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Let P and Q be epireflectivc fuil subcati:gorizs of the category Haus of Hausdorff 

spa r 2; :x! continuous funt tions, and also tlenote the corresponding reflectors by P: 
Haus -+ P and Q : Haus + f’ respec!ivc!y . D :note the class of F-regular spaces, i.e., of sub- 
spaces of P-spaces, by Rp Embracing ceata n :pecial cases which have been treated in the 
literature, we show that if i’ C Q C RB the]\ for .X, YE W the relation P(X x Y) = 

fX X PY implies (jr?’ X k’) = QX X QY. Applications to particular classes U, Q are given. 

’ AW Subj. Class.: Primary 54Bl0, 1jjA40, S4C2O 
Secondary 54C45, 54D3 5, 54D6O 
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epireflective subcategory realcompa cl. space 
f-regular topc~logicall,~ compleae spacxz 

1 P-embedding ----- p_ --_--- -I 

1. Introduction 

aw be the c;!cegory f Ha:usdr:rff spaces and continuous fun 
ologica2’ pmperty f Hausdo.&’ spaces we dQ not distirzgr ii 

between ( 1) this property, (2) the clas;s Iof all P-spaces, i.e. of all spaces 
perty P, and (3) the fulli sub c;:j te US whose o;bjectl; 
paces. P is called epiwfkcti~~e iin following equiti- 

alen t conditions hold : 

d closed-hc redi txy ; 
us tkl.ere is PX E P #a ccmtinuous fu ncPicm 

and for every c~~t~~~l~~~s 

If these conditions tie satisfied, then the pair (px , 

* This author grt;ltefully knowledges supper recel veal fro 
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cial to the proof of OUT theorem below). For a prodwxive, closed-here- 
$4 embedding if 
itaracterized as fol- 

embedding, i.e., an embedding of X on tt 
t for every continuous f : X + Y E: 

+Ysuchthatf+px. 

e he.re prove the result (Theorem 2.2) cited in the Abstract. 

e lepireflective su bca tegorie:: of 
embedded in XX 

ontinuous f : XX 



We note in 2.4 below certain instalxxs of 2.1 and 2.2 (of whxh SG 
have appeared already in the liter2tujre). ‘8% denote by [ 0, 11. ’ the clo: 
unit interval and by 13, the two-elenxnt discrete: space. The fol”rowing 
definitions, equivalent tu the standartj formulations, are COW, kmt’ ffor 

our purposes. 

ition. A topological space is: 
-dimensbal if it is hoBneo;morph.ic to a subspace 01” a po 

OfD~; 

(b) realcompact 3 it is homzomor&.ic to1 a closed subspace of a pro- 
duct of real lines; 

(c) tophgically compk%e if it is h~rn~:o~norp.hic to a closed subspace 
of a product of metric sp;rdces. 

enote by Z the class of xxodilmerklr)nal spaces an 
the class of completely regular HauscLorff srlaces. For IYE 
note by /3X, OX’ and p,;q( thC3tone-tech cc~mpactification, 
realcoKnpactification (ant? the lopologka~l I:ompletion of X, respectively. 

Concerning Corollar,r 2.4(b), we n0te that (fo:r closed-hereditar: 
s) the hypothesis E P is fuIfiillt:d I+ hemever 
never there is Z E such that I21 :> 111. 



(6) is due tc, Isiwata [ 13, Theorem 2.11. 

3.6. If X is a space and A, B c X, then A lnd B are said to 
be coM@ete& separured (in X)I if there is a csratinuous function f : 
C+ [OJ] suchthatf[A] C (O} sndf[B] C {I). 

‘The following lemma is from [ 19, Theorem 3.71. Tamano’s proof 
and a number of applications are given in [ 4 1. 

mma. If XE Tyc I thep;. X is to&o@cally complete if and only 
if for every p E flX\ X %he sets XX {p} arzd (Cx, x) : x E X) ure corn- 
pletely separated in X x pX. 

ectiwe su 3cizt9go~v of ch that 
and let X be a %opokrrgicully co ;mplt? te spai :,e. lo wing 

‘X Yforall YE 

we have (a) =* (b) and (a) * (c). We 
show next that (b) =$ (d) and (c) * (d). Indeed, if(d) fails there is 

is t~~o~~gical~y co e #ihere is (by Lemma 3.2) a COP- 



ness of P(X X Y) 8s described 

com?plete is no 
e requirement in Coroku-y 3.3 that X b:e topologically 
tificial and canmt be omitted. The failure of the 

equivalence of (a], (b), (c) and (d) ;IFbr sllaces X that are not topological- 
complete for suitable choices of rthe cla:z is given in ‘Table 1, where 
denotes the class of topologically connpk class of 

ausdorff spaces (so that d”Y =: fi ‘:Y for all YE Ty The entry 
y in this table means “Yes, the stal:ement !n question (a:), (b), (c) or (a) 
of Corollary 3.3) dozs hold”; the er-[try P+’ f;geans c‘W~, it does not”; th: 
single entry (*) is discussed below. 

The reader Frill easily verify the K-N en .-ies by using the following 
facts. 

cl) If X 4 T, there is Y E ir such i.hat iV(,‘d Y, Y) # TX X 
shown by Isiwata [ 113, Theorem 3. f! ] , fol’lctwing McArthur’s [ 1.5 ] uscj 

of a construction of Hager and MrolJvka (see T9. Theorem 3.21). 
(2)&Xx *Y)=@XnflYifandonlyifJor YisfiniteorX3( Yis 

pseudocompact, This result is due to Glj cksbc rg [ 81; see also [ 71. 

(3) If YE r and Y is locahv compact thee T(&KX Y) 

for all XE Tych. This is shown by F’upie r [ 14, Theorem 
Morita [ 16, Theorem 5.11 , see [ 2, Cam1 lary 2.Z for the appropriate 
analogous result concerning realcompacl spaces. 

(4) If x’ is pseudocoinpact and Y is cc mpac!, then X X Y is pseudo- 
compact. This familiar result is proved (l’or exampl,:) in [ $1 . 

(5) Every pseudorzompact, topol :j$ca .iy complete sc;;ice is *zonk 
= fix for every :l~seur ioc 



‘7 4; W. W. Comfort, FL Herrlich / The relations PfX X Yj = PX X PY 

Tablr: 1 
Behavior of spaces X such that X6 T 

- 

X pseudocompact P=cI’ 
X pseudocompac” P=T 
X not pseudoccmpact P=C 
X not pseudocompact P=T 

(a) 

Y 
N 
N 
N 

-- 

(b) (c) (d) -I__ 

Y Y N 
Y Y N 
N N N 
(*) Y N 

with X = X0 + X, we have X = TX, + X, and hence T(X X 

SC- lx X 2x 

e conclude with a corollary to 2.2 and 3.2. Again, we denote by 
the class of topologically complete spaces. 

be a12 epireflective snbcategor~~ of ych such that 

Y) = PXX PY for all Y E Tyeh, thew X E R 
X is ZocaZZy compact and X E ‘T, tZwz P(X X Y) = 

(aj It follows from Theorem 2..? that 
ycF, so that XE Tby3.4(1); hence X 

(b) This follows from (3) above and ‘Theorem 2.2.~ 
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