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Significant advances have been made in developing novel therapeutics for cancer treatment, and
targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only
about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The
indication is that current preclinical methods are limited in predicting successful outcomes. Such
failure exacts enormous cost, both financial and in the quality of human life. This Primer explores
the current status, promise, and challenges of preclinical evaluation in advanced mouse cancer
models and briefly addresses emerging models for early-stage preclinical development.
Explosion of Cancer Therapies and Challenges to
Clinical Success
Ever-increasing knowledge of cancer biology has yielded count-

less possibilities for diagnostic and therapeutic strategies

(Figure 1), while at the same time revealing enormous disease

complexities that challenge clinical success. Such challenges

include tumor microenvironment complexities, intra- and inter-

tumor molecular and biological heterogeneity, systemic and

tumoral immune and metabolic response heterogeneity, and

the ability of drug-resistant stem-like cancer-initiating cells to

repopulate treated cancers (Pattabiraman and Weinberg,

2014). Too often, experimental targeted therapies designed to

assimilate known disease complexity have proven ineffective,

only to highlight the limitations in our understanding. In contrast

to most experimental targeted therapies, encouraging advance-

ments have been made using a number of cell-based and

targeted immunotherapies, which have produced sustained re-

sponses in patients (Page et al., 2014). However, only a fraction

of patients respond to these therapies.

Over the last decade, cancer classification has shifted from

relying solely on histiopathologic properties to including key

molecular attributes that can predict therapeutic outcomes.

That certain molecular aberrations are targets for effective ther-

apy first led to clinical practice in 1995 after a leukemia (APL)

bearing the PML-RARa translocation was shown to be sensitive

to retinoic acid (tretinoin) (Quignon et al., 1997), which targets the

RARa component to effect leukemic cell differentiation. Soon

thereafter, Herceptin (a Her2 inhibitor) was approved for treating

Her2+ breast cancer (1998), and Gleevec (a BCR-ABL inhibitor)

was approved for CML treatment (2001). These highly effective

drugs rapidly became the standard of care. Although these suc-

cesses establish the promise of targeted therapies, most at-

tempts to attain similar results targeting knownmolecular drivers

have failed, and the reasons are often elusive because of human

research limitations. Some general principles have been recog-

nized that emphasize the need for preclinical platforms approx-
imating human cancers. For example, in each of the noted suc-

cesses, single potent cancer drivers present in a significant

fraction of patient malignancies were targeted; however, when

a minor fraction of patients are responsive, all-comer clinical trial

data may mask the responders. This was first demonstrated in

non-small-cell lung cancer (NSCLC) patient trials that initially

failed to show significant responsiveness to EGFR-targeted tyro-

sine kinase inhibitors; however, the �10% of patients whose tu-

mors actually harbored activating EGFR mutations were

uniquely sensitive (Lynch et al., 2004; Paez et al., 2004). Now,

screening of lung cancers for such mutations prior to therapy

is routine practice. Lung cancer is the most prevalent US cancer;

if limited to clinical trials, accurate identification of therapies

effective in a fraction of less-common cancer types may not be

possible. Nonetheless, when a specific target was known, strat-

ification of patients has identified additional effective therapies,

such as inhibitors for BRAFmutant melanomas and ALK translo-

cation-positive NSCLCs (Pagliarini et al., 2015). Unfortunately,

patients treated with single targeted therapies inevitably relapse

with cancers that are resistant to the original drug.

Another challenge in targeting single drivers is the feedback

response upon molecular network disruption that prevents effi-

cacyorcauses increasedseverity.Understandingsuchmolecular

responses can aid in the discovery of more effective combination

therapies. In addition, unbiased molecular queries are showing

promise in identifying signatures that correspond to prognosis

and/or therapeutic outcomes. For example, in some cases,

unique transcriptomesignaturesstratify cancers intodistinct ther-

apeutic and/or prognostic categories and thus improve patient

management (e.g., Garraway, 2013). Thus far, this approach

has been used primarily for determining which patients require

aggressive chemotherapy treatment, hence reducing the fre-

quency of over-treatment. Oncotype DX and FDA-approved

MammaPrint tests, both based on distinguishing transcriptome

signatures, are now utilized in the clinic to identify the low risk

breast cancer patients to be excluded fromaggressive treatment.
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Figure 1. Targeting the Tumor and Its

Microenvironment
Genetic alterations produce oncogenes that drive
signaling pathways in cancer cells facilitating
survival and growth. However, tumor cells also
cooperate with stromal cells, including vessels,
fibroblasts, and various immune cells, to acquire
growth factors, an energy supply and protection
from host defenses. These key autonomous and
stromal mechanisms constitute potential thera-
peutic targets both locally, and for immune cells
also in the circulating blood and distant immune
organs, as shown by indicated numbers. (1) Can-
cer cell growth driven by an aberrant kinase
(‘‘Driver Gene’’) can be targeted by small-molecule
inhibitors. (2) Oncogenic signaling promoting un-
controlled cell cycling can be disrupted (e.g., anti-
metabolites, anti-microtubule agents, DNA-
damaging agents). (3) Tumor growth requires
development of new vasculature for enhanced
nutrient demands, which can be blocked by anti-
angiogenic agents. (4 and 5) Growth of cancer
cells stimulated by release of either host-derived
hormones (4, green arrow) or growth factors (5,
blue arrows from blood vessels, fibroblasts,
macrophages, and myeloid-derived suppressor
cells [MDSC]) can be targeted by hormone in-
hibitors (e.g., anti-hormones or biosynthesis in-
hibitors) or growth factor receptor inhibitors,
respectively. (6 and 7) Tumor cells can shift the
inflammatory response to an immunosuppressive
mode (e.g., activation of CTLA-4 and PD-1 in

T cells or PD-L1 in cancer cells). The immunosuppressive environment can be reversed via treatment of immunomodulatory cytokines (6, modulator sign; e.g., IL-
2, IL-15) or immune checkpoint inhibitors (7, modulator sign; e.g., anti-CTLA-4, anti-PD-1, or anti-PD-L1), resuming anti-cancer activity of T cells. Left inset: key
for therapeutic modes. Right inset: targeting agents. (Artwork adapted from design by Jonathan Marie).
Yet, accuracy is not optimal, and numerous challenges currently

prevent broad implementation ofmolecular signature diagnostics

(van’t Veer and Bernards, 2008). Additionally, the hope is that

molecular signatures can be identified via unbiased compound

ormolecular screens that will dictate specific effective treatments

even when the targets are unknown.

Thus, although clearly impactful, the use of cancer molecular

constitution to guide clinical practice is in its infancy, and

research to identify parameters that hone specificity and

improve accuracy is ongoing. If confined to human research,

achieving maximum effectiveness is likely impossible due to

low frequencies of each molecular subtype within most cancers

and limitations associated with clinical trials. More challenging is

understanding the impact of complex and varied inherited ge-

netic constitution on clinical outcomes with subsequent conver-

sion to clinical practice (Hood and Friend, 2011). In this regard,

the sophistication of complex trait evaluation in mice using the

collaborative and diversity crosses may offer a path to discovery

(Churchill et al., 2004; Svenson et al., 2012).

The above summary provides only a cross-section of the ther-

apeutic and diagnostic possibilities currently under investiga-

tion, and the reader is referred to current review articles for

more comprehensive information (Chin et al., 2011; Hood and

Friend, 2011; Yap et al., 2013). Ultimately, the current limitation

to improving cancer patient care within reasonable timeframes

may not be the availability of potentially efficacious therapies;

rather, a major blockade is the lack of a fully developed and inte-

grated set of reliable preclinical technologies that can navigate

complex variables in therapeutic responses and diagnostic ac-
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curacy. To optimally develop efficacious therapies, preclinical

research must utilize a diversity of models that collectively incor-

porate the biology and genetics dictating therapeutic outcomes

for specific cancers, and yet achieve sufficient throughput. Here

we summarize the value and constraints of mouse cancer

models, highlight recent progress indicating promise, summa-

rize non-mammalian and ex vivo preclinical models, and explore

the needs for, and challenges to, developing robust multi-

faceted preclinical platforms for routine use.

Mouse Cancer Models in Preclinical Research
Murine cancer models designed to capture the complexities of

human cancers currently offer themost advanced preclinical op-

portunity for navigating diverse mechanisms that provide ratio-

nale for therapeutic development (Van Dyke and Jacks, 2002).

One approach is to probe pathobiology mechanisms to design

effective treatments by perturbation with molecularly targeted

therapies (Olive and Tuveson, 2006). Additionally, the models

are being used/developed as preclinical efficacy determination

platforms to guide clinical trial designs (Singh et al., 2012). How-

ever, the application of complex cancer models to clinical

research directives is an emerging science, currently executed

in individual settings and with limited resources. Significant

research, ideally in a team-directed, multi-institutional effort, is

required to hone existing technologies into integrated preclinical

workflows to optimally accelerate positive clinical outcomes.

A variety of approaches to mouse cancer modeling are now

available (Figure 2), and each has strengths and weaknesses

(Table 1). Here, we address the limitations of standard Cell



Figure 2. Current State of Preclinical Can-

cer Modeling
Preclinical mouse models can be defined ac-
cording to the species source of tumor, how it is
created, and how it is manipulated. (Upper panel)
Tumors derived from human patients, and other
non-murine species, can be directly transplanted
into immunocompromised mice to form patient-
derived xenograft (PDX) models; PDXs can also be
established from circulating tumor cells (CTCs).
Alternatively, these same tumors can produce
established cell lines maintained in vitro as cell
cultures, and transplanted into immunocompro-
mised mice to form cell line-derived xenograft
(CDX) models. Since the hosts of these tumors
need to be immunocompromised, they are useful
only for testing the efficacy of chemotherapeutics
(Chemo) and targeted small-molecule inhibitors
(Targeted). Xenograft models derived from canine
patients also belong to this category, but are not
shown here. (Lower panel) Mice can be en-
gineered to generate tumors of human relevance
with respect to histopathology, etiology, and mo-
lecular wiring. Offspring of such genetically en-
gineered mice (GEM) can serve directly as pre-

clinical models themselves, in which case the tumor is treated at its precise point of origin. Notably, model building can be streamlined by using non-germline
approaches, one of which is to genetically modify ES cells and study the arising chimeric mice without time-consuming breeding schemes. Alternatively, tumors
harvested fromGEMs can be transplanted and expanded into fully immunocompetent syngeneic hosts, forming GEM-derived allograft (GDA) models. Syngeneic
models allow preclinical studies of not only chemotherapeutic and small-molecule drugs, but also of all varieties of immunotherapeutic agents (Immuno).
line-Derived Xenograft (CDX) models, describe genetically and

biologically engineered mouse cancer models [Genetically

Engineered Mouse (GEM), GEM-Derived Allograft (GDA),

Patient-Derived Xenograft (PDX) models], review values and

constraints, and highlight recent progress. Thus far, results indi-

cate promise in understanding cancer pathobiology and in the

enhancement of clinical efficacy prediction, but also underscore

the need for further development to achieve consistent reliability.

Traditional Mouse Models in Therapeutic Development
Historically, preclinical mouse models have co-evolved with

cancer therapy development (Figure 3). The earliest models

were built through transplantation of murine tumors into immu-

nocompetent host mice (DeVita and Chu, 2008; Talmadge

et al., 2007). These early mouse-in-mouse isograft models

served as workhorses for drug screening during the 1960s and

1970s, and were successful in identifying a number of effective

cytotoxic drugs such as vincristine and procarbazine (DeVita

and Chu, 2008). During the 1980s, researchers explored mecha-

nisms of metastasis using selected murine and human tumor cell

lines. A series of investigations by Fidler and colleagues demon-

strated that metastasis is not random but site-selective (Fidler

and Hart, 1982), and that metastatic patterns are injection site-

dependent, supporting the establishment of ‘‘orthotopic’’

models (Talmadge et al., 2007). Since then, cancer therapeutic

development has relied upon the more tractable CDX transplan-

tation models, in which tumors develop after subcutaneous

injection of in vitro-established human cancer cells into immuno-

compromised mice (Figure 2). The cell lines have been selected

over many passages for rapid 2D growth on plastic in serum-

containing media. The NCI60 cell line panel (DeVita and Chu,

2008; Talmadge et al., 2007) provided a valuable resource

from which most CDXs were generated, and recent efforts

have greatly expanded the repertoire (Reinhold et al., 2015).
These models are easily established in a wide variety of labora-

tory settings and have been successfully used to identify an

abundance of cytotoxic drugs leading to chemotherapy treat-

ments that still dominate clinical cancer management (Figure 3).

Unfortunately, CDXs have failed to predict human efficacy for

most therapies targeted to cancer-driving proteins (Johnson

et al., 2001), as evidenced by the low FDA approval rate of

5%–7% for targeted therapeutics (Sharpless and Depinho,

2006). With an average time from discovery to clinical practice

of 12 years, at an average estimated cost of $0.5–$2.0 billion

(Adams and Brantner, 2006) and an immeasurable human

price, this low yield forestalls even a goal to chronically manage,

rather than cure, cancers. The observation that most cancer

therapeutics fail in clinical phase II and III efficacy assessment

indicates that current standard preclinical practice inadequately

addresses complex challenges to successful treatment, such

as host immune responses, cancer heterogeneity, and drug

resistance. Consequently, the system cannot be used to opti-

mize a multitude of variables known to influence therapeutic

outcomes, such as combinatorial therapies, dosing schedules,

and drug delivery methods (Al-Lazikani et al., 2012). CDXs

continue to be valuable in identifying non-targeted cytotoxic

agents and in primary assessment of drug toxicity (Teicher,

2006), for analyzing resistance mechanisms (Garraway and

Jänne, 2012) and in triaging potentially effective targeted thera-

pies for evaluation in more representative models.

Mouse Models Designed after Patient Cancers
Mice and humans are believed to have diverged from each other

�87 million years ago (Bailey et al., 2013), so naturally there are

numerous significant similarities between the two species, and

also many marked disparities, including differences in immune

systems and drug metabolism. Based on the premise that many

cancers have been cured in mice and not in people, many argue
Cell 163, September 24, 2015 ª2015 Elsevier Inc. 41
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that mice are inappropriate for use in therapeutic development

(Leaf, 2004). However, it is critical to understand that ‘‘cures’’

have been attained only in CDX models, thus dismissal of all

mouse cancer models as irrelevant is unwarranted. Human can-

cers are enormously complex, and their evolutionary etiology

generates vast diversity amongandwithin them, thus challenging

the attainment of successful treatments. However, as knowledge

of cancer complexities has increased, so has the ability to design

mouse models that better represent cancer patients. PDX and

GEMmodelsdevelop tumorswith thegreatest similarity to human

diseases yet achieved, and the past 5 years have seen an in-

crease in their employment in preclinical research. As with all

models, eachapproach has its strengths and limitations (Table 1).

Early studies suggest promise for improved guidance in the

development of successful clinical treatments (Table 2), and

yet also emphasize the need for further scrutiny and refinement.

The following provides a balanced consideration ofmodel advan-

tages and limitations, their ramifications in obtaining optimally

accurate preclinical data, and the logistical requirements for

achieving efficiency, accuracy, and reproducibility.

Patient-Derived Xenograft Models

Relative toCDXmodels, immunocompromisedmicebearingsub-

cutaneoussurgically derivedclinical tumor samples (PDXmodels)

arebetteralignedwithhumandisease, since intact tissue thatpre-

serves tumor architecture is transferred directly to recipient mice

and not compromised by in vitro adaptation (Figure 2). PDXs are

the only models harboring bona fide tumor targets directly from

the patient, and hence their use in drug discovery is expanding

rapidly. Promise for suchmodels, first developedbyFiebig (Fiebig

et al., 1984), was demonstrated when chemotherapeutic agents,

such as alkaloids and anti-metabolites, were shown to elicit

similar responses in mice and patients (Mattern et al., 1988). In

contrast, a study of responses to numerous cytotoxic agents in

NCI60-basedCDXmodels showed that thepredictive value for ef-

ficacy was much less impressive (Johnson et al., 2001). Unfortu-

nately, early studies utilizing PDXs were limited by difficulties in

collecting clinical samples and in achieving sufficient take rates.

The recent resurgence of PDX model use for therapeutic eval-

uation has been fueled by significant improvements in clinical

sample access and transplantation technology. Cancers estab-

lished as PDXs can, in early passages, retain the stromal compo-

sition and histologic and molecular heterogeneity characteristic

of those in patients (Hidalgo et al., 2014; Tentler et al., 2012).

Since these properties critically impact therapeutic responses

and biomarker specificity, PDX models provide a preclinical

venue for addressing some of the most challenging barriers to

successful patient therapy. Furthermore, human target speci-

ficity allows for direct evaluation of lead human-specific thera-

peutics, such as antibodies, in clinical development.

Methodologies for PDX establishment and characterization are

detailedelsewhere (Hidalgoet al., 2014;Tentler et al., 2012;Zhang

et al., 2013). For some cancers, such as certainmelanomas, lung,

and colorectal cancers, transplant take rates can reach R75%,

and the time required for tumor growth can be as little as

2–4 months. However, these attributes vary widely depending

on sample type and amount (e.g., fresh biopsy tissue, fine needle

aspirate, circulating tumor cells), tumor origin, molecular proper-

ties, and recipient strain (see Supplemental Information).



Figure 3. Timeline of Key Preclinical Cancer

Model Developments since 1950
As the conceptual targets of cancer treatment
progressed from actively dividing cells to onco-
genic signaling and immune checkpoints, pre-
clinical models (right side) and cancer therapies
(left side) co-evolved accordingly. This evolution
was highly dependent on technical advances, re-
sulting in waves of activity. For example, recent
development of fully immunocompromised mice
and diverse syngeneic GEM models has signifi-
cantly promoted PDX and GDA models, respec-
tively, for preclinical cancer studies (the bracket).
Consequently, some cancers, such as neuroendocrine, luminal

ER+breast, andprostatecancers (Rosfjordet al., 2014) areunder-

represented. Notably, PDX engraftibility appears to significantly

correlate with clinical aggressiveness (Ilie et al., 2015).

Relative to subcutaneous transplants, cancers orthotopically

transferred into organs of origin are more likely to maintain tumor

microenvironment characteristics that impact therapeutic out-

comes (Talmadge et al., 2007). However, orthotopic PDX pro-

duction is technically challenging, and, for most cancer types,

tumor growth and responses must be monitored via expensive

and often laborious longitudinal imaging. Thus, preclinical thera-

peutic studies currently exclusively utilize subcutaneousmodels.

Production of PDX cohorts is by serial tumor transplantation,

and, given the likelihood of changewith each passage, therapeu-

tic studies are most representative in low-passage models.

Additionally, human stromal components are maintained for

only 2–3 passages, with mouse stromal elements becoming

dominant thereafter (Rosfjord et al., 2014). Unfortunately, if

limited to early passage use, each model represents a limited

resource. Hence, most preclinical studies utilize models that

have been expanded, banked, and developed into significantly

sized cohorts. The extent of sacrifice in accurately predicting

efficacy is presently undefined and likely depends on the mech-

anism of therapeutic activity. As such, in propagating PDXs,

parental tumor traits should be routinely monitored, and devia-

tions must be considered in interpreting therapeutic and

biomarker data.

To circumvent immune rejection, human cancers must be

transplanted into immunocompromised mice. Commonly used

recipients, such as nude, SCID, and NOD/SCID strains, vary in

the extent of immune impairment (detailed in Supplemental

Information). IL-2Rg-deficient NOD/SCID mice (NSG and NOG

strains) are the most severely impaired, and often yield improved

take rates. Critically, the requirement for immunocompromised
Cell 163, S
hosts precludes assessment of arising

therapies designed to modulate immune

function (e.g., immune checkpoint inhibi-

tors a-CTLA-4, a-PD-1, a-PD-L1). More-

over, therapeutic responses in general

are likely influenced by preexisting can-

cer-dependent immune phenotypes and

immune responses elicited upon ther-

apy-induced tumor perturbation (Zitvogel

et al., 2008). The extent to which compro-
mised immune systems limit predictive value for a given thera-

peutic approach will be determined as comparisons between

PDX and clinical outcomes are expanded. Technologies to

‘‘humanize’’ the mouse immune system by transplanting purified

human CD34+ hematopoietic stem cells into myeloablated

NSG/NOG recipients (e.g., ‘‘BLT’’ mice: http://jaxservices.jax.

org/invivo/humanized-BLT-mice.html) and other chimeric stra-

tegies have been developed (Legrand et al., 2009; Shultz et al.,

2014). However, the high cost of recipient mice, limitations on

human bone marrow acquisition, engraftment variability, and

technical demands currently preclude use of these models in

preclinical therapeutic discovery.

Despite the challenges to routine preclinical application,

several PDX studies have proven effective in paralleling human

outcomes (Malaney et al., 2014), in exploring drug resistance

mechanisms (Das Thakur et al., 2013) and in identifying targets

for second-line treatment (Girotti et al., 2015). Programs are

also underway to employ PDXmodels in individualized precision

cancer care. To date, this approach has been most successfully

applied to pediatric patients with advanced sarcomas who have

demonstrated the predicted response, sometimes to drugs not

previously associated with this indication (Tentler et al., 2012).

Patient-specific studies are currently limited by expense and

relatively long and unpredictable times for establishing test ani-

mals. Since current clinical trials generally involve patients who

have undergone prior failed treatments, results may not always

be obtainable in a beneficial timeframe.

Genetically Engineered Mouse Cancer Models

Of all murine cancer models, GEMs provide the most complete

representation of cancer development; cancers develop from

initiation through progression, co-evolve with intrinsic stroma,

and possess an intact immune system (Figures 1 and 2). How-

ever, GEM models are the most challenging to work with effec-

tively, and species differences must be carefully considered in
eptember 24, 2015 ª2015 Elsevier Inc. 43
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Table 2. Representative Clinically Relevant Mouse Trials

Tr esign Cancer Type Model Type Engineered Drivers Drugs/ Treatment Significance Relevant Publications

Pr inical Hematopoietic

(APL)

GEM PML-RARa fusion

PLZF-RARa fusion

Retinoic acid Demonstrated the efficacy of retinoic

acid plus As2O3 in specific APL

subtypes, validated in clinic

(Ablain and de Thé, 2014;

Pandolfi, 2001)

Pr inical Pancreas

(Neuro-endocrine)

GEM RIP1-Tag2 Sunitinib Demonstrated the efficacy of Sunitinib

plus Imatinib, validated in clinic. FDA app d

for pancreatic cancer treatment in 2011.

(Pietras and Hanahan, 2005;

Raymond et al., 2011)

Pr inical Medulla-blastoma GEM Ptc1+/�

P53�/�
GDC-0449

(SMO inhibitor)

Demonstrated the efficacy of an Shh

pathway small molecule inhibitor,

validated in clinic

(Romer et al., 2004;

Rudin et al., 2009)

Pr inical Pancreas

(Neuro-endocrine)

GEM RIP1-Tag2 Erlotinib

Rapamycin

Demonstrated efficacy of combining

drugs targeting EGFR and mTOR

(Chiu et al., 2010)

Co linical Pancreas

(PDA)

GEM LSL-KrasG12D

LSL-Trp53R172H

Pdx-1-Cre

Gemcitabine

Nab-Paclitaxel

Provided mechanistic insight into clinical

cooperation between Gemcitabine and

Nab-Paclitaxel

(Frese et al., 2012;

Goldstein et al., 2015)

Co linical Pancreas (PDA) GEM LSL-KrasG12D

LSL-Trp53R172H

Pdx-1-Cre

CD40 monoclonal

antibody Gemcitabine

Demonstrated that targeting stroma was

effective in treatment of metastatic PDA

(Beatty et al., 2013)

Co linical Lung

(NSCLC)

GEM KRASG12D

p53fl/fl

Lkb1fl/fl

Selumetinib

Docetaxel

Validation of improved response

of adding Selumetinib to

Docetaxel treatment

(Chen et al., 2012;

Jänne et al., 2013)

Co linical Lung

(NSCLC)

GEM EML4-ALK fusion Crizotinib

Docetaxel

Pemetrexed

GEM model predicted clinical outcome

of drug combinations

(Chen et al., 2014;

Lunardi and

Pandolfi, 2015)

Co linical Various Sarcomas PDX N/A Various chemotherapies PDX testing predicted clinical outcome

of drug combinations

(Stebbing et al., 2014)

Po linical Ovarian

(SEOC)

GDA;

PDX

RB/p53-deficient

BRCA1/2-deficient

Olaparib

Cisplatin

Validation of treatment efficacy in BRCA

mutant tumors in both GDA and

PDX models

(Kortmann et al., 2011;

Szabova et al., 2014)

Po linical Pancreas

(Neuro-endocrine)

GDA RIP1-Tag2 Anti-VEGFR1 and

anti-VEGFR2 antibodies

Identification of mechanisms of resistanc

to anti-angiogenic therapies

(Casanovas et al., 2005)

Bi arker Lung

(NSCLC)

GEM;

Carcinogen-

induced

Various Models N/A Used in-depth quantitative MS-based

proteomics to profile plasma proteins

(Hanash and Taguchi, 2011)

Bi arker Pancreas (PDA) GEM KrasG12D

Ink4a/Arffl/fl

Pdx-1-Cre

N/A Used in-depth proteomic analyses to

identify candidate markers applicable

to human cancer

(Faca et al., 2008)
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experimental designs and interpretations. Extensive experience

and infrastructure are required to ensure the use of optimally

accurate models and to achieve sufficiently populated well-

controlled preclinical studies. Yet, GEM cancer models provide

the only opportunity to evaluate drug delivery, therapeutic

response, and biomarker expression for cancers evolving within

their natural microenvironment (autochthonous cancers). These

complex dynamic processes contribute to overall disease

properties, and in particular, constitute a source of the inter-

and intra-tumoral heterogeneity that challenges successful

therapeutic development. Additionally, the accuracy of some

therapeutic interventions, such as those targeting the immune

system, may depend on the constitution of evolutionary, rather

than transplanted, disease. Indeed, overall, GEMs and GEM-

derived models are currently the only preclinical platform for

evaluation and optimization of immunomodulatory therapies.

Although some immune properties differ in mouse and human,

there is significant conservation (Bailey et al., 2013); moreover,

many differences can be managed via data interpretation or

minimized by using genetically engineered ‘‘humanized’’ models

(Scheer et al., 2013). Finally, autochthonous GEMs are the only

viable models for evaluating prevention therapies.

Several reports show that well-designed GEM studies can

contribute to improved clinical trials (Table 2), not only in identi-

fying potentially efficacious therapies but also in predicting both

positive and detrimental effects inmolecular subclasses. Amajor

power of GEM approaches is in the flexibility to create models

with precise molecular specificity. With increasing sophisticat-

ion, several strategies (summarized below and detailed else-

where [Abate-Shen et al., 2014]) have been employed over the

past three decades to significantly enrich our understanding of

cancer mechanisms. A plethora of genes frequently altered in

human cancers have been validated as disease drivers in

GEMs, thereby facilitating the evaluation of cancer evolutionary

mechanisms and kinetics, susceptible cell and molecular

targets, relative cancer cell and microenvironment roles, and

mechanisms of invasion and metastasis. Indeed, entire natural

disease histories can be mapped (Stiedl et al., 2015; Van Dyke

and Jacks, 2002).

In the process of basic discovery, countless GEM cancer

models representing a variety of histiocytic cancer types driven

by multiple independent drivers have been produced, and

many are currently used in preclinical evaluations. Although no

model can perfectly capture the human condition, several

GEM models tractable for preclinical studies develop cancers

with remarkable molecular and pathologic similarity to their

human counterparts. However, since most established GEMs

were created to address basic mechanisms, many do not accu-

rately model human disease and/or are intractable for effective

preclinical evaluation. Furthermore, each engineering approach

can elicit untoward anomalies. Such circumstances can be

accommodated in the interpretation of mechanistic studies,

but are the basis for exclusion of many models for effective pre-

clinical research. Thus, choosing appropriate models as sub-

jects for preclinical discovery requires a deep understanding of

cancer biology and genetics and also of engineering modalities.

The following provides a reasonable guide for optimizing the

value of GEM-based preclinical platforms.
Germline GEMs

An extensive array of technologies is employed to engineer the

mouse germline with great precision. By editing the genome of

embryonic stem (ES) cells or zygotes, mice can be programmed

for cell-type-specific disruption of tumor suppressor genes via

direct mutation or expression of interfering non-coding RNAs

(RNAi) (Walrath et al., 2010) and for oncogene expression at

physiological or cancer-analogous levels. Furthermore, mice

can be ‘‘humanized’’ by engineering the expression of drug tar-

gets in relevant cell types (Scheer et al., 2013) so that human-

specific targeted therapies, such as antibody-based drugs,

can be tested in GEM models. While traditional methods for

constructing locus-specific genetic changes require significant

lead times for engineering, the recent development of rapid

sequence-targeted approaches (Mou et al., 2015) has signifi-

cantly reduced this time to weeks instead of many months. In

particular, clustered regularly interspaced short palindromic re-

peats (CRISPR)/Cas9 technology, which is efficient and versa-

tile, is accelerating germline engineering and also facilitating

rapid somatic engineering (see below).

Depending on the strategy, expression of an engineered

‘‘event’’ can be constitutive or inducible, although gene induction

with cell-type and temporal specificity provides the best possibil-

ity for accurately modeling disease development. Inducibility is

achieved by combining cell-specific expression of transcription

factors (e.g., doxycycline-modulated tet-transactivators) or re-

combinases (Cre-lox or Flp-FRT) with cognate cis elements

linked to a target gene, or by expressing proteins fused with a

hormone-responsive domain (e.g., the tamoxifen-inducible

estrogen receptor domain) (see Supplemental Information).

When multiple distinct inducible systems are combined within

the same cancer model, cancer-specific mutations can be

induced sequentially in order to map and emulate cancer

evolution (e.g., [Young et al., 2011]) and thus to generate increas-

ingly relevant preclinical models. Reversible inducibility can be

achieved with each of these technologies, although small

molecule-mediated modulation of transcription factors and hor-

mone-responsive domains are the most tractable for toggling

expression on and off (Abate-Shen et al., 2014; Texidó, 2013).

This approach facilitates the identification of events required

to sustain tumor growth (‘‘oncogene addiction’’) (e.g., Soucek

et al., 2008) and thus of potential therapeutic targets (e.g., Kwong

et al., 2012). Tumor responses to the shutdown of oncogenes or

restoration of functional tumor suppressors within tumors, or

appropriate effector cells, indicate the potential efficacy of

targeted therapies, while genetic ablation in the entire animal

predicts the overall toxic effects of specific inhibitors. How-

ever, since off-target effects will not register in this approach,

results only indicate whether a given therapy is potentially

efficacious.

A critical, often overlooked, consideration when building

GEMcancermodels is the incorporation of known environmental

etiologies. However, there are notable examples wherein certain

environmental factors were validated as etiologic agents and

thus produced representative cancer models, including HPV

E6/E7-induced cervical cancer (Riley et al., 2003), UV acceler-

ated melanomas (BRAFV600E [Cao et al., 2013], mutant

HRAS [Kannan et al., 2003], and HGF/MET [Noonan et al.,
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2001] models), and Helicobacter-fueled gastrointestinal cancers

(Rogers and Fox, 2004). Exposure of GEM cancer models to

environmental mutagens can be used to approximate the muta-

tion load of many human cancers (e.g., Westcott et al., 2015),

which influences therapeutic outcomes such as in drug-resistant

relapse and neoantigen load-dependent immunomodulation.

The extent to which findings in GEMs extend to patients

depends on engineering mice based on our understanding of

human cancer etiologic drivers, cellular origins, heterogeneity,

pathogenesis, andclinical properties. To recapitulate humancan-

cer development, clinically relevant driver gene(s) or pathways

must be perturbed in relevant target cells. For adult cancers,

gene expression should be targeted to adult, rather than devel-

oping, organs. Furthermore, for optimalmodeling, cancers should

progress ina relevant sequence, since theorderof events impacts

properties of evolving tumors. Ideally, both initiation and progres-

sion to aggressive cancer should be evaluated using individual

and relevant combinations of molecular aberrations thought to

be causal in humans. High phenotypic penetrance and consis-

tency among animals within a lineage are essential for tractability.

The accuracy of disease modeling depends on actually

achieving the specificity envisioned in experimental designs,

which is not always realized because of technical limitations

and/or gaps in current knowledge. Of course, engineered se-

quences must be validated, but it is also critical that expected

transcriptional specificities be confirmed. Unless targeted to

specific genomic locations, transgenes insert randomly, and

expression can be dramatically altered depending on insertion

sites. Furthermore, transgenes may not carry all necessary

regulatory signals. Hence, several founder lines should be estab-

lished and fully characterized before selecting accurate repre-

sentative lines for modeling cancers. Even targeted genetic

changes have the potential to alter gene regulation. Thus, spec-

ificity, levels, and range of expression must be evaluated

for each model; aberrant expression usually alters disease and

can also yield ectopic phenotypes that hinder tractability and

invalidate data. Yet, a surprising number of existing engineered

strains, including those driving inducible expression, are not

fully characterized. Hence, when choosing cancer models for

preclinical studies, it is essential that expression and disease

patterns are well established and accurately represented (see

Supplemental Information).

Non-Germline GEM Models

While autochthonous GEM models have great utility, most are

not tractable for large-scale screening of multiple anti-cancer

drug candidates due to high cost, long timelines, extensive com-

plex breeding, and/or difficulties in obtaining synchronous

tumorigenesis. Preclinical analysis of metastatic lesions is

particularly challenging; primary tumors arise stochastically

with no reliable timetable, as in humans, and multiple tumors

often develop. Thus, extensive longitudinal tomographic imaging

is required to enroll mice bearing similarly sized tumors for ther-

apeutic evaluation (e.g., Weaver et al., 2012). Such procedures

require specialized expertise and can be too expensive and

time-consuming for first-line drug screening. Several strategies

to produce ‘‘non-germline’’ GEMs have been developed that

bypass breeding, reduce expense, and, in some cases, improve

flexibility, uniformity, and timelines (Heyer et al., 2010).
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GEM-Derived Allograft Models. GEM-derived allograft (GDA)

models marry the genetic and biologic human cancer similarities

of GEMmodels with the relative ease of transplantation technol-

ogy of PDXs (Heyer et al., 2010). Without in vitro manipulation,

tissue fragments derived from tailor-made GEM tumors are

expanded by transplantation, orthotopically or subcutaneously,

into immunocompetent syngeneic hosts (Figure 2). Thus, tumors

can be banked to facilitate large cohort production, and efficacy

studies can be performed in industry-friendly timeframes (�3–

8 weeks), allowing for increased throughput. Indeed, a battery

of treatments can be evaluated in GDAs prior to (preclinical)

or parallel with (‘‘co-clinical’’) clinical trials (Table 2). As with

GEMs, immune systems are fully functional in GDAs, and inter-

actions among tumor cells and their intrinsic microenvironments

are maintained.

GDAs are particularly amenable to the evaluation of metastatic

disease, which is responsible for most cancer-related deaths

and is rarely assessed preclinically. In GDAs, metastases occur

from single primary tumors, which can be resected to allow time

for metastatic progression (Day et al., 2012). This approach also

emulates clinical care standards for many cancers and facilitates

comparing therapeutic responses of both primary and metasta-

tic disease derived from the same GEM cancer (Figure 4).

As with PDXs, serial passaging increases the likelihood that

tumor properties will deviate from parental samples due to

further evolution and/or selection of sub-compartment growth;

thus, transplanted tumors should be monitored for molecular

and biological similarity to founding tumors. Additionally, since

transplanted tumors do not evolve in situ, GDAs cannot legiti-

mately be used for prevention studies, and some therapeutic

outcomes may differ between autochthonous GEMs and

GDAs. Given the potential tradeoff of accuracy for tractability,

candidate therapies efficacious in GDAs should be subse-

quently validated in the original GEM models prior to clinical

studies.

Stem Cell-Derived Chimeras and Somatic Models. Mice

chimeric for genetically engineered cells are created through

implantation of GEM-derived or genetically manipulated ES cells

into pre-implantation embryos. Since oncogenic alleles are engi-

neered ex vivo in ES cells, many mice with the desired genetic

composition can be generated in the absence of complex, labo-

rious, and long-term breeding schemes. The potential value of

this approach was first highlighted in the production, analysis,

and preclinical evaluation of lung adenocarcinoma (Zhou et al.,

2010). Once constructed, ES cells harboring the desired alleles

can be derived from blastocysts produced by a penultimate

cross. In turn, this bankable resource can be used to generate

mice chimeric for mutant and wild-type cells (Premsrirut et al.,

2011), facilitating conditional RNAi-mediated knockdown of

target expression via manipulation of ES cells, which can then

be used to generate chimeric mouse cohorts (Dow et al., 2012).

Notably, the advent of CRISPR/Cas9 technology, and with it

the ability to perform complex gene editing with relative ease

and speed, has dramatically enhanced the value of non-germline

GEMapproaches. Several groups have precisely modified onco-

genes and tumor suppressor genes directly in somatic cells of

adult mice, significantly improving the feasibility and flexibility

of this genetic engineering approach (Chen et al., 2015; Dow



Figure 4. Generation and Application of

Metastatic GDA Models
(I) GDAs are derived from tumors arising in mice
genetically tailored to produce human-relevant
models. Relevance can be further enhanced by
including appropriate etiological agents (lighting
bolt). Arising tumors are resected, labeled with
imageable markers (green), and directly trans-
planted into fully immunocompetent syngeneic
mice at either subcutaneous or orthotopic sites.
The imageable markers allow monitoring of tumor
growth and drug response, and/or FACS purifi-
cation for analysis. Once successfully trans-
planted, GDAs can be expanded for banking and/
or preclinical studies. Mice bearing GDAs can be
treated directly with individual or combination
drugs (*) to study therapeutic efficacy at the ‘‘pri-
mary’’ tumor site (II). (III and IV) Alternatively, GDAs
can be resected using survival surgery, and
treatments focused on metastatic disease, simu-
lating first-line treatment in human patients
following primary tumor resection. GDA models
allow for interventive treatment of metastatic dis-
ease once detected (III), or preventive adjuvant
treatment initiated immediately following surgical
resection (IV). GDAmodels are thus well suiting for
studying primary or metastatic disease, with in-
terventive or preventive approaches using
pathway-targeted small molecule and/or immu-
notherapeutic agents.
et al., 2015; Maddalo et al., 2014; Platt et al., 2014). These

models also better mimic human cancer relative to standard

germline GEMs in that tumors typically arise from fewer cells in

the context of normal stroma

In a variation of the non-germline GEM approach, genetically

engineered stem or progenitor cells can be transplanted into

syngeneic mice, where they can home to appropriate tissue

targets and become the cells of origin for developing tumors

(Heyer et al., 2010). These models are especially amenable for

studying hematopoietic cancers, where the stem cells are well

characterized and the host can be prepared for receiving trans-

planted cells by using irradiation to create a favorable niche for

the engineered hematopoietic stem/progenitor cells to colonize.

Successes have also been reported for other cancers (Heyer

et al., 2010).

Logistics for Optimizing Preclinical Studies
Extensive complexities that impede successful drug develop-

ment in cancer patients dictate that faithful murine cancer

models must themselves be complex. Both PDX- and GEM-

based models offer this opportunity. However, their very com-

plexity warrants that informative models are generated and

characterized with substantial knowledge of cancer mecha-

nisms and modeling limitations, rigorous animal maintenance

and production, routine phenotypic and genetic monitoring,

appropriate strategies for therapeutic response evaluation,

and consideration of multiple variables that impact data interpre-

tation. To achieve routine therapeutic and biomarker develop-

ment that positively influence patient care, preclinical studies

must be (1) well-powered with significant cohort sizes and

several evaluation parameters, (2) goal-oriented and efficiently

executed, and (3) highly reproducible.
Experimental Considerations

Once models that optimally represent human disease have

been selected, clinical relevance relies on experimental param-

eters that are comparable and/or translatable to human prac-

tice. These include, but are not limited to, dosing levels and

schedules, drug pharmacology, response evaluation methods,

and endpoint choices. Therapeutic agents’ pharmacokinetics

(PK) and ability to modify targets when known (pharmacody-

namics; PD) should be measured in tumor-bearing mice. The

fate of administered drugs is largely determined by drug

metabolizing enzymes essential for their absorption, distribu-

tion, metabolism, and excretion (ADME). Therefore, the differ-

ences that exist between the central metabolizing enzymes in

mice and humans, the cytochrome P450 (CYP) family, consti-

tute a confounding factor in extrapolating drug PKs and the re-

sponses they elicit. Since the maximum tolerated dose (MTD)

of many drugs in mice is significantly higher than in humans,

it is essential to evaluate efficacy by using doses achievable

in patients. However, this is possible only when human PKs

are known; for example, for repurposing FDA-approved

drugs, for preclinical evaluation of combination therapies that

comprise single phase II agents, and for co-clinical experimen-

tation wherein mouse and human evaluations are performed in

parallel, such that clinical toxicity results are available. Even

when appropriate human dosing is known, there is no simple

formula for approximating comparable doses to achieve the

same PK in mice, and instead experimental determination is

required (Sparreboom et al., 1996). Yet, when evaluating

numerous agents, this approach is not possible; rather, subse-

quent coordination of clinical results and further preclinical

dose escalation experiments are needed for optimal response

assessment.
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In an effort to apply a genetic solution to the PK problem, a

number of humanized CYP GEMs have been developed (Gonza-

lez, 2004; Scheer and Wolf, 2014). Despite these advances, the

humanized alleles have not yet been incorporated into GEM can-

cer models or PDX recipients. Such an undertaking will require

significant resources, substantial time, and community effort to

generate and evaluate revised models. Nonetheless, the invest-

ment will be worthwhile if the gap between laboratory mice and

patients is narrowed.

The choice of preclinical experimental endpoints to deter-

mine therapeutic responses is also critical for achieving out-

comes most representative of those in patients (Talmadge

et al., 2007). In prevention studies, efficacy is based on dis-

ease-free or minimized status. For intervention therapy, efficacy

is justified by overall survival and should not be judged solely

on tumor growth inhibition. The importance of survival end-

points is highlighted by a pancreatic cancer clinical trial de-

signed based on short-term GEM studies demonstrating

reduced tumor volumes in response to sonic hedgehog

pathway inhibition combined with gemcitabine (standard of

care) compared to gemcitabine alone (Olive et al., 2009). Unfor-

tunately, the trial terminated early due to increased disease

dissemination and poor patient survival. However, subsequent

survival studies in the GEM model replicated the clinical result,

demonstrating that initial drug effects did not predict survival

outcomes. Hence, the model appropriately predicted patient

responses, but only with a meaningful endpoint (Couzin-

Frankel, 2014).

Tumor growth and therapeutic responses in subcutaneous

transplant models, such as CDXs, PDXs, and GDAs can be

monitored by standard caliper measurement. Tumor growth in

autochthonous and orthotopic transplant models (other than

skin and breast models) and in all metastatic models must be

monitored by longitudinal imaging strategies (Wang et al.,

2015). High-resolution 3D images are compiled from sectional

images generated by tomographic scanning of signals from

X-ray (CAT), magnetic field-excited atoms (MRI), or injected

radioactive tracers (SPECT; PET) (Supplemental Information).

Tomographic imaging requires specific expertise for accurate

execution and is relatively expensive and time-consuming. Opti-

cal imaging, which detects visualized wavelengths generated

from excited fluorescent chromophores (e.g., jellyfish GFP) or

firefly luminescent reactions (e.g., luciferase), can be employed

for detection in real-time and is cost- and time-effective; how-

ever, these methods do not produce accurate tomographic

data and are limited by tissue absorption. Notably, traceable

marker proteins required for optical imaging are xenogeneic

with respect to mammals and can induce immune responses

in immunocompetent mice, which can result in inconsistent

activity, graft rejection and/or inhibition of metastasis, confound-

ing data interpretation. Hence, effective employment of xenoge-

neic reporters is restricted to short-term studies or studies in

immunocompromised models, limiting their usefulness in pre-

clinical science (Steinbauer et al., 2003). However, this problem

can be circumvented, at least in part, by employing host mice

genetically engineered to express respective markers at an early

age, which elicits tolerance and thus recognition as ‘‘self’’ (Day

et al., 2014).
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Several additional points associated with preclinical trial

design are worth emphasizing. Tumor mass is a critical factor

in preclinical studies; vastly different outcomes can result from

initiating drug dosing when tumors are different sizes. Moreover,

human tumors are typically much larger than their mouse

counterparts, which could affect how preclinical data translates

to the clinic. It is also vital to run preclinical trials with a sufficient

number of animals in each experimental arm to achieve statis-

tically significant results; ensuring statistical power must be

considered a priority for any preclinical study. Therefore, it is pru-

dent to consult biostatisticians prior to finalizing study designs.

Finally, the influence of genetic background on tumor behavior

can be significant, and must be considered when designing

model systems. Generation and analysis of mouse cancer

models within the collaborative cross, a large panel of inbred

mouse strains (Churchill et al., 2004), could also provide impor-

tant insights into the impact of complex germline genetics on

tumor predisposition and drug response.

Infrastructure

Critical work establishing the utility of murine cancer models in

preclinical research has taken place in independent laboratories

over the last 20 years. However, because of severe resource lim-

itations, the absolute need to perpetuate basic investigator-

driven mechanistic discovery, and an increasingly competitive

environment wherein success is measured by individual merit,

the opportunity for laboratories to execute preclinical studies

beyond the pilot level is limited. Recent reports indicate that

most preclinical outcomes at this level are not reproduced

when studies are not conducted with robust experimental stan-

dards, such as inclusion of appropriate positive and negative

controls, execution with sufficient statistical power, attention to

pharmacological considerations, and implementation of blind

evaluations (Begley and Ellis, 2012; Begley and Ioannidis,

2015). Adherence to all these standards is simply not possible

in individual laboratories under current conditions. To increase

accessibility to preclinical evaluation in murine cancer models,

several institutions have established core facilities that perform

studies using dedicated staff and common methodologies.

These cores represent a necessary step to improve reproduc-

ibility in preclinical outcomes. Yet, most core facilities do not

have the resources to instate the full range of skills and technol-

ogies indicated in ‘‘Experimental Considerations’’ above to

ensure optimal quality and replication of clinical approaches.

Additionally, conducting well-powered blinded studies requires

a sizable dedicated staff, which is generally not achievable in ac-

ademic cores. Finally, global improvement of murine preclinical

research must include the generation of an increased range of

well-characterized, technically tractable and optimally accurate

models vetted for preclinical evaluation, along with the develop-

ment of exportable standard operating procedures (SOPs).

To address these needs, over the past decade several orga-

nized efforts have been established that are dedicated to: (1)

improving the accuracy and reproducibility of preclinical drug

development platforms; (2) developing and exporting SOPs

and models; (3) understanding cancer pathobiology through

targeted therapeutics; and/or (4) applying the outcomes of opti-

mized preclinical therapeutic and biomarker studies to clinical

research for improved patient care. Common attributes in each



Table 3. Future Challenges and Possible Solutions for Mouse Preclinical Cancer Trials

Issue Challenges Possible Solutions

Model improvement More precise spatial and temporal control

of genetic alterations in mouse tissues

Improve technologies for genomic editing

(e.g., CRISPR) and regulating gene activity

Human relevance of stroma, immune system,

and therapeutic targets in mouse cancer models

‘‘Humanize’’ genes via genetic engineering

and immune system by reconstitution

with human hematopoietic stem cells

Recapitulation of the tumor heterogeneity

found in human cancers

Introduce environmental etiological factors

(e.g., UV in skin cancer models); allow tumor

evolution by avoiding inappropriately

dominant oncogenic drivers

Study setting Difficulties in diagnosis and treatment of large

cohorts of mice as individual patients

Synchronize tumorigenesis by adopting

inducible GEM or transplantable GDA systems

Disease progression and clinically relevant

endpoints in preclinical study

Improve biomarkers and imaging techniques

for tumor tracking; adopt clinically relevant

endpoints (e.g., progression-free survival)

Integration of pathologic, genomic, bioinformatic,

molecular, and immunological analyses

Develop/share improved and standardized

protocols; organize workflows with core facilities

Extrapolation to

human disease

Evaluating effects of life style on therapeutic outcomes Consider gender, diet, and exposure to

environmental factors in protocol development;

consider effects of microbiota

Physiological difference between mouse and human ‘‘Humanize’’ aspects of mice; consider scaling

law in PD/PK, lifespan, hemodynamics, etc.
case include: (1) a sufficient number of dedicated staff covering a

broad range of expertise; (2) access to sophisticated instrumen-

tation and technology for a full range of small animal imag-

ing modalities, histological and molecular pathology, genomic

technologies, pharmacological methods, model generation,

and appropriate maintenance and quality control for a large

‘‘bank’’ of models; and (3) data management strategies. Exam-

ples of such organizations include the Center for Advanced Pre-

clinical Research (CAPR; Center for Cancer Research, National

Cancer Center and the Frederick National Laboratory for Cancer

Research, https://ccr.cancer.gov/capr-home); Mouse Clinic for

Cancer and Aging research (MCCA; Netherlands Cancer Insti-

tute and the European Research Institute for the Biology of

Aging, http://www.mccanet.nl/); Center for Co-Clinical Trials

(MD Anderson, http://www.cancermoonshots.org/platforms/

center-for-co-clinical-trials/); and the Co-Clinical Project: In-

forming Clinical Trials Using Preclinical Mouse Models (Harvard

Medical School). Similar efforts focused specifically on pancre-

atic ductal carcinoma include the Mouse Hospitals (Columbia

Medical School, http://www.olivelab.org/mouse-hospital.html,

and Cold Spring Harbor Laboratories).

Emerging and Future Prospects
This PRIMER focuses on the attributes and limitations of murine

cancer models that currently best emulate our existing under-

standing of human cancers, an ever-expanding awareness of

which is required to drive development of effective preclinical

platforms. The high cost and low yield of efficacious therapies,

despite clinical evaluation of countless potential therapeutics,

motivate the use and development of preclinical PDX and GEM

in the guidance of clinical research. Ultimately, collective

employment of a variety of model systems will likely be required

to successfully impact clinical outcomes.
Optimal mouse studies are sufficiently cumbersome so as to

preclude the simultaneous evaluation of numerous drugs and

unbiased libraries; high-throughput in vitro screening systems

are essential precursors to in vivo evaluations. Despite their lim-

itations, cancer cell lines have proven valuable in uncovering

mechanisms of acquired drug resistance for in vitro drug screens

(Torrance et al., 2001), and several technologies such as RNAi

and CRISPR/Cas9 methods have enhanced their versatility

(Corcoran et al., 2013; Shalem et al., 2014). However, cancer

cell-line screens identify only drugs that target intrinsic cancer

cell functions. Targeting tumor stroma or microenvironment/

tumor cell interactions requires the use of in vitro systems that

approximate the composition of cancers that preserve important

cancer constituents, cell-cell interactions, and architectural

features. To this end, several ex vivo platforms have been devel-

oped, including spheroids, organoids, microtumors (tumor tis-

sue in synthetic matrix), and tissue slices (Burdett et al., 2010;

Mendoza et al., 2010; Yamada and Cukierman, 2007). While

optimization and validation of emerging ex vivo models in drug

screening is ongoing, many may be incorporated into early

phases of drug development, resulting in efficient triage and

increased success in vivo.

In addition to ex vivo systems, non-murine whole organism

drug screens have shown promise for early triage (Gao et al.,

2014). Due to their relatively small size, low cost, and high fecun-

dity, invertebrates such as flies (Drosophila) and nematodes

(C. elegans) have shown promise. Furthermore, zebrafish (Danio

rerio) are particularly well suited for high throughput screens

because of rapid extra-uterine development, embryonic trans-

parency, and recently developed pigment deficiency to facilitate

imaging (Barriuso et al., 2015). Using automated high content

and high throughput platforms, zebrafish can be used for chem-

ical, genetic, and pathway-based screens (Lieschke and Currie,
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2007). Notably, data generated from zebrafishmodels have been

used in clinical trials. For example, the pyrimidine biosynthesis

enzyme DHODH was identified in zebrafish screens as a novel

melanoma drug target, and a clinical trial is underway in which

patients are being treated with the DHODH inhibitor leflunomide

(Hagedorn et al., 2014; White et al., 2011). Zebrafish have also

been used as hosts for human and mouse xenografts to monitor

invasiveness, angiogenesis, and drug responses in real time

(Zhang et al., 2015). However, as with xenotransplantation of

human cells into mice, inappropriate tumor-host interactions

could limit the relevance and translational value of fish models.

Optimization of preclinical models that can impact clinical

practice will require overcoming challenges in several arenas

(Table 3). However, achieving this goal will undoubtedly require

expansion and integration of organized efforts by many factions.

The sophistication of such preclinical studies requires expertise

inmanydisparate fieldsandnecessitates involvementof scientists

in the public sector, who often possess critical expertise

and mechanisms not available in the private sector. However,

communicationanddata-sharingamong investigatorsandorgani-

zations, though essential for efficient optimization of effective pre-

clinical standard operating procedures, are limited. A future prior-

ity will be to develop interactive web-based systems to house and

mine experimental databases and SOPs for community sharing.

Such organized initiativeswill begin tomeet the significant and im-

mediate need to revolutionize the accuracy of preclinical assess-

ment and to develop and utilize PDX- and GEM-based disease

models in research to increase the number of effective treatments

reaching clinical trials and thus, cancer patients.

In summary,wenowhave awealth ofmodel systems that show

early promise in establishing robust preclinical assessment plat-

forms for improving clinical success. Each system has specific

and sometimes unique value, and all will undoubtedly play a sig-

nificant role in varied aspects of future preclinical studies. At this

junction, systematic comparisons in the prediction of human out-

comes by distinct model systems has not been carried out and is

needed in order to construct sound preclinical operating princi-

ples. The selection of models for a given study will undoubtedly

depend on the required purpose.While 2D cell cultures are useful

for identifying cancer cell-intrinsic vulnerabilities, 3D ex vivo

methods incorporate assessment of multicellular interactions.

Non-mammalian animals further offer reasonable throughput in

complex biological systems,while PDXandGEMmodels provide

the best representation of tumor microenvironments, physiolog-

ical responses, and disease pathology. GEMs further allow for

evaluation of immune system interventions and of responses

unique to in situ developed disease. Ultimately, the complemen-

tary use ofmany of thesemodels and continual efforts to improve

their effectiveness will propel preclinical studies to a new era of

cancer therapeutics development. This is a uniquely exciting

era wherein preclinical models, rather than serving simply to

confirm clinical outcomes, have the potential to routinely fuel

optimized clinical success.
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