies on the C-terminus of
Kir included residues that turned out to be in the TMD of Kir and key to
binding the 5′ inositol phosphate [6] (Fig. 2). Only with recent structural
2 is shownwith an arachidonyl acyl chain (green) and inositol phosphates at the 4′ and 5′
und to a lipid-binding site in the transmembrane domain of an ion channel. (C) List of ion
roup appears to be dual regulated, or “PIP2modulated.” PIP2modulates channel gating, but
o Kir but await definitive proof of lipid gating vs. PIP2 modulation (?). The list of channels is



Fig. 2. Conserved PIP2 binding site in Kir2.2. PIP2 binds the transmembrane domain (TMD) of Kir and causes a conformational change that allosterically gates the channel. (A) The PIP2
binding site is specific for inositol 5′ phosphate. (B) A sequence alignment of all Kir family members reveals a highly structured PIP2 binding site comprised of basic residues. Amino
acid residues that directly contact PIP2 are shown in bold type. Only two residues (brown type) at the conserved site lack a positive charge. Residues originating from the TMD and a linker
(LNK) are shaded green and gray, respectively. ^ indicates residues that strongly coordinate the lipid backbone phosphate, and * indicates the residues that strongly (red) and weakly
(gray) bind the PIP2 5′ phosphate. PIP2 atoms are colored yellow for carbon, orange for phosphate, and red for oxygen. Amino acid side chains with carbons colored green are located
on transmembrane outer helix 1 (TM1) or inner helix 2 (TM2). Lysines colored gray are located on the start of a linker helix (LNK) or “tether helix” connecting the transmembrane domain
(TMD) and the cytoplasmic domain (CTD). Residue numbering is according to Kir2.2.
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data has a model emerged where lipids bind to specific sites in the trans-
membrane domain of ion channels [10,45–48].

2.3. Lipid-gating theory

Taken together, these finding suggest a ligand-gating theory of PIP2
activation. In biochemistry, the term ligand refers to the reversible, spe-
cific, and dose-dependent binding of a substance to a protein to form a
complex. Ligands include small molecule drugs, hormones, peptides,
and metabolites. Normally, ligands stabilize at least two states, one
bound and one unbound [49,50 ].

The binding of PIP2 to Kir has many features of a ligand. First, PIP2 is in
low abundance [9,12]. This requires that PIP2 bindwith high affinity to its
targets to exert an effect. Second, PIP2 binds reversibly to ion channels in a
dose-dependentmanner [19,22]. Third, PIP2 bindswith specificity; for ex-
ample, PI(4,5)P2 activates Kir2.1 and PI(3,4)P2 inhibits the same channel
[51]. This specificity is striking since the two lipids are chemical isomers
and only differ in the position of the 5′ phosphate. Another anionic lipid,
oleoyl-CoA, competitively and reversibly inhibits all Kir's [51] except
Katp,which is specifically activatedbyoleoyl-CoA [52,53]. Fourth, like neu-
rotransmitter, PIP2 is a dynamically regulated molecule [54,55]; a signal-
ing cascade can rapidly change the concentration of PIP2 to cause the
channels to open or close [56–58]. And lastly, PIP2 channel affinity deter-
mines channel function [59]. Mutations that allosterically decrease the af-
finity of PIP2 cause disease (e.g., the Andersen–Tawil syndrome) [44,60].

The ligand-like characteristics of PIP2 binding to the entire family of
inward rectifiers warrant classification of these channels as ligand
gated. The unique properties of lipids logically give rise to a lipid sub-
class suggested here “lipid-gated” ion channels.

3. The evolving view of PIP2

3.1. Membrane surface charge theory

PIP2 was first speculated to induce ion channel activation by non-
specific avidity of negatively charged phospholipid binding to clusters
of basic amino acids in the C-terminus of channels [2,5,8]. Anionic lipids
were thought to accumulate on the inner leaflet and non-specifically at-
tract positively charged residues on the surface of Kir's cytoplasmic do-
main (CTD). The rational for the theory is sound and was based on
data fromKatp (Kir7.x) [20,61–63] and proteins likeMARCKS [2,8]. How-
ever, in light of the PIP2/Kir complexes, the previous role of electrostatic
theory appears inadequate for Kir. The glycerol backbone of PIP2 bound
tightly to the transmembrane domain (TMD), and the inositol phos-
phates interacted with residues in or proximal to the TMD, not the
CTD. The original influential lack of Katp's specificity is an anomaly
among Kir's and appears to be an adaptation that allowed regulation
by oleoyl-CoA [19] and not a mechanistic requirement as speculated. If
non-specific anionic interactions regulate Kir, the site of anion lipid
binding are likely distal to the canonical PIP2 site [64] or act synergisti-
cally with PIP2 [43,65] by binding to one of the 4 canonical sites. The no-
tion that the cytoplasmic domain is the binding site for PIP2 and that
PIP2 localizes the CTD similar to a PH domain appears to be incorrect.
The Kir2.2 CTD didmove toward themembrane andmay reflect an evo-
lutionary origin; but the primarymechanism appears to be an allosteric
conformational change, not non-specific electrostatic attractions of the
CTD to the membrane surface. The key PIP2 binding interactions were
confirmed in a complex of PIP2 with GIRK2 [47], suggesting a common
mechanism in related Kir channels (Fig. 2B).

Voltage activated ion channels better exemplify non-specific elec-
trostatic interaction. A well-studied domain called the “voltage sensor
domain” (VSD) senses and responds to changes in surface charge [32,
46,66,67]. Conserved basic residues in the VSD electrostatically move
towards the charge causing a conformational change that gates the
channel (Fig. 3). The charge is non-specific and can be applied by exter-
nal current or by changing the charge of lipids in the plasmamembrane.
The latter was shown in recent bilayers studies where Kv responded
symmetrically and non-specifically to anionic lipids [68]. The same
study showed a distinct phosphatidic acid site in the cytoplasmic leaflet
that specifically and dramatically affected Kv gating [68]. This suggests
both ligand and electrostatic modes can operate in the same channel,
however the structural determinants of the two are likely distinct. A
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similar arrangement exists in Cav2, which has a voltage sensor and a pu-
tative PIP2 specific binding site [11,69].

Fewother channels currently have sufficientmolecular description to
definitively discriminate the mechanism of action seen in Kir and Kv.
Many tetrameric channels exhibit a C-terminal charged cluster and vary-
ing degrees of specificity reminiscent of Kir, including TRP [18,41,70–74],
and P2X4 [75,76] (see Table 1). Typically, these charges immediately fol-
low or are located in the last transmembrane domain. Many other chan-
nels respond to PIP2 in ways that parallel Kir responses, including Cav
[69], NMDA [77], Kv [26], P2X1-3 [78] channels (see also Fig. 1C), but it
is unknown if the interactions are direct with the TMD or indirect
through membrane charge or other proteins. Since numerous soluble
domains use polybasic clusters to target to the plasma membrane [79],
some yet undefined cytoplasmic domains could utilize amembrane sur-
face charge as previously speculated [2,8]. Future structural studies will
continue to reveal the details and breadth of electrostatic theory.

3.2. Cofactor theory

Lipids are sometimes viewed as cofactors. Before discussing PIP2 as a
cofactor I must first define a cofactor and distinguish it from a ligand.
The term cofactor stems from enzymology and generally refers to a per-
manent organic compound or metal that is required for the enzyme to
function. A cofactor normally derives its function by remaining bound
to a protein. In contrast, a ligand derives its function by binding and dis-
sociating from its partner protein. Lipids have always existed in cells and
it is reasonable to assume that some lipidsmay bind as cofactors. A crys-
tal structure of Kv in a lipid like environment revealed phospholipid-
binding sites near the voltage sensor and some of these appear to be
lipid cofactors [46]. In other words, they facilitate the proper organiza-
tion of the channel, but at present they donot appear to initiate a change
in the channel state by dynamic regulation of the lipid.

In a speculative role, PIP2 was proposed to act as a ‘coincidence de-
tector’ in order to facilitate transport of an inactive channel [2,14,72,
80]. A nascent channel in the endoplasmic reticule (ER), where PIP2 is
scarce, remains inactive until it arrives at the plasma membrane
where an abundance of PIP2 constitutively activates the ion channel.
This fits well a definition of cofactor in the resting state. Directly demon-
strating the physiological contribution remains a challenge since PIP2 is
dynamically regulated [2]. For example, the PLC hydrolysis of PIP2 in the
plasma membrane inhibits Kir [57,58], a function also consistent with
ligand-like properties.

In another speculative role, PIP2might function as a cofactor in sens-
ing protons. The pKa's of inositol phosphates are around 6.5 and 6.9, an
optimal range for sensingphysiological changes in proton concentration
[81]. The lipid could remain bound and simply supply the metal phos-
phate as a proton sensing cofactor. Ions interacting with lipids were re-
cently shown to regulate a receptor [82]. Acid-sensing ion channels
(ASIC) are likely candidates for such a mechanism since they bind PIP2
Fig. 3. Mechanistic comparison of surface charge gating vs. direct lipid gating. (A) Non-specific
arrow indicates charge drivenmovement. (B) A lipid-gated channel reversibly binds the signalin
from the channel.
and sense protons. Alternatively, PIP2may serve as a proton-sensitive li-
gand. An atomic structure is known for ASIC [37], but the role of PIP2 in
channel activation requires further investigation.

Perhaps one reason for a slow adaptation of a “lipid-gating” model
for PIP2 is the fact that the prototypical PIP2-gated channel Kir is active
during the resting state of excitable cells. These channels are often con-
sidered “constitutively active” leak channels. While it is true they allow
potassiumout of the cell during the resting state, the acetylcholine stim-
ulation of M1muscarinic receptor inactivates Kir [57,58]. An early study
on high-affinity Kir2.1 in oocytes showed resistance to ACh inactivation
[59], but later studies in mammalian cells demonstrated robust and
complete inhibition of Kir2.1 through activation of M1 receptor [58].
Thus, the neurotransmitter-induced closure of Kir potassium channels
is presumably synergistic with the opening of calcium, sodium, and
voltage-gated channels and should result in a stronger action potential
or sustained excitability.

4. Cellular regulation of PIP2 agonism

The agonist properties of lipids broaden the cell-signaling role of
PIP2 regulation. Similar to neurotransmitter, the release, degradation,
and localization of PIP2 must govern ion channel function.

4.1. Lipid-mediated localization of PIP2 in the plasma membrane

Phosphoinositides distributes heterogeneously in the plasma mem-
brane [83–85]. Hydrophobicity causes lipids to partition (see Fig. 5). Sat-
urated lipid chains partition into cholesterol-rich lipid rafts, often
referred to as detergent-resistant membranes (DRMs). Lipids with
unsaturation partition into the liquid-disordered phase (Ld). Mass spec
of resting cells indicate that PIP2 is comprised of a polyunsaturated
fatty acyl chain [86–88] and localizes in the Ld region of the membrane
[85]. Quantitative studies of PIP2 suggest close to 85% of PIP2 is polyun-
saturated and 70% comprised of an arachidonyl acyl chain [88]. In con-
trast, PIP3 is primarily comprised of saturated or monounsaturated
lipid acyl chains [87]. Strikingly, arachidonyl PIP3 was not detected in
quiescent cells [87]. Based on standard lipid partitioning, the saturated
PIP3 is likely located in cholesterol rafts. In agreementwith this arrange-
ment, PI3 kinase (the enzyme that generates PIP3 from PIP2) localizes to
lipid rafts [89]. Taken together, these data indicate an acyl chain-based
localization of PIPs in the plasmamembrane. Fig. 4 shows a hypothetical
layout of the quiescent cell based on available, but limited, mass spec,
super resolution imaging, and localization studies [85–88].

4.2. GPCR signaling through lipases

Famously, Gq-coupled GPCRs (guanine nucleotide-coupled recep-
tors) hydrolyze PIP2 through phospholipase C (PLC) activation. G-pro-
tein-mediated PIP2 hydrolysis was known more than 30 years ago
surface charge gates an ion channel through a charge sensor domain (blue). The vertical
g lipid PIP2 to allosterically gate the channel. A horizontal arrow indicates PIP2 dissociation



Table 1
Inositol phosphate ion channel specificity.

Channel PIP2 effect Selectivity over Comments Ref

TRPM8 Activation⁎ PI(3,4)P2 and PIP3 5′ activates, 3′ inhibits [18,42]
TRPV1 Mixed PI(4)P and PIP3 Likely acyl chain dependence [41,70]
TRPM4 Activation PI(4)P and PI(5)P Modest selectivity over PIP3 [74]
P2X4 Activation PIP3 Modest selectivity over PIP3 [76]
TRPML Inhibition PI(3,5)P2 (activation) Direct competition of (3,5) with PI(4,5)P2 [71,72]
Kir2.1,1.1 Activation⁎ PI(3,4)P2 (inhibition) Direct competition of (3,4) with PI(4,5)P2 [19,51]
Kir3 (Girk2/4) Activation⁎ PI(4)P Gbg increases PI(4,5)P2 binding [19]

⁎ PIP2 is known to be necessary and sufficient for channel activation.

624 S.B. Hansen / Biochimica et Biophysica Acta 1851 (2015) 620–628
[90]. However, most cell biologist viewed (andmany still do) PIP2 as lit-
tlemore than a substrate for secondmessenger signaling [91]. This view
is inadequate for Kir channels; PIP2 must also be viewed as an ion chan-
nel activator [3,6] or agonist. Hence, the hydrolysis of PIP2 by M1 mus-
carinic receptors should be viewed as a direct regulatory mechanism
to deplete agonist. PIP2 hydrolysis inactivates both high and low affinity
Kir channels [57,58]. The downstream modulation of Kir by phospha-
tases and kinases appear secondary to this direct PIP2 regulation [6,
92], a rational also supported by the central and highly conserved role
of PIP2 in channel activation as described above (2.5). The PLC regula-
tion of Cav [69], Kir [57], HCN [93], Kv7 [26], K2P [94], and TRP [95,96]
channels (among others) is well documented.

In addition to PLC, GPCR signaling activates phospholipase D [97]
(PLD). PLD produces PA and free choline. PA has emerged as an impor-
tant signaling lipid [98]. PA and PIP2 appear to synergistically activate
Kir [43] and K2P [99] channels; in contrast, the nAChR [38] and some Kv

[68] respond specifically to PA and not PIP2. A third important class of li-
pases phospholipase A2 (PLA2) also exhibits GPCR regulation [100]. PLA2

hydrolyzes arachidonyl-lipids creating lysophospholipids and arachi-
donic acid. Downstream and second messenger signaling are well stud-
ied for PLA2 and PLC and include the arachidonic cascade and IP3
second messenger signaling respectively. In comparison, the upstream
role of the intact bioactive arachidonyl-phospholipids and PIP2 is much
less understood. Nonetheless, the added role of PIP2 in directly gating
ion channels solidifies a direct route for GPCR regulation of ion channels
independent of downstream kinases and calcium signaling [6,92].

Several ion channels bind G-proteins directly, this role is widely ac-
cepted for the G-protein regulated inward rectifiers (GIRK/Kir3.x) and
N-type calcium channels (Cav2) [101]. A trimeric complex of GIRK
with Gβγ (a G-protein) and PIP2 revealed the GIRK/Gβγ interface [39].
And biochemical studies suggest that Gβγ is important for increasing
binding of PIP2 to GIRK [40]. The precise mechanism by which Gβγ en-
hances PIP2 activation needs further clarification.
Fig. 4. Phosphoinositide (PI) partitioning in the plasma membrane. In the absence of a stimulus
sometimes in concentrated lipidmicro domains (dark green) apart from cholesterol-rich lipid ra
enters lipid raftswhere PI3 kinase generates PIP3. A saturated lysoPIP2may also associateswith r
domainswhere they are optimally positioned to remodel the PIP acyl chains and head groups du
lipid-recycling event analogous to recycling of some soluble neurotransmitters. Gray diamond
4.3. Protein-mediated localization of lipid modifying enzymes

Lipases localize with ion channels to increase the speed and specific-
ity of PIP2 channel gating [95,102]. For example, rhodopsin-activated
PLC hydrolyzes PIP2 opening TRPL channels. The colocalization of PLC
with TRPL [95] allows for a fast 20 ms response time [103]. In addition,
TRPM7 directly binds PLC to locally affect channel activation [92]. PLC
functionally colocalizedwith NMDA receptors [77], and the IP3 receptor
co-localizes with PLC to regulate calcium release [104]. PLD lipases
directly localize to ion channels, including TRPM8 [105] and TREK-1
[106]. There are many subtypes of lipases; their diverse regulation and
specific localization satisfies cells with the needed diversity for
signaling.
4.4. Transient PIP2 signaling

The partitioning of PIPs and their modifying enzymes appears
primed to deliver dynamic cell signaling. During a signaling event,
G-proteins control PIP kinases, lipases, and phosphatases to degrade
PIP2 signaling. This signaling generates lipid degradation products
(Fig. 5B). For example, it was shown PLC activation generates
arachidonyl-diacyl-glycerol [88]. In addition, PLA2 activation removes
the arachidonyl sn2 acyl chain generating lysoPIP2 [107]. In order to re-
turn to a resting state, degradation products need to be removed from
the membrane and PIP2 resynthesized.

Endocytosis recycles lipid micro domains and lipid rafts after signal-
ing [108]. The late endosome and ER feed back into PIP2 signaling. This
postsynaptic lipid reuptakewould then reset themembrane for another
signaling event analogous to presynaptic neurotransmitter reuptake.
Further studies are needed to understand the temporal and spatial reg-
ulation of PIP2 in vivo in particular during a signaling event. However,
signaling lipids are known to control the ion channel desensitization
, arachidonyl-PIP2 (green) localizes in the disordered region of the plasma membrane and
fts (red). Inositol lipids are distributed according to their acyl chains; hence, saturated PIP2
aft like domains. Key signaling enzymes (see colored boxes) appear localized in lipidmicro
ring signaling. Lipid degradation products are found in endocytic vesicles, which suggest a
represents PI3 kinase.



Fig. 5. PIP2 transient signaling. (A) In the proposedmodel, PIP2 dissociates from Kir and diffuses laterally in the plasmamembrane. G-proteins activate lipid-hydrolyzing enzymes that de-
plete PIP2 from the plasmamembrane or laterally redistribute PIP2 into distinct lipidmicro domains (e.g., lipid rafts). Dynamic PIP2 signaling gives rise to a transient inactivation of Kir that
contributes to an action potential. (B) PIP2 degradation products are taken up by endocytosis and PIP2 resynthesis returns the cell to a resting state.
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[18], voltage dependence [74], and recovery from inactivation [92], and
these events correlate with ion channel rundown. Lipid regulated de-
sensitization may prove to be a central function of many channel
types. Much more data are needed to build a complete picture.

4.5. Other mechanistic considerations

Lipids localize topically by leaflets generating a lipid signal. For ex-
ample, phosphatidylserine (PS) is found on the inner leaflet of the plas-
ma membrane. Enzymes known as flippases and floppases move lipids
between leaflets [109]. PS signals by flipping outside the cell [110]. PS is
negatively charged and movement outside the cell has the ability to
change the membrane surface charge from negative inside to negative
outside. Recently, asymmetric changes to the charge of lipids in a bilayer
dramatically shifted the voltagemidpoint potential of a Kv channel [68].
Hence, lipids may “flip” as a rapid mechanism to impose a lipid induced
change on the cell membrane potential, a mechanism that would have
likely preceded a synapse.

In a separatemechanism, lipid acyl transferases (LAT) could signal to
ion channels by changing the unsaturation of a lipid acyl chain. LAT en-
zymes add acyl chains to lipids or move acyl chains between existing
lipids [111]. If a LAT enzyme swaps an arachidonyl acyl chainwith a sat-
urated one, the signaling lipid would most likely translocate to a lipid
raft (Fig. 5). This may simply sequester the signal away from the ion
channel bymoving the lipid into or out of a lipidmicro domain. Alterna-
tively, the translocation could make the lipid available to other modify-
ing enzymes that would then deplete the signal from the membrane.

Alternatively, lipid acyl chainsmay directly contribute to gating of an
ion channel. The acyl chains contain chemical diversity and putative
specificity could determine the affinity of the lipid for the channel or
cause a specific conformational change that gates the channel. Hydro-
phobic sites for lipid acyl chains affect PIP2 activation of Cav2.2 [11].

The four identical binding sites in Kir are positioned for PIP2 cooper-
atively and allosteric competition. Tetrameric channels engineered to
have only one binding pocket indicated that one PIP2 molecule is suffi-
cient to activate the channel [65]. In wild-type channels with four bind-
ing sites, PIP2 in combination with PA, PG, or PS dramatically increased
channel conductance. However, absent PIP2, these lipids failed to acti-
vate Kir [43]. A structure of Kir with PA bound showed PA binding to
the canonical PIP2 site [10], a site also compatiblewith PG and PS. In bio-
chemical studies, oleoyl-CoA, an endogenous inhibitor, also competes
directly with PIP2 [51]. Taken together, these studies suggest that in
Kir the lipid-binding site is always occupied, and Kir integrates the sum
total of the lipid environment in a cooperative way. At least one site
must be occupied by PIP2; the remaining three canonical sites appear
to be available to exert cooperative activation or inhibition through a
rigid conformational change [10] in the CTD. Thus, additional PIP2 bind-
ing events are poised to activate Kir with increasing affinity consistent
with electrophysiology recordings [65].

Lastly, the relative abundance of diet-derived fatty acids may affect
the levels of PIP2 signaling in the plasmamembrane. Cells appear to in-
corporate the relative amounts of saturated and unsaturated fats into
their cell membranes (phospholipids) [112]. It is tempting to speculate
that diets with excess saturated fat would lead to saturated PIP2 signal-
ing, whichmost likely favors PIP3 signaling. Diets with large amounts of
polyunsaturated fats (PUFAs) would lead to more arachidonyl-PIP2 and
more PIP2 signaling. This may account for the positive affect of dietary
PUFAs on heart arrhythmias and insulin resistance since PIP2 channels
(including Kir) are central to both these diseases. Consistent, with this
model, loss of PIP2 channel activation is associated with the disease
states [60]. Similar speculation could be made of chronic pain and per-
haps some cancers. Understanding PIP2 acylation may shed light on
these important medical problems.

5. The future of lipid Ion channel interactions

5.1. Pharmacology of lipids

Better methods are needed for assaying lipid interactions with ion
channels. Most studies rely on crude pharmacological shifts of PIP2
concentrations in biological membranes; this is inadequate. Varying
the concentration of lipids in a liposome is a good step in the right di-
rection. Normally, one describes a ligand in terms of an on and off
rate. Certainly, lipids have an affinity for ion channels, but we lack the
methodology for effectivelymeasuring lipid channel interactions. Better
quantitative lipid-binding assays are needed. Newmass spec techniques
will likely allow for quantitative measurements of lipids in vivo and
in vitro. And there is no doubt lipidomics will continue to find ways to
improve the quantitative, temporal, and spatial identification of lipids
in a membrane.

5.2. Implications on the plasma membrane

The plasmamembrane holds thousands of lipids with functions that
remain largely a mystery [113]. A catalog of lipid signals appears poised
to exert exquisite regulation on membrane proteins perhaps rivaled
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only byprotein phosphorylation. Certainly, the phosphodiester bonds in
lipids are equally suited for rapid signaling. And lipid acyl chainsmay be
as diverse in function as they are in chemistry. Recognizing low abun-
dant phospholipid signaling molecules as potential ligands for mem-
brane proteins reveals a vast pool of putative effector ligands for
cellular signaling.

6. Concluding remarks

The added role of PIP2 activation presented here takes shape from
the recent crystallographic Kir structures. The non-specific model of
PIP2 activating Kir is gradually making room for a PIP2 site with specific-
ity and ligand-like properties. How does a lipid–ligand influence its
target molecule? It does so just like any other molecule; it binds in a
concentration-dependent manner to a binding site and elicits a con-
formational change in the protein. While in hindsight this seems an
obvious possibility, the plasmamembrane has always been a little mys-
terious [114] and the understanding of membrane proteins slow in
coming. No doubt lipidmodulation of proteins is diversewithmore sur-
prises yet to come.

Conflict of interest

The author declares no conflict of interest.

Transparency Document

The Transparency document associated with this article can be
found, in the online version.

Acknowledgments

I thank Andrew S. Hansen for helpful discussion and comments on
themanuscript. This workwas supported by a Director's New Innovator
Award to SBH (1DP2NS087943-01) from the NIH Common Fund and
the National Institute of Neurological Disorders and Stroke (NINDS).

References

[1] D.W. Hilgemann, Local PIP(2) signals: when, where, and how? Pflugers Arch. 455
(2007) 55–67.

[2] B.-C. Suh, B. Hille, PIP2 is a necessary cofactor for ion channel function: how and
why? Annu. Rev. Biophys. 37 (2008) 175–195.

[3] C.-L. Huang, Complex roles of PIP2 in the regulation of ion channels and trans-
porters, Am. J. Physiol. Renal Physiol. 293 (2007) F1761–F1765.

[4] N. Gamper, M.S. Shapiro, Regulation of ion transport proteins by membrane
phosphoinositides, Nat. Rev. Neurosci. 8 (2007) 921–934.

[5] L.-H. Xie, S.A. John, B. Ribalet, J.N. Weiss, Activation of inwardly rectifying potassi-
um (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction
with other regulatory ligands, Prog. Biophys. Mol. Biol. 94 (2007) 320–335.

[6] C.L. Huang, S. Feng, D.W. Hilgemann, Direct activation of inward rectifier potassi-
um channels by PIP2 and its stabilization by Gbetagamma, Nature 391 (1998)
803–806.

[7] N. Gamper, M.S. Shapiro, Target-specific PIP(2) signalling: how might it work? J.
Physiol. 582 (2007) 967–975.

[8] S. McLaughlin, J. Wang, A. Gambhir, D. Murray, PIP(2) and proteins: interactions,
organization, and information flow, Annu. Rev. Biophys. Biomol. Struct. 31
(2002) 151–175.

[9] S. McLaughlin, D. Murray, Plasma membrane phosphoinositide organization by
protein electrostatics, Nature 438 (2005) 605–611.

[10] S.B. Hansen, X. Tao, R. MacKinnon, Structural basis of PIP2 activation of the classical
inward rectifier K+ channel Kir22, Nature 477 (2011) 495–498.

[11] B. Hille, E.J. Dickson, M. Kruse, O. Vivas, B. Suh, Phosphoinositides regulate ion
channels, Biochim. Biophys. Acta (2014). http://dx.doi.org/10.1016/bbalip.2014.09.010.

[12] J.A. Allen, R.A. Halverson-Tamboli, M.M. Rasenick, Lipid raft microdomains and
neurotransmitter signalling, Nat. Rev. Neurosci. 8 (2007) 128–140.

[13] B.-C. Suh, B. Hille, Regulation of ion channels by phosphatidylinositol 4,5-
bisphosphate, Curr. Opin. Neurobiol. 15 (2005) 370–378.

[14] D.W. Hilgemann, S. Feng, C. Nasuhoglu, The complex and intriguing lives of PIP2
with ion channels and transporters, Sci. STKE 2001 (2001) re19.

[15] D.W. Hilgemann, R. Ball, Regulation of cardiac Na+, Ca2+ exchange and KATP po-
tassium channels by PIP2, Science 273 (1996) 956–959.
[16] Y. Li, N. Gamper, D.W. Hilgemann, M.S. Shapiro, Regulation of Kv7 (KCNQ) K+ chan-
nel open probability by phosphatidylinositol 4,5-bisphosphate, J. Neurosci. 25 (2005)
9825–9835.

[17] S. Haider, A.I. Tarasov, T.J. Craig, M.S.P. Sansom, F.M. Ashcroft, Identification of the
PIP2-binding site on Kir62 by molecular modelling and functional analysis, EMBO J.
26 (2007) 3749–3759.

[18] T. Rohács, C.M.B. Lopes, I. Michailidis, D.E. Logothetis, PI(4,5)P2 regulates the activa-
tion and desensitization of TRPM8 channels through the TRP domain, Nat. Neurosci.
8 (2005) 626–634.

[19] T. Rohács, C.M.B. Lopes, T. Jin, P.P. Ramdya, Z. Molnár, D.E. Logothetis, Specificity of
activation by phosphoinositides determines lipid regulation of Kir channels, Proc.
Natl. Acad. Sci. U. S. A. 100 (2003) 745–750.

[20] Z. Fan, J.C. Makielski, Anionic phospholipids activate ATP-sensitive potassium
channels, J. Biol. Chem. 272 (1997) 5388–5395.

[21] N. Rodriguez, M.Y. Amarouch, J. Montnach, J. Piron, A.J. Labro, F. Charpentier, J. Mérot,
I. Baró, G. Loussouarn, Phosphatidylinositol-4,5-bisphosphate (PIP(2)) stabilizes the
open pore conformation of the Kv111 (hERG) channel, Biophys. J. 99 (2010)
1110–1118.

[22] D. Enkvetchakul, I. Jeliazkova, C.G. Nichols, Direct modulation of Kir channel
gating by membrane phosphatidylinositol 4,5-bisphosphate, J. Biol. Chem.
280 (2005) 35785–35788.

[23] Y. Murata, H. Iwasaki, M. Sasaki, K. Inaba, Y. Okamura, Phosphoinositide phospha-
tase activity coupled to an intrinsic voltage sensor, Nature 435 (2005) 1239–1243.

[24] Y. Murata, Y. Okamura, Depolarization activates the phosphoinositide phosphatase
Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP, 2 (3) (2007)
875–889.

[25] H. Iwasaki, Y. Murata, Y. Kim, M.I. Hossain, C.A. Worby, J.E. Dixon, T. McCormack, T.
Sasaki, Y. Okamura, A voltage-sensing phosphatase, Ci-VSP, which shares sequence
identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate, Proc.
Natl. Acad. Sci. U. S. A. 105 (2008) 7970–7975.

[26] M.A. Zaydman, J.R. Silva, K. Delaloye, Y. Li, H. Liang, H.P. Larsson, J. Shi, J. Cui, Kv71
ion channels require a lipid to couple voltage sensing to pore opening, Proc. Natl.
Acad. Sci. U. S. A. 110 (2013) 13180–13185.

[27] B.-C. Suh, K. Leal, B. Hille, Modulation of high-voltage activated Ca(2+) channels
by membrane phosphatidylinositol 4,5-bisphosphate, Neuron 67 (2010) 224–238.

[28] B.-C. Suh, D.-I. Kim, B.H. Falkenburger, B. Hille, Membrane-localized β-subunits
alter the PIP2 regulation of high-voltage activated Ca2+ channels, Proc. Natl.
Acad. Sci. U. S. A. 109 (2012) 3161–3166.

[29] X. Li, X. Wang, X. Zhang, M. Zhao, W.L. Tsang, Y. Zhang, R.G.W. Yau, L.S. Weisman,
H. Xu, Genetically encoded fluorescent probe to visualize intracellular phos-
phatidylinositol 3,5-bisphosphate localization and dynamics, Proc. Natl. Acad. Sci.
U. S. A. 110 (2013) 21165–21170.

[30] J. Xie, B. Sun, J. Du, W. Yang, H.-C. Chen, J.D. Overton, L.W. Runnels, L. Yue, Phos-
phatidylinositol 4,5-bisphosphate (PIP(2)) controls magnesium gatekeeper
TRPM6 activity, Sci. Rep. 1 (2011) 146.

[31] T. Kawate, E. Gouaux, Fluorescence-detection size-exclusion chromatography for
precrystallization screening of integral membrane proteins, Structure 14 (2006)
673–681.

[32] S.B. Long, E.B. Campbell, R. Mackinnon, Voltage sensor of Kv12: structural basis of
electromechanical coupling, Science 309 (2005) 903–908.

[33] R.E. Hibbs, E. Gouaux, Principles of activation and permeation in an anion-selective
Cys-loop receptor, Nature 474 (2011) 54–60.

[34] X. Tao, J.L. Avalos, J. Chen, R. MacKinnon, Crystal structure of the eukaryotic strong
inward-rectifier K+ channel Kir22 at 31 A resolution, Science 326 (2009)
1668–1674.

[35] H. Furukawa, S.K. Singh, R. Mancusso, E. Gouaux, Subunit arrangement and func-
tion in NMDA receptors, Nature 438 (2005) 185–192.

[36] M. Liao, E. Cao, D. Julius, Y. Cheng, Structure of the TRPV1 ion channel determined
by electron cryo-microscopy, Nature 504 (2013) 107–112.

[37] J. Jasti, H. Furukawa, E.B. Gonzales, E. Gouaux, Structure of acid-sensing ion channel
1 at 19 A resolution and low pH, Nature 449 (2007) 316–323.

[38] T.M. Fong, M.G. McNamee, Correlation between acetylcholine receptor function
and structural properties of membranes, Biochemistry 25 (1986) 830–840.

[39] M.R. Whorton, R. MacKinnon, X-ray structure of the mammalian GIRK2–βγ G-
protein complex, Nature 498 (2013) 190–197.

[40] W. Wang, M.R. Whorton, R. MacKinnon, Quantitative analysis of mammalian
GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na + in a
reconstituted system, Elife 3 (2014) e03671.

[41] E. Cao, J.F. Cordero-Morales, B. Liu, F. Qin, D. Julius, TRPV1 channels are intrinsically
heat sensitive and negatively regulated by phosphoinositide lipids, Neuron 77
(2013) 667–679.

[42] E. Zakharian, C. Cao, T. Rohacs, Gating of transient receptor potential melastatin 8
(TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers,
J. Neurosci. 30 (2010) 12526–12534.

[43] W.W.L. Cheng, N. D'Avanzo, D.A. Doyle, C.G. Nichols, Dual-mode phospholipid reg-
ulation of human inward rectifying potassium channels, Biophys. J. 100 (2011)
620–628.

[44] C.M.B. Lopes, H. Zhang, T. Rohacs, T. Jin, J. Yang, D.E. Logothetis, Alterations in con-
served Kir channel-PIP2 interactions underlie channelopathies, Neuron 34 (2002)
933–944.

[45] A. Laganowsky, E. Reading, T.M. Allison, M.B. Ulmschneider, M.T. Degiacomi, A.J.
Baldwin, C.V. Robinson, Membrane proteins bind lipids selectively to modulate
their structure and function, Nature 510 (2014) 172–175.

[46] S.B. Long, X. Tao, E.B. Campbell, R. MacKinnon, Atomic structure of a voltage-
dependent K+ channel in a lipid membrane-like environment, Nature 450
(2007) 376–382.

http://dx.doi.org/10.1016/j.bbalip.2015.01.011
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0005
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0005
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0010
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0010
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0015
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0015
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0020
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0020
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0025
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0025
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0025
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0030
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0030
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0030
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0035
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0035
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0040
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0040
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0040
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0045
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0045
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0050
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0050
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0050
http://dx.doi.org/10.1016/bbalip.2014.09.010
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0555
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0555
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0065
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0065
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0560
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0560
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0070
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0070
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0070
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0070
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0075
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0075
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0075
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0075
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0080
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0080
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0080
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0085
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0085
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0085
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0090
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0090
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0090
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0095
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0095
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0100
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0100
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0100
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0100
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0105
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0105
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0105
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0110
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0110
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0565
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0565
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0565
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0115
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0115
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0115
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0115
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0120
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0120
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0120
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0125
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0125
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0125
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0130
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0130
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0130
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0130
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0135
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0135
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0135
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0135
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0140
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0140
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0140
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0145
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0145
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0145
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0150
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0150
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0570
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0570
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0160
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0160
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0160
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0160
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0165
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0165
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0170
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0170
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0175
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0175
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0180
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0180
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0185
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0185
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0190
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0190
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0190
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0195
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0195
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0195
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0200
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0200
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0200
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0205
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0205
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0205
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0210
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0210
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0210
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0215
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0215
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0215
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0220
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0220
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0220
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0220


627S.B. Hansen / Biochimica et Biophysica Acta 1851 (2015) 620–628
[47] M.Whorton, R.MacKinnon, Crystal structure of themammalianGIRK2K+ channel
and gating regulation by G proteins, PIP 2, and sodium, Cell 147 (2011) 199–208.

[48] T. Gonen, Y. Cheng, P. Sliz, Y. Hiroaki, Y. Fujiyoshi, S.C. Harrison, T. Walz, Lipid–pro-
tein interactions in double-layered two-dimensional AQP0 crystals, Nature 438
(2005) 633–638.

[49] J. MONOD, J. WYMAN, J.P. CHANGEUX, On the nature of allosteric transitions: a
plausible model, J. Mol. Biol. 12 (1965) 88–118.

[50] J.-P. Changeux, S.J. Edelstein, Allosteric mechanisms of signal transduction, Science
308 (2005) 1424–1428.

[51] M. Rapedius, M. Soom, E. Shumilina, D. Schulze, R. Schönherr, C. Kirsch, F. Lang, S.J.
Tucker, T. Baukrowitz, Long chain CoA esters as competitive antagonists of phos-
phatidylinositol 4,5-bisphosphate activation in Kir channels, J. Biol. Chem. 280
(2005) 30760–30767.

[52] F.M. Gribble, P. Proks, B.E. Corkey, F.M. Ashcroft, Mechanism of cloned ATP-
sensitive potassium channel activation by oleoyl-CoA, J. Biol. Chem. 273 (1998)
26383–26387.

[53] D. Schulze, M. Rapedius, T. Krauter, T. Baukrowitz, Long-chain acyl-CoA esters and
phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the
same mechanism, J. Physiol. 552 (2003) 357–367.

[54] M.P. Czech, PIP2 and PIP3: complex roles at the cell surface, Cell 100 (2000) 603–606.
[55] G.B. Willars, Differential regulation of muscarinic acetylcholine receptor-sensitive

polyphosphoinositide pools and consequences for signaling in human neuroblas-
toma cells, J. Biol. Chem. 273 (1998) 5037–5046.

[56] Y. Murata, Y. Okamura, Depolarization activates the phosphoinositide phosphatase
Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2, J. Physiol. 583
(2007) 875–889.

[57] D.B. Carr, D.J. Surmeier, M1 muscarinic receptor modulation of Kir2 channels en-
hances temporal summation of excitatory synaptic potentials in prefrontal cortex
pyramidal neurons, J. Neurophysiol. 97 (2007) 3432–3438.

[58] T.M. Rossignol, S.V.P. Jones, Regulation of a family of inwardly rectifying potassium
channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho, Pflugers
Arch. 452 (2006) 164–174.

[59] X. Du, H. Zhang, C. Lopes, T. Mirshahi, T. Rohacs, D.E. Logothetis, Characteristic in-
teractions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir
channels by diverse modulators, J. Biol. Chem. 279 (2004) 37271–37281.

[60] N.M. Plaster, R. Tawil, M. Tristani-Firouzi, S. Canún, S. Bendahhou, A. Tsunoda, M.R.
Donaldson, S.T. Iannaccone, E. Brunt, R. Barohn, Mutations in Kir21 cause the de-
velopmental and episodic electrical phenotypes of Andersen's syndrome, Cell
105 (2001) 511–519.

[61] T. Baukrowitz, PIP2 and PIP as determinants for ATP inhibition of KATP channels,
Science 282 (1998) 1141–1144 (80-. ).

[62] S. Shyng, Membrane phospholipid control of nucleotide sensitivity of KATP chan-
nels, Science 282 (1998) 1138–1141 (80-. ).

[63] T. Krauter, J.P. Ruppersberg, T. Baukrowitz, Phospholipids as modulators of K(ATP)
channels: distinct mechanisms for control of sensitivity to sulphonylureas, K(+)
channel openers, and ATP, Mol. Pharmacol. 59 (2001) 1086–1093.

[64] S.-J. Lee, S. Wang, W. Borschel, S. Heyman, J. Gyore, C.G. Nichols, Secondary anionic
phospholipid binding site and gating mechanism in Kir21 inward rectifier chan-
nels, Nat. Commun. 4 (2013) 2786.

[65] L.-H. Xie, S.A. John, B. Ribalet, J.N. Weiss, Phosphatidylinositol-4,5-bisphosphate
(PIP2) regulation of strong inward rectifier Kir21 channels: multilevel positive
cooperativity, J. Physiol. 586 (2008) 1833–1848.

[66] Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, R. MacKinnon, X-ray structure
of a voltage-dependent K+ channel, Nature 423 (2003) 33–41.

[67] S.B. Long, E.B. Campbell, R. Mackinnon, Crystal structure of a mammalian voltage-
dependent Shaker family K+ channel, Science 309 (2005) 897–903.

[68] R.K. Hite, J.A. Butterwick, R. MacKinnon, Phosphatidic acid modulation of Kv chan-
nel voltage sensor function, Elife 3 (2014).

[69] N. Gamper, V. Reznikov, Y. Yamada, J. Yang, M.S. Shapiro, Phosphatidylinositol 4,5-
bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-
type Ca2+ channels, J. Neurosci. 24 (2004) 10980–10992.

[70] C.A. Ufret-Vincenty, R.M. Klein, L. Hua, J. Angueyra, S.E. Gordon, Localization of the
PIP2 sensor of TRPV1 ion channels, J. Biol. Chem. 286 (2011) 9688–9698.

[71] X. Feng, Y. Huang, Y. Lu, J. Xiong, C.-O. Wong, P. Yang, J. Xia, D. Chen, G. Du, K.
Venkatachalam, X. Xia, M.X. Zhu, Drosophila TRPML forms PI(3,5)P2-activated cat-
ion channels in both endolysosomes and plasma membrane, J. Biol. Chem. 289
(2014) 4262–4272.

[72] X. Zhang, X. Li, H. Xu, Phosphoinositide isoforms determine compartment-specific
ion channel activity, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 11384–11389.

[73] T. Rohacs, Phosphoinositide regulation of non-canonical transient receptor poten-
tial channels, Cell Calcium 45 (2009) 554–565.

[74] B. Nilius, F. Mahieu, J. Prenen, A. Janssens, G. Owsianik, R. Vennekens, T. Voets, The
Ca2 + -activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-
biphosphate, EMBO J. 25 (2006) 467–478.

[75] A.R. Ase, L.-P. Bernier, D. Blais, Y. Pankratov, P. Séguéla, Modulation of heteromeric
P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit,
J. Neurochem. 113 (2010) 1676–1684.

[76] L.-P. Bernier, A.R. Ase, S. Chevallier, D. Blais, Q. Zhao, E. Boué-Grabot, D. Logothetis,
P. Séguéla, Phosphoinositides regulate P2X4 ATP-gated channels through direct in-
teractions, J. Neurosci. 28 (2008) 12938–12945.

[77] I.E. Michailidis, T.D. Helton, V.I. Petrou, T. Mirshahi, M.D. Ehlers, D.E. Logothetis,
Phosphatidylinositol-4,5-bisphosphate regulates NMDA receptor activity through
alpha-actinin, J. Neurosci. 27 (2007) 5523–5532.

[78] G. Mo, L.-P. Bernier, Q. Zhao, A.-J. Chabot-Doré, A.R. Ase, D. Logothetis, C.-Q. Cao, P.
Séguéla, Subtype-specific regulation of P2X3 and P2X2/3 receptors by
phosphoinositides in peripheral nociceptors, Mol. Pain 5 (2009) 47.
[79] W. Do Heo, T. Inoue, W.S. Park, M.L. Kim, B.O. Park, T.J. Wandless, T. Meyer,
PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to
the plasma membrane, Science 314 (2006) 1458–1461.

[80] G. Di Paolo, P. De Camilli, Phosphoinositides in cell regulation and mem-
brane dynamics, Nature 443 (2006) 651–657.

[81] E.E. Kooijman, K.N.J. Burger, Biophysics and function of phosphatidic acid: a
molecular perspective, Biochim. Biophys. Acta 1791 (2009) 881–888.

[82] X. Shi, Y. Bi, W. Yang, X. Guo, Y. Jiang, C. Wan, L. Li, Y. Bai, J. Guo, Y. Wang, X.
Chen, B. Wu, H. Sun, W. Liu, J. Wang, C. Xu, Ca2+ regulates T-cell receptor
activation by modulating the charge property of lipids, Nature 493 (2013)
111–115.

[83] K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387 (1997)
569–572.

[84] D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle, Science
327 (2010) 46–50.

[85] G. van den Bogaart, K. Meyenberg, H.J. Risselada, H. Amin, K.I. Willig, B.E.
Hubrich, M. Dier, S.W. Hell, H. Grubmüller, U. Diederichsen, R. Jahn, Mem-
brane protein sequestering by ionic protein–lipid interactions, Nature 479
(2011) 552–555.

[86] M.R. Wenk, L. Lucast, G. Di Paolo, A.J. Romanelli, S.F. Suchy, R.L. Nussbaum,
G.W. Cline, G.I. Shulman, W. McMurray, P. De Camilli, Phosphoinositide
profiling in complex lipid mixtures using electrospray ionization mass
spectrometry, Nat. Biotechnol. 21 (2003) 813–817.

[87] S.B. Milne, P.T. Ivanova, D. DeCamp, R.C. Hsueh, H.A. Brown, A targeted mass spec-
trometric analysis of phosphatidylinositol phosphate species, J. Lipid Res. 46
(2005) 1796–1802.

[88] M. Haag, A. Schmidt, T. Sachsenheimer, B. Brügger, Quantification of signaling
lipids by nano-electrospray ionization tandem mass spectrometry (Nano-ESI MS/
MS), Metabolites 2 (2012) 57–76.

[89] C. Peres, A. Yart, B. Perret, J.-P. Salles, P. Raynal, Modulation of phosphoinositide 3-
kinase activation by cholesterol level suggests a novel positive role for lipid rafts in
lysophosphatidic acid signalling, FEBS Lett. 534 (2003) 164–168.

[90] L. Birnbaumer, J. Abramowitz, A.M. Brown, Receptor-effector coupling by G pro-
teins, Biochim. Biophys. Acta 1031 (1990) 163–224.

[91] M.J. Berridge, R.F. Irvine, Inositol trisphosphate, a novel second messenger in cellu-
lar signal transduction, Nature 312 (1984) 315–321.

[92] L.W. Runnels, L. Yue, D.E. Clapham, The TRPM7 channel is inactivated by
PIP(2) hydrolysis, Nat. Cell Biol. 4 (2002) 329–336.

[93] P. Pian, A. Bucchi, A. Decostanzo, R.B. Robinson, S.A. Siegelbaum, Modula-
tion of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors
coupled to phospholipase C, Pflugers Arch. 455 (2007) 125–145.

[94] P. Enyedi, G. Czirják, Molecular background of leak K+ currents: two-pore
domain potassium channels, Physiol. Rev. 90 (2010) 559–605.

[95] P. Delmas, M. Crest, D.A. Brown, Functional organization of PLC signaling microdo-
mains in neurons, Trends Neurosci. 27 (2004) 41–47.

[96] T. Rohacs, Regulation of transient receptor potential channels by the phospholipase
C pathway, Adv. Biol. Regul. 53 (2013) 341–355.

[97] J.H. Exton, Regulation of phospholipase D, Biochim. Biophys. Acta 1439 (1999)
121–133.

[98] X. Wang, S.P. Devaiah, W. Zhang, R. Welti, Signaling functions of phosphatidic acid,
Prog. Lipid Res. 45 (2006) 250–278.

[99] J. Chemin, A.J. Patel, F. Duprat, I. Lauritzen, M. Lazdunski, E. Honoré, A phos-
pholipid sensor controls mechanogating of the K+ channel TREK-1, EMBO
J. 24 (2005) 44–53.

[100] D.M. Kurrasch-Orbaugh, J.C. Parrish, V.J. Watts, D.E. Nichols, A complex sig-
naling cascade links the serotonin2A receptor to phospholipase A2 activa-
tion: the involvement of MAP kinases, J. Neurochem. 86 (2003) 980–991.

[101] H.W. Tedford, G.W. Zamponi, Direct G protein modulation of Cav2 calcium chan-
nels, Pharmacol. Rev. 58 (2006) 837–862.

[102] P. Delmas, B. Coste, N. Gamper, M.S. Shapiro, Phosphoinositide lipid second mes-
sengers: new paradigms for calcium channel modulation, Neuron 47 (2005)
179–182.

[103] R. Ranganathan, G.L. Harris, C.F. Stevens, C.S. Zuker, A Drosophila mutant defective
in extracellular calcium-dependent photoreceptor deactivation and rapid desensi-
tization, Nature 354 (1991) 230–232.

[104] Z. Yuan, T. Cai, J. Tian, A.V. Ivanov, D.R. Giovannucci, Z. Xie, Na/K-ATPase tethers
phospholipase C and IP3 receptor into a calcium-regulatory complex, Mol. Biol.
Cell 16 (2005) 4034–4045.

[105] I. Vinuela-Fernandez, L. Sun, H. Jerina, J. Curtis, A. Allchorne, H. Gooding, R. Rosie, P.
Holland, B. Tas, R. Mitchell, S. Fleetwood-Walker, The TRPM8 channel forms a com-
plex with the 5-HT1B receptor and phospholipase D that amplifies its reversal of
pain hypersensitivity, Neuropharmacology 79 (2014) 136–151.

[106] Y. Comoglio, J. Levitz, M.A. Kienzler, F. Lesage, E.Y. Isacoff, G. Sandoz, Phospholipase
D2 specifically regulates TREK potassium channels via direct interaction and local
production of phosphatidic acid, Proc. Natl. Acad. Sci. U. S. A. 111 (2014)
13547–13552.

[107] M. Capestrano, S. Mariggio, G. Perinetti, A.V. Egorova, S. Iacobacci, M.
Santoro, A. Di Pentima, C. Iurisci, M.V. Egorov, G. Di Tullio, R. Buccione, A.
Luini, R.S. Polishchuk, Cytosolic phospholipase A2ε drives recycling
through the clathrin-independent endocytic route, J. Cell Sci. 127 (2014)
977–993.

[108] F.R. Maxfield, T.E. McGraw, Endocytic recycling, Nat. Rev. Mol. Cell Biol. 5 (2004)
121–132.

[109] M.R. Clark, Flippin' lipids, Nat. Immunol. 12 (2011) 373–375.
[110] P.A. Leventis, S. Grinstein, The distribution and function of phosphatidylserine in

cellular membranes, Annu. Rev. Biophys. 39 (2010) 407–427.

http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0225
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0225
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0225
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0230
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0230
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0230
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0235
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0235
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0240
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0240
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0245
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0245
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0245
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0245
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0250
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0250
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0250
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0255
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0255
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0255
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0260
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0265
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0265
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0265
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0270
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0270
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0270
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0275
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0275
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0275
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0280
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0280
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0280
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0285
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0285
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0285
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0290
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0290
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0290
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0290
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0575
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0575
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0580
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0580
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0295
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0295
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0295
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0300
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0300
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0300
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0305
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0305
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0305
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0310
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0310
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0310
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0315
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0315
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0315
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0585
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0585
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0325
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0325
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0325
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0325
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0590
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0590
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0330
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0330
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0330
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0330
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0335
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0335
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0340
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0340
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0345
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0345
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0345
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0350
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0350
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0350
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0355
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0355
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0355
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0360
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0360
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0360
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0365
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0365
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0365
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0370
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0370
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0370
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0375
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0375
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0385
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0385
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0390
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0390
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0390
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0390
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0390
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0395
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0395
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0400
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0400
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0405
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0405
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0405
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0405
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0410
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0410
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0410
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0410
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0415
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0415
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0415
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0420
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0420
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0420
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0425
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0425
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0425
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0430
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0430
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0435
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0435
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0440
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0440
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0450
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0450
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0450
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0455
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0455
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0455
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0460
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0460
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0465
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0465
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0470
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0470
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0475
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0475
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0480
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0480
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0480
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0480
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0485
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0485
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0485
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0490
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0490
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0495
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0495
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0495
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0500
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0500
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0500
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0505
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0505
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0505
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0510
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0510
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0510
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0510
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0600
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0600
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0600
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0600
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0515
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0520
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0520
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0525
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0605
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0605


628 S.B. Hansen / Biochimica et Biophysica Acta 1851 (2015) 620–628
[111] A. Schmidt, M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke,
W.B. Huttner, H.D. Söling, Endophilin I mediates synaptic vesicle formation by
transfer of arachidonate to lysophosphatidic acid, Nature 401 (1999) 133–141.

[112] L. Mclennan, Relative effects polyunsaturated of dietary saturated, fatty acids on
cardiac arrhythmias and in rats1, 1993.
[113] G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and
how they behave, Nat. Rev. Mol. Cell Biol. 9 (2008) 112–124.

[114] S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell mem-
branes, Science 175 (1972) 720–731.

http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0530
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0530
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0530
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0610
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0610
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0540
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0540
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0545
http://refhub.elsevier.com/S1388-1981(15)00023-2/rf0545

	Lipid agonism: The PIP2 paradigm of ligand-�gated ion channels
	1. Introduction
	2. The signaling lipid PIP2 is an agonist that gates ion channels
	2.1. PIP2 ion channel physiology
	2.2. PIP2 ion channel structure
	2.3. Lipid-gating theory

	3. The evolving view of PIP2
	3.1. Membrane surface charge theory
	3.2. Cofactor theory

	4. Cellular regulation of PIP2 agonism
	4.1. Lipid-mediated localization of PIP2 in the plasma membrane
	4.2. GPCR signaling through lipases
	4.3. Protein-mediated localization of lipid modifying enzymes
	4.4. Transient PIP2 signaling
	4.5. Other mechanistic considerations

	5. The future of lipid Ion channel interactions
	5.1. Pharmacology of lipids
	5.2. Implications on the plasma membrane

	6. Concluding remarks
	Conflict of interest
	Transparency Document
	Acknowledgments
	References


