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ABSTRACT An increasing number of experimental studies employ single particle tracking to probe the physical environment in
complex systems. We here propose and discuss what we believe are new methods to analyze the time series of the particle
traces, in particular, for subdiffusion phenomena. We discuss the statistical properties of mean maximal excursions (MMEs),
i.e., the maximal distance covered by a test particle up to time t. Compared to traditional methods focusing on the mean-squared
displacement we show that the MME analysis performs better in the determination of the anomalous diffusion exponent. We also
demonstrate that combination of regular moments with moments of the MME method provides additional criteria to determine the
exact physical nature of the underlying stochastic subdiffusion processes. We put the methods to test using experimental data as
well as simulated time series from different models for normal and anomalous dynamics such as diffusion on fractals, continuous
time random walks, and fractional Brownian motion.
INTRODUCTION
The history of stochastic motion may be traced back to the

writings of Titus Lucretius, describing the battling of dust

particles in air (1). Later, the irregular motion of single

coal dust particles was described by Jan Ingenhousz in

1785 (2). Robert Brown in 1827 reported the jittery motion

of small particles within the vacuoles of pollen grains (3).

Possibly the first systematic recording of actual trajectories

was published by Jean Perrin, observing individual, small

granules in uniform gamboge emulsions (4). Apparently,

the first actual experimental study based on the time series

analysis of single particle trajectories is due to Nordlund,

who tracked small mercury spheres in water (5). Today

single trajectory analysis is a common method used to probe

the motion of particles, notably, in complex biological

environments (6–15).

Typically, a diffusion process in d dimensions is charac-

terized by the ensemble-averaged, mean-squared displace-

ment (MSD):

�
r2ðtÞ

�
¼
Z N

0

r2Pðr; tÞdV ¼ 2dKata: (1)

Here we assumed spherical symmetry and an isotropic envi-

ronment, such that P(r, t) is the probability density to find the

particle a (radial) distance r away from the origin at time

t after release of the particle at r ¼ 0 at time t ¼ 0. In

Eq. 1, we introduced the anomalous diffusion exponent a.

In the limit a ¼ 1 we encounter regular Brownian diffusion.

For other values of a, the associated diffusion is anomalous:
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the case 0 < a < 1 is called subdiffusion, whereas for a > 1

the process is called superdiffusion (16). In this work we

focus on subdiffusive processes. In Eq. 1, the generalized

diffusion coefficient is of dimension [Ka] ¼ cm2/sa. Subdif-

fusion of the form from Eq. 1 is found in a variety of systems,

such as amorphous semiconductors (17), tracer dispersion in

subsurface aquifers (18), or in turbulent systems (19).

In fact, subdiffusion was found from observation of single

trajectories in a number of biologically relevant systems: For

instance, it was shown that adeno-associated viruses of

radius z 15 nm in a cell perform subdiffusion with a ¼
0.5.0.9 (6). Fluorescently-labeled messenger RNA chains

of 3000 bases’ length and effective diameter of some

50 nm subdiffuse with a z 0.75 (7). Lipid granules of

typical size of few hundred nm exhibit subdiffusion with

a z 0.75.0.85 (8–11); and the diffusion of telomeres in

the nucleus of mammalian cells shows a z 0.3 at shorter

times and a z 0.5 at intermediate times (12). A study

assuming normal diffusion for the analysis of tracking data

of single-cell nuclear organelles shows extreme fluctuations

of the diffusivity as function of time along individual trajec-

tories, possibly pointing to subdiffusion effects (13). In vitro,

subdiffusion was measured in protein solutions (14) and in

reconstituted actin networks (15). Molecular crowding is

often suspected as a cause of subdiffusion in living cells

(20,21).

Currently, one of the important open questions is: What

physical mechanism causes the subdiffusion in biological

systems? Single-particle tracking is expected to provide

essential clues to answer this question. In response to this,

a method was recently suggested based on the statistics of

first passage times, i.e., the distribution of times it takes a

random walker to first reach a given distance from its starting

point. This quantity has been shown to be a powerful tool
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to discriminate between continuous time random walk and

diffusion on fractals (22,23). However, such an analysis

requires a huge amount of data for the analysis to be statisti-

cally relevant. Fluorescence correlation spectroscopy has

also been proposed to identify the physical mechanism of

subdiffusion (24); but this approach is based on an indirect

observable, the fluorescence correlator, which is not directly

comparable with analytical results; moreover, this method

needs to fit three parameters to a single curve. We here

present a new method (to our knowledge) that is based on

analytical results. Our approach is demonstrated to enable

one to extract more, and more accurate, information from

a set of single particle trajectories.

A typical single particle tracking experiment provides

a time series r(t) of the particle position from which one

may calculate the time-averaged MSD:

d2ðD; TÞ ¼ 1

T � D

Z T�D

0

½rðt þ DÞ � rðtÞ�2dt: (2)

Here T denotes the overall measurement time, and D is a lag

time defining a window swept over the time series. For

a Brownian random walk with typical width hdr2i of the

step length and characteristic waiting-time t between succes-

sive steps, we recover the time average

�
d2ðD; TÞ

�
¼ 2dK1D;

where the diffusion constant becomes K1 ¼ hdr2i/[2dt]. In

this case, the time average provides exactly the same infor-

mation as the ensemble average. Note that this is not always

the case when the dynamics is subdiffusive (25–27).

Using time averages to analyze the behavior of a single

particle is an elegant method in allowing us to avoid errors

from averages over particles with nonidentical physical

properties. However, in many cases the actual trajectories

are too short to allow one to extract meaningful information

from the time average. Moreover, in cases where the subdif-

fusion is governed by a CTRW with diverging characteristic

waiting time, the values of the moments, and therefore their

ratios, become random quantities (25,26). Using the en-

semble average prevents this problem. We therefore consider

herein ensemble averages calculated directly from measured

trajectories. In particular, we present an analysis based on a

mean maximal excursion (MME) statistics. It will be shown

that this method provides relevant information on the system,

complementary to results from analysis of regular moments.

Moreover, we demonstrate that the MME method may

obtain more accurate information about the dynamics than

the typically measured mean-squared displacement (see

Eq. 1).

In what follows we present the theoretical background of

the MME analysis and discuss how different dynamic

processes can be discriminated. We then discuss how to

apply these methods in practice, including the analysis of

some recent single-particle tracking data.
MATERIALS AND METHODS

As a benchmark for our quantitative analysis, we here define the three

most prominent approaches to subdiffusion. Physically these processes are

fundamentally different, although they all share the form (Eq. 1) of the

mean-squared displacement (MSD). In the Supporting Material, we provide

details on how we simulate the time series based on the stochastic models.

Continuous time random walk

Continuous time random walk (CTRW) defines a random walk process

during which the walker rests a random waiting time, drawn from a proba-

bility distribution, between successive steps (17). If the density of waiting

times is of the long-tailed form

jðtÞ � ata

Gð1� aÞt1þ a
(3)

for 0 < a < 1, the mean waiting time

Z N

0

tjðtÞdt

diverges, and the resulting process becomes subdiffusive with MSD from

Eq. 1. The exponent a from the waiting time density in Eq. 3 is then the

same as in Eq. 1. If the variance of the associated jump lengths is again

hdr2i, the generalized diffusion coefficient becomes Ka¼ hdr2i/(2dt). Wait-

ing times with such power-law distribution were, for instance, observed for

the motion of probes in a reconstituted actin network (15). CTRW is used in

a wide variety of fields, ranging from charge-carrier motion in amorphous

semiconductors (17), over tracer diffusion in underground aquifers (18),

up to weakly chaotic systems (19).

Diffusion on fractals

A random walker moving on a geometric fractal (for instance, a percolation

cluster near the percolation threshold) meets bottlenecks and dead-ends on

all scales, similar to the motion in a labyrinth. This results in an effective

subdiffusion in the embedding space. Whereas the fractal dimension df

characterizes the geometry of the fractal, the diffusive dynamics involves

an additional critical exponent, the random walk exponent dw (dw R 2).

The latter is related to the anomalous diffusion exponent through a ¼ 2/dw

(28). Fractals can be used to model complex networks, and have recently

been suggested to mimic certain features of diffusion under conditions of

molecular crowding (29,30). We will use for the theoretical descriptions

the dynamical scheme of O’Shaughnessy and Procaccia (31).

Fractional Brownian motion

Fractional Brownian motion (FBM) was introduced to take into account

correlations in a random walk: the state of the system at time t is influenced

by the state at time t0 < t. In the FBM model this is achieved by passing from

a Gaussian white noise dB(t) to fractional Gaussian noise

BHðtÞ ¼
1

GðH þ 1=2Þ

�Z t

0

ðt � tÞH�1=2
dBðtÞ

þ
Z 0

�N

h
ðt � tÞH�1=2�ð�tÞH�1=2

i
dBðtÞ

�
;

(4)

where the Hurst exponent 0<H< 1 is connected to the anomalous diffusion

exponent by a ¼ 2H. FBM therefore describes both subdiffusion and super-

diffusion up to the ballistic limit a ¼ 2. FBM is used to describe the motion

of a monomer in a polymer chain (32) or single file diffusion (33). FBM has

recently been proposed to underlie the diffusion in a crowded environment

(24). The autocorrelation function of FBM in one dimension reads (34)
Biophysical Journal 98(7) 1364–1372
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�
XHðt1ÞXHðt2Þ

�
¼ K1

2

�
t2H
1 þ t2H

2 �
��t1 � t2j2H

�
; (5)

and for t1¼ t2 we recover the MSD from Eq. 1. Following Unterberger (35),

we extend FBM to several dimensions such that a d-dimensional FBM

of exponent H is a process in which each of the coordinates follows a

one-dimensional FBM of exponent H. The resulting d-dimensional FBM

still satisfies Eq. 1, with a ¼ 2H.
TABLE 1 Ratios of fourth moment versus the square of the

second moment for normal moment statistics and MME

statistics

a One dimension Two dimensions Three dimensions

hr4i/hr2i2 1 3 2 5/3

hr4
maxi=hr2

maxi
2

1.77 1.49 1.36

hr4i/hr2i2 1/2 3p/2 z 4.71 p z 3.14 5p/6 z 2.62

hr4
maxi=hr2

maxi
2

2.78 2.33 2.14

We list normal BM (a ¼ 1) and CTRW subdiffusion with a ¼ 1/2. The

MME distribution is narrower and therefore more amenable for data fitting

in all cases.
RESULTS

The parameters in the three simulation models are chosen to

produce the same anomalous diffusion exponent a ¼ 0.70.

Using only the classical analysis based on the MSD (Eq. 1),

one could not tell which model was used to create the data.

We discuss here how additional observables allow one to

extract a more accurate value of this a-exponent, and how

they may be used to distinguish the microscopic stochastic

mechanisms.

Mean maximal excursion approach

A power law fit to the classical MSD (1) provides the magni-

tude of the anomalous diffusion exponent a. We here show

that the mean maximal excursion (MME) method is a better

observable to determine a. The maximal excursion is the

greatest distance r that the random walker reaches until

time t. This quantity is averaged over all trajectories, to

obtain the MME second moment

�
r2

maxðtÞ
�
¼
Z N

0

r2
0Prðrmax ¼ r0; tÞdr0; (6)

where

Prðrmax ¼ r0; tÞ

is the probability that the maximal distance from the origin

that is reached up to time t, is equal to r0. The MME second

moment from Eq. 6 scales like ta, as shown in Bidaux et al.

(36) for fractal media, and derived in the Supporting Material

for a CTRW process.

For FBM this quantity is not known, similar to the first

passage in other than a semiinfinite domain in one dimension.

However, one can still use the MME method to numerically

analyze data created by an FBM process, as shown below.

Why is the MME second moment better than the more

standard MSD? The ratio g ¼ sX(t)/hX(t)i of the standard

deviation

sXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðXðtÞ � hXðtÞiÞ2

�q

versus the mean is a measure for the dispersion around the

center of the distribution (first moment). A lower ratio means

that the random variable has a smaller spread around its

mean. This will produce a smoother average and thus a

more accurate fit as the larger number of data points closer

to the average value receive a higher relative weight. Indeed,

for regular Brownian motion (BM) the ratio is smaller for the
Biophysical Journal 98(7) 1364–1372
MME second moment than for the regular second moment,

the time-independent values being g(MSD)/g(MME) ¼
1.61, 1.44, and 1.34 for one, two, and three dimensions.

The MME method is therefore expected to nonnegligibly

outperform the MSD method. Details of this calculation

are presented in the Supporting Material. For diffusion on a

fractal, the ratio g(MSD)/g(MME) also grows with de-

creasing fractal dimension, being always >1. For a CTRW

the ratio g(MSD)/g(MME) diminishes as well with de-

creasing a, reaching its lowest value at a ¼ 0. But it is

always >1 in dimensions d ¼ 1, 2, 3.

Another way to characterize the dispersion of the MME

method versus regular moments is the ratio of the fourth

moment versus the second moment of the respective distri-

bution.

For a random walk on a fractal, approximated by the

dynamical scheme of O’Shaughnessy and Procaccia (31),

the MME moments become (36)

�
rk

max

�
¼ Ak;df ;a

�
K

a2
t

�ka=2

; (7)

where the prefactor is given through

Ak;df ;a ¼
21�adf=2ka

Gðka=2 þ 1ÞG
�
adf=2

�
Z N

0

uað2kþ df Þ=2�2

Iadf=2�1ðuÞ
du: (8)

Here In is the modified Bessel function of the first kind. The

regular moments satisfy an analogous relation (31):

�
rk
�
¼

G
�
a


k þ df

�
=2
�

G
�
adf=2

� �
4Kt=a2

�ka=2
: (9)

The ratios hr4
maxi

4=hr2
maxi

2
and hr4i/hr2i2 are therefore time-

independent numerical constants. Note that the above

expressions also contain the limiting case of BM (integer

dimension, and a ¼ 1). In the latter case the associated

values are listed in Table 1, demonstrating again that the

MME distribution is more concentrated and therefore more

amenable to parameter extraction by fitting (see also the

discussion below).

For FBM, the regular moments are obtained from the

Brownian ones by simple replacement of time t by ta.

Because the regular moment ratios are time-independent,

we find exactly the same values as in the Brownian case.
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The MME moments are not known analytically, so we per-

formed numerical simulations to get an estimate of these

quantities. A surprising result is that the MME moments

hrk
maxi are proportional to t ka0/2, but with a new exponent

a0 > a.

We discuss these results in detail in the Supporting Mate-

rial, finding a linear correlation (R2 > 0.999 for 10 points)

between the two exponents:

a0z0:156 þ 0:005 þ ð0:849 þ 0:008Þa: (10)

We note that for BM (a ¼ 1), we retrieve the classical result

a0 ¼ a. We also obtained an expression for the MME

moment ratio, hr4
maxi=hr2

maxi
2
, in two dimensions (R2 >

0.99 for 10 points):�
r4

max

�
�
r2

max

�2
zð1:055 0:01Þ

�a

2


1:42 5 0:01

þð1:10 50:01Þ: (11)

We note that solely focusing on the determination of a0 from

the second MME moment may lead to an overestimation of

the anomalous diffusion exponent if the motion is governed

by FBM and a0 is not converted to a via the relation in

Eq. 11. It is therefore important to also evaluate the comple-

mentary criteria such as the MSD and the moment ratios.

In the case of CTRW subdiffusion, we profit from the

fact that in Laplace space we can transform the probability

density and the moments of normal BM into the correspond-

ing CTRW subdiffusion solution by so-called subordination

(16,37). In practice, this means that we can replace s by

K1sa/Ka where s is the Laplace variable conjugated to time t.
We obtain the ratio for both regular moments and MME

statistics from the Brownian result, however, with different

prefactors:

�
rk
�

CTRW
¼ Gðk=2 þ 1Þ

Gðak=2 þ 1Þ
�
rk
�

BM
; (12)

�
rk

max

�
CTRW

¼ Gðk=2 þ 1Þ
Gðak=2 þ 1Þ

�
rk

max

�
BM
: (13)

Table 1 shows the results for a ¼ 1/2.

The moment ratios hr4
maxi=hr2

maxi
2

and hr4i/hr2i2 are useful

observables. Once we determine the anomalous exponent

a from fit to the MSD or the second MME moment we

can use the moment ratios to identify the process. If the
TABLE 2 Test for two-dimensional trajectories in a free environmen

Second moment (regular, MME)

BM (f t, f t)

Fractals (f ta, f ta)

CTRW (f ta, f ta)

FBM (f ta, f ta
0
), Eq. 10

For each model (BM, diffusion on fractal, CTRW, and FBM), the second colum

and hr2
maxi); the third column shows the relative values of the regular and MME

probability, at time t, to be in a sphere growing like ta/2.
moment ratio for a subdiffusion process with 0 < a < 1 is

the same as for BM, we are dealing with an FBM process.

If the value matches the one for CTRW subdiffusion for

the given a, we verify the CTRW mechanism. Finally, we

can identify the remaining possibility, i.e., diffusion on

a fractal: The obtained numerical value for the ratio allows

us, in principle, to deduce the underlying fractal dimension

df, using the predicted values of Eqs. 7 and 9. We will

discuss below the reliability of such classifications.
Determination of the fractal dimension df

Finally we establish a criterion to distinguish diffusion on a

fractal from CTRW and FBM subdiffusion. We know that

the probability density for a diffusing particle on a fractal

satisfies the scaling relation (38,39)

Pðr; tÞ ¼ t�adf =2P
� r

ta=2
; 1


: (14)

The same relation holds for a CTRW or a FBM if we replace

df by the Euclidian dimension. Let us focus on the proba-

bility to be in a growing sphere of radius r0ta/2. Then

Pr
�
r%r0ta=2; t

�
¼
Z r0ta=2

0

rd�1Pðr; tÞdr ¼ Aðr0Þtaðd�df Þ=2:

(15)

Because the exponent a is known from the second MME

moment fit we can extract df from above relation.

Summary

Collecting the results from this section, we come up with the

following recipe to analyze diffusion data obtained from ex-

periment or simulation (compare also the results summarized

in Table 2).

First, obtain the anomalous diffusion exponent a from

power-law fit to MSD and the second MME moment.

Different subdiffusion mechanisms can then be deter-

mined as follows:

Diffusion on a fractal has regular and MME moment

ratios that depend on both a and the fractal dimension

df. The fractal dimension is smaller than the embed-

ding Euclidean dimension. CTRW subdiffusion

has regular and MME moments that depend on the
t, and equation references for other dimensions

Ratio (regular, MME) Growing spheres

(2, 1.49), Eqs. 7 and 9 Pr(r % r0ta/2, t) ¼ A0

(<2, <1.49), Eqs. 7 and 9 Prðr%r0ta=2; tÞftað2�df Þ=2

(>2, >1.49), Eqs. 12 and 13 Pr(r % r0ta/2, t) ¼ A0

(2, <1.49), Eq. 11 Pr(r % r0ta/2, t) ¼ A0

n lists the scaling behavior of the second regular and MME moments (hr2i
ratio (hX4i/hX2i2); and the fourth column contains the scaling laws of the

Biophysical Journal 98(7) 1364–1372
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anomalous diffusion exponent a. The ratios are larger

than the corresponding Brownian quantities. The prob-

ability to be in a sphere growing like ta/2 is constant.

FBM has the same ratios for regular moments as

BM. The MME second moment exponent is >a, and

the MME ratio is smaller than the Brownian ratio.

The probability to be in a sphere growing like ta/2 is

constant.
0 50 100
t

0

FIGURE 1 MSD hr2(t)i and second MME moment hr2
maxi as function of

time t (arbitrary units) for the three simulated time series (1000 trajectories of

100 steps each), each with anomalous diffusion exponent a ¼ 0.7. The

power-law fits produce, for two-dimensional percolation data, a ¼ 0.64

(MSD, depicted by black �) and a ¼ 0.73 (MME, black D); for CTRW

data, a ¼ 0.67 (MSD, red �) and a ¼ 0.71 (MME, red D); and for FBM

data, a ¼ 0.72 (MSD, green �) and a0 ¼ 0.79 (MME, green D, expected

value a0 z 0.74).
DISCUSSION

We now turn to the question: How can experimental data be

analyzed by help of the tools established above? In a typical

experment, a small particle is tracked by a microscope, the

motion being projected onto the focal plane (two dimen-

sions), to produce a time series r(t) ¼ (x(t), y(t)) of the

particle positions. Given a set of N trajectories ri(t), with ni

steps in trajectory i, we first calculate the distances to the

starting point,

riðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xiðtÞ � xið0Þ�2þ ½yiðtÞ � yið0Þ�2

q
; (16)

in the two-dimensional projection of the motion monitored in

the experiment. The propagator is not directly accessible in

an experiment. However, division of the number of trajecto-

ries being at r for a given time t in the two-dimensional

projection, by the total number of trajectories of length

ni R t, leads to a good estimate of P(r, t). We can therefore

transform all the previous integrals defining the moments

into discrete sums, and apply the above methods.

Regular and MME moments

In discrete form, the kth order moments become

�
rkðtÞ

�
z

1

NðtÞ
XNðtÞ
i¼ 1

rk
i ðtÞ (17)

and

�
rk

maxðtÞ
�
z

1

NðtÞ
XNðtÞ
i¼ 1

�
max0%t

0
%tfriðt

0 Þg
�k

(18)

for regular and MME statistics, respectively. Here NðtÞ is

the number of trajectories that are at least t steps’ long.

Note that the discrete MME moments defined here do not

correspond exactly to the theoretical definition provided

before. In fact, we do not have access to the whole trajectory,

but only some sample points of it, with a given time step

between two consecutive frames. The real rmax may be reached

in between two frames, and therefore would not be observed.

However, after sufficiently long time the difference between

the discrete estimate calculated here and the real value from

the continuous trajectory becomes sufficiently small.

Fig. 1 shows the result of fits of the MSD and the second

MME moment to simulated data according to the three sub-

diffusion models, all with anomalous diffusion exponent
physical Journal 98(7) 1364–1372
a ¼ 0.7. Indeed the MME method performs somewhat

better. We should note that these simulation results are fairly

smooth, and therefore we would not expect a significant

difference between the two methods, in contrast to the results

on the experimental data below. Also note that we chose

different anomalous diffusion constants Ka to be able to

distinguish the different curves in Fig. 1. Of course, this

does not influence the quality of the fit of the anomalous

diffusion exponent a.

Let us now turn to the moment ratios hr4i/hr2i2 and

hr4
maxi=hr2

maxi
2
. As mentioned above, some care has to be

taken with the latter: only the long time values have a phys-

ical meaning. In fact, for the first frame, the moment estimate

hr2
maxi is exactly hr2i, because of the discrete time step. After

few dozens of frames, the estimate hr2
maxi converges toward

its correct value, and the ratios become meaningful.

In Fig. 2 we show a plot of the moment ratios. The conver-

gence to a constant value attained at sufficiently long times is

distinct. The ratios are those predicted for both CTRW and

FBM, where the simulation is performed in a free environ-

ment. For diffusion on a percolation cluster, we observe a

deviation from the prediction, due to the confinement of

the diffusion for this set: the propagator does not converge

toward the free space propagator, but toward the stationary

distribution. We note that these ratios are clearly distinguish-

able between regular and MME moments, but also between

the three simulations sets. Knowing the a-value from the

previous power law fit of MSD or second MME moment,

those ratios are already a good indication of the underlying

stochastic process. As the difference between CTRW and

diffusion on a fractal is not too large, we use the method

of a growing sphere to see whether we can discriminate

more clearly between those two mechanisms.
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FIGURE 2 Regular and MME moment ratios hr4i/hr2i2 and

hr4
maxi=hr2

maxi
2

as function of time (a.u.) for the three simulated sets

(diffusion on a fractal, FBM, and CTRW). Each set consists of 1000 trajec-

tories with 100 steps each. (Black D) MME ratio for the diffusion on a two-

dimensional percolation cluster; the data do not converge to the expected

value 1.29 (black horizontal line). The same behavior is observed for the

regular moment ratio (black þ), for which the expected value is 1.77 (short
black line). This discrepancy is likely due to the confinement of the perco-

lation cluster on a 250 � 250 network: the random walker quickly reaches

the boundaries, and the convergence occurs toward the equilibrium distribu-

tion, not toward the free space propagator. (Red D) MME ratio for the

CTRW process, converging to 1.97 (red horizontal line). We also plot the

regular moment ratio (red þ); these are more irregular and converge to

2.66 (short red line). For FBM, the MME ratio (green D) converges to

the estimated value of Eq. 11, 1.33 (green horizontal line), and the regular

ratio (green þ) oscillates around the Brownian value 2 (short green line).
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FIGURE 3 Probability to be in a growing sphere of radius r0ta/2 as func-

tion of ta/2 for the three simulated sets (a.u.). This analysis is based on the

previously fitted values of a. Results: Two-dimensional critical percolation

(black �) produces d – df z 0.11, i.e., df z 1.89 (exact value 91:48 z
1.896). The CTRW set (red �) gives d – df z 0.01 instead of 0, and the

FBM set (green �) leads to d – df z – 0.004 instead of 0.
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FIGURE 4 Analysis of an experimental set of 67 trajectories, the longest

consisting of 210 points, for quantum dots freely diffusing in a solvent.

MSD (black �), fitted by a power law with exponents a ¼ 0.81 (red

line). We also show a fit with fixed exponent a ¼ 1 (green line, expected

behavior for BM). MME (blue�), fitted by a power law (red line, a¼ 1.02).

Time is in s; distances are in mm2. (Inset) Double-logarithmic plot of the

same data.
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Growing sphere analysis

Let us turn to the probability to find the particle at time t in a

(growing) sphere of radius r0ta/2. Here r0 is a free parameter. It

should be chosen sufficiently large, such that for a given

trajectory the probability to be within the sphere is appreciably

large. At the same time it should not be too large, otherwise the

probability to be within the sphere is almost 1. Choosing a

small multiple of hr(t¼ 1)i appears to be a good compromise.

The probability to be inside the sphere then becomes

Pr
�
r%r0ta=2

�
z

1

NðtÞ
XNðtÞ
i¼ 1

Q
�
riðtÞ � r0ta=2

�
: (19)

Here Q(r) is the Heaviside function, which equals 1 if r R 0,

and 0 if r < 0. We expect the scaling ftaðd�df Þ=2. To fit the

fractal dimension df we need the anomalous diffusion expo-

nent a as input. We used the value extracted from the second

MME moment fits. The direct plot of the probability is quite

easy to interpret: if the probability is constant, then d ¼ df;

if it grows slowly, then d > df, and the support is fractal

(df s d). The dimension d here is the dimension of the trajec-

tories (d ¼ 2 in our examples due to the projection onto the

focal plane). In Fig. 3, we see clearly that for CTRW and

FBM the probability is approximately constant, and that

for the diffusion on a percolation cluster, it grows with

time, indicating that df < d, as it should be.
Experimental data

We analyze experimental single particle tracking data,

showing that such time series are sufficiently large to apply

the analysis tools developed herein.

The first data set (see the Supporting Material) contains 67

trajectories with up to 210 steps’ length of quantum dots

diffusing freely in a solvent. The expected behavior is regular

BM. The data set is quite small and we show that MME

moments are better observables than regular moments. We

plot the MSD as a function of time in Fig. 4, and fit the

data by a power-law f ta. This fit provides an anomalous

diffusion coefficient a ¼ 0.81. The fit based on the second
Biophysical Journal 98(7) 1364–1372
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FIGURE 6 Lipid granules diffusing in a yeast cell. Log-log plot of the

time-averaged second MME moment of the data from Fig. 5 as function

of lag time (continuous lines), and A0t0.5 (dotted lines). Time is scaled in

s; the ordinate is in mm2.
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MME moment returns the value a ¼ 1.02, an almost perfect

reproduction of the expected value a ¼ 1. The much better

result of the MME method is due to the lower dispersion

around the mean of the MME statistics, as discussed in the

Supporting Material. In Fig. 4 it can be appreciated that the

large outlier in the MSD statistics at ~t ¼ 0.7 s is responsible

for the low a-value. The MSD also follows normal diffusion

at longer times. This analysis demonstrates that the MSD, in

this case, would lead to a large deviation from the expected

value, and thus to the erroneous conclusion that the observed

motion were subdiffusive; note that the MME analysis

performs much more reliably.

The second set of data was obtained from video tracking

of eight different lipid granules moving in yeast cells. As

we had few long trajectories, before an ensemble average

we first directly analyzed the eight trajectories using the

time-averaged MSD in Eq. 2. We obtain a distinct subdiffu-

sive behavior with an exponent close to 0.4, as demonstrated

in Fig. 5. Each trajectory corresponds to a given granule. It is

interesting to see that the data exhibit a scatter in amplitude

and considerable local variation of slope. (Such features

were also observed previously; see, for instance, (7,10).)

They may possibly be related to aging effects (40). We

also note that one of the curves shows a much steeper slope

than do the others. We extended the time-average analysis to

the second MME moment

d2
MMEðD; TÞ ¼

1

T � D

XT�D

i¼ 0

maxi%t%iþDfriðtÞg2
(20)

and again obtained a clear subdiffusive behavior, but with an

exponent close to 0.5, as demonstrated in Fig. 6. Once again,

we have a scatter in amplitude. The initial slope variation

(0 < t < 10) is due to the inaccuracy in the MME estimation

when there are only few frames to average. A greater expo-

nent for MME than for regular moment could be due to an
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FIGURE 5 Lipid granules diffusing in a yeast cell. Eight trajectories,

between 5515 and 19,393 frames’ long. Log-log plot of the time-averaged

MSD as a function of lag time (continuous lines), and A0t0.4 (dotted lines).

Time is scaled in s, and time-averaged MSD is in mm2.
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inaccuracy in the fit. However, it may indeed point toward

an underlying FBM process.

To gain more insight into the diffusion mechanism

producing this subdiffusion behavior, we applied the meth-

odology detailed above. As the different trajectories were

not all recorded at the same frequency (96.5 and 99.1

frames/s), we kept only the greater set (96.5 fps), containing

five trajectories, and we split those into 526 short trajectories

of 100 steps each. These trajectories are nonoverlapping and

one may view them as the result of 526 separate observa-

tions. Surprisingly, we retrieve the exponent 0.41 5 0.01

using the MSD, and the value 0.53 5 0.02 from the second

MME moment, as shown in Fig. 7. We repeated this analysis

with a step size of 150 (350 trajectories), concluding that the

choice of the step size 100 has no influence on the value of

those coefficients. Because one of the trajectories (the

magenta line in Figs. 5 and 6) shows a much steeper slope,

we excluded it for the rest of the analysis.

An interesting observation is the following: assuming that

the underlying stochastic process is indeed an FBM, Eq. 10

for a ¼ 0.41 predicts a value a0 ¼ 0.50 for the MME statis-

tics, in quite good agreement with the fitted value. This

finding is quite suggestive in favor of FBM as the stochastic

process governing the particle motion.

Because the trajectories correspond to different granules,

in different cells, we also studied them separately: each

trajectory was split into stretches of 100 steps. For each

granule, we plotted the regular and the MME ratios. They

are somewhat noisy, but for each granule the MME ratio is

clearly below the Brownian one (1.49): it ranges between

1.20 and 1.40. The regular moment ratio is slightly above

the Brownian value (Eq. 2), between 1.7 and 2.5, as shown

in Fig. S3 of the Supporting Material. We also plotted the

ratio for the whole set of 100 steps (thick lines), which

give approximately the same results as those obtained for

individual trajectories. From these ratios, we obtain another
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FIGURE 7 Lipid granules diffusing in a yeast cell. Five-hundred-and-

twenty-six subtrajectories of 100 steps extracted from the experimental set

of five trajectories, which are between 5515 and 19,393 frames’ long.

Ensemble-averaged MSD (black �) fitted by a power law (a ¼ 0.41, black

line), and ensemble-averaged MME (red �), fitted with a power law

(a ¼ 0.55, red line). We verified that creating 350 trajectories of 150 steps

instead of 100 does not change the exponents obtained from the MSD or the

second MME moment (� instead of � symbols). Because one of the trajec-

tories had a steeper slope than the others, we repeated the same analysis

without this trajectory. The new subset contained 445 trajectories of 100

steps, or 296 of 150 steps (MSD in blue leading to a ¼ 0.42, second

MME moment in magenta producing a ¼ 0.51). Time is in s; the ordinate

is measured in mm2. (Inset) Double-logarithmic plot of the same data.
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clue pointing at an underlying FBM mechanism: the MME

moment ratio is, on average, below the value for BM, and

the regular moment ratio is close to the Brownian value.

These MME ratios are not very precise, but seem to range

somewhat above the expected value for FBM with a¼ 0.41:

Eq. 11 gives 1.21 5 0.02.

The test with the growing sphere is, once again, somewhat

noisy; however, it clearly shows that the probability to be in a

sphere, growing like ta/2, attains a constant value (see

Fig. S4). This excludes the possibility that the process corre-

sponds to diffusion on a fractal.

The above analysis demonstrates that the tools proposed

in this study allow us to classify the stochastic process

underlying the motion of the measured single particle trajec-

tories of the granules. We observe that this motion shares

several distinct features with an FBM process. Namely,

FBM explains the finding of different scaling exponents of

the MSD and the MME second moment, including their

actual values connected by Eq. 10. It is also consistent

with a Brownian regular moment ratio, and an MME ratio

lower than the Brownian ratio, as shown in Fig. S3. The

recorded data were also shown to be incompatible with

diffusion on a fractal. The question arises: Could CTRW

function as a potential mechanism? The scatter between

different single trajectories observed in the time-averaged

second moments is reminiscent of the weak ergodicity

breaking for CTRW subdiffusion with diverging character-

istic waiting time, as studied in the literature (25,26).
However an alternative explanation may simply be different

environments and granule sizes. It should be noted that even

between successive recordings the cellular environment may

change slightly, influencing the motion of the observed

particle. The CTRW hypothesis, however, is not consistent

with the moment ratio test: the expected ratio for a ¼ 0.4

would be 3.38 for the regular one, and 2.50 for the

MME—far above the observed values.

Given the clues we obtained from the analysis, the exper-

imental data quite clearly point toward an FBM as an under-

lying stochastic process. More extensive data acquisition is

expected to allow us to make more precise conclusions.
CONCLUSIONS

With modern tracking tools, biophysical experiments

provide us with the time series of single particle trajectories.

Recently a growing number of cases have been reported in

which the monitored particles exhibit subdiffusion. An im-

portant example is the motion of biopolymers under cellular

crowding conditions. Whereas the MSD of these data,

scaling like x ta, provides the anomalous diffusion expo-

nent a, the underlying physical mechanism causing this

subdiffusion is presently unknown. As different mechanisms

give rise to fundamentally different physical behaviors influ-

encing the particle diffusion in a living cell, it is important to

obtain information from experimental or simulation data

other than the anomalous diffusion exponent, allowing us

to pin down the specific stochastic process. We here intro-

duced and studied several observables to analyze more quan-

titatively single-particle trajectories of freely (sub)diffusing

particles. For long trajectories with active motion events,

the latter may be singled out and our analysis performed

on the passive parts of the trajectories (41). As typical exper-

imental data sets are relatively short, we here focus on the

ensemble average obtained from a larger number of indi-

vidual trajectories. The data were simulated based on three

subdiffusion models—these being CTRW with power-law

waiting-time density; fractional BM; and diffusion on a

fractal support. Moreover, we analyzed two sets of experi-

mental single-particle tracking data, corresponding to a

Brownian and a subdiffusive system.

In particular, we propose alternative measures to the usual

fit to the MSD. Apart from obtaining the fourth-order mo-

ment and constructing the ratio hr4i/hr2i2, these alternatives

are:

1. MME statistics that the particle has not traveled more than

a preset distance up to time t. Its second and fourth

moments, theoretically, scale with time the same way as

the regular moments; however, they appear to reproduce

more truthfully the actual subdiffusion exponents. Con-

structing the ratio hrmax
4i/hrmax

2i2 for these quantities

provides additional information that allows one to distin-

guish different subdiffusion mechanisms.
Biophysical Journal 98(7) 1364–1372
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2. The analysis using a growing sphere containing a certain

portion of particles appears as a quite reliable method to

obtain the (fractal) dimension of the underlying trajectory.

An application to an experimental set proves the efficiency

of those tests: the MME analysis is clearly more accurate

than the classical MSD one, and with a modest data set we

are able to collect several independent clues to identify

FBM as mechanism to explain the motion of lipid granules

under molecular crowding conditions. For a long recorded

time series, the performance of the MME and regular-

moments analysis becomes comparable.

From the discussion of simulations and experimental data,

we have shown that to understand the physical mechanism of

anomalous diffusion in a given set of data, one needs to

gather evidence from complementary measures such as those

proposed in this article.
SUPPORTING MATERIAL

Seven tables and four figures are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(09)06097-4.
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