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Let P and Q be epireflective full subcategories of the category Haus of Hausdorff
spar s and continuous fund tions, and also denote the corresponding reflectors by P:
Haus — P and Q : Haus — {} respectively. D2note the class of P-regular spaces, i.e., of sub-
spaces of P-spaces, by RP. |Zmbracing certa n »pecial cases which have been treated in the
literature, we show that if i* C Q C RP then for X, Y€ RP the relation P(Y X V) =
PX X PY implies (Y X ¥) = QX X QY. Applications to particular classes P, Q are given.
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epiretlective subcategory realcompact space
P-regular topologically complete space
‘P—embedding

1. Introduction

Let Haus be the cacegory of Hausdorff spaces and continuous functions.
For a topologicai property P of Hausdorit spaces we do not distinguish
between (1) this property, (2) the class of all P-spaces, i.e. of all spaces
having property P, and (3) the full subcategory of Haus whose object;
are the P-spaces. P is called epirefloctive in Haus if the following equiv-
alent conditions hold:

(i) P is productive and closed-he reditary;

(ii) for every /X € Haus there is PX € P and a continuous function
Py : X = PX suchi that py [ X] is dense in PX and for every continuous
f: X - Y€ P there is a contiruous /: X > Ysuchthatf=f-° Py.

If these conditions are satisfied, then the pair (py, X5, called the
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P-reflection of X, is determined uniqguely up to homeo norphism. This
gives rise to a functor P : Haus -~ P which commutes with colimits but
usually not with limits. nor even with finite products. The aim of this
paper is to show that for epireflective subcategories P nd Q of Haus
uitder suitable conditions the equality XX X Y) = PX X PY impiies
GXX Y)=0XXQY.

A space X € Haus is called P-regular if there is P € P such that X C P;
the class of P-regular spaces is denoted RP.

We refer the reader to [5,6,10,11,14] for additional background ma-
terial, and to [10,12,18] for proofs of the following fict (which is cru-
cial to the proof of our theorem below). For a productive, closed-here-
ditary ciass P, the P-reflection py : X > PX is a topological embedding if
and only if X € RP; and if X € RP, then (py, PX) is characterized as fol-
lows:

(HPXeP;

(2) py is a P-embedding, i.e., an embedding of X onto a dense sub-
space of PX such that for every continuous f: X = Y € P there is a con-
tinvous f : PX - Y such that f=F < p,.

2. A two-class theorem
We here prove the result (Theorem 2.2) cited in the Abstract.

2.1. Lemma. Let Pand Q be epireflective subcategorie: of Haus such that
PCQCRP IfX, YERPand XX Y is Pembedded in X X QY, then
XX Yis Q-embedded in X X QY.

Proof. Let continuous f: XX Y - Z € @. Since Z € RP, the P-reflection
27 + Z - PZ is a topological embedding. By assumption there is a con-
tinuous fur_l_ctionf : X X QY - PZ'such that f C f, andl it is enough to
sho_\gv that f[XX QY] C Z Forx € X weset f, =f|{x} X Y, we denote
by f, the continuous extension of f, mapping {x} X 2Y to Z, and we
riote that for every x € X the functions f | {x} X Y and fx i{x} XY
(which is £ ) are equcl. Since PZ € Haus, we have f| {x} X QY =fx

for all x = X, and hence

FLXX QY] =ngf[{x} X QY] = g}{fxl{x} X QY] cgz

as required. OJ
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2.2. Theorem. Let P and Q be epireflectie subcategories of Haus such
that PCOQCRP if X, YERPand PIX X YY=PX X PY, then Q(X X Y)
=X X QY.

Proof. We note from the uniqueness resu t cited above that it foliows
that X C QX C PX and Y = QY C PY and that it is sufficient to prove
that X X Y is Q-en: sedded in QX X gY. Now X X Y is P-embeddzd in
PX X PY, and hence in X X 9Y; hence (by Lemma 2.1) XX Y is Q-em-
bedded in .{ X QY. A second appeal to Lecmma 2.1 shows that X X QY
is (-embedded in QX X QY. The proof it complete. O

We note in 2.4 below certain instances of 2.1 and 2.2 {of which some
have appeared already in the literature). 'We denote by [0, | ' the closed
unit interval and by D, the two-element discrete space. The foliowing
definitions, equivalent to the standard formulations, are conv. aient for
our purposes.

2.3. Definition. A topological space is:

(a) zero-dimensior.al if it is homeomorphic to a subspace of a power
of B,;

(b) realcompact f it is homeomorphic to a closed subspace of a pro-
duct of real lines;

(c) topologically complete if it is homeomorphic to a closed subspace
ot a product of metric spaces.

We denote by Z the class of zero-dimensional spaces and by Tych
the class of completely regular Hausc orff spaces. For X € Tych we de-
note by X, vX and ¥X the Stone-Cech compactification, the Hewitt
realcompactification and the topological completion of X, respectively.
Concerning Corollary 2.4(b), we note that (for P closed-hereditary in
Haus) the hypothesis D, € P is fuifilled whenever P is non-trivial (i.e.,
whenever there is Z € P such that |Z] > 1.

2.4. Corollary. Let P and Q be epirefiective subcategories of daus and
let X, Y € Tych. .

(aVIf[0,1) € PC QC Tychand P(X x Y)=PXXPY, then Q(XX )
= QXX QY.

YIfD,ePCcQCZand X, Y€ Land R XX Y)=PXXPY, then
QX KY)=0XX @Y.

) IfFBXX Y)Y=BXXBY then v(U'X N =vXXvY,

D Ifv(X X V)Y=vX X vY, then f(XX y=yX X vY.
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We hiave shown above (for suizably restricted subcitegories 2 and Q
of Haus and for X, Y € RP) that if XX Y is P-embedded in QX X (Y,
then X X Y is @-embedded in Q2! X QY. For P the class of compact
spaces and @ the class of realcompact spaces, the result is given in {3,
Theorem 5.2]. Corcilary 2.3(c) has been noticed by several authors,
using a theorem of Glicksberg [3] (cf. (2) of 3.4 below); and statement
(d) is due to Isiwata [13, Theorem 2.1].

3. Spaces X such that P(XX Y) =PXX PY

3.1. Definition. If X is a space and 4, B C X, then A and B are said to
be completely separated (in X) if there is a continuous function f:
A - {0,1] such that f{A} € {0} and f[B] C {1}.

The following l2mma is from [ 19, Theorein 3.7). Tamano’s proof
and a number of applications are given in [4].

3.2. Lemma. If X € Tych, ther. X is topolcgicaliy complete if and only
if for every p € X\ X the sets XX {p} and Kx x):x € X} are com-
pletely separated in X X $X.

3.3. Corollary. Let P be an epireflective subcaiegory of Tych such that
{0,1] € P, and let X be a topologically complete space. The following
are equivalent.

@QPXXY)=PXXPY=PXXYforall YEP,

(b) P(X X PX)=PX X PX,

©) P(X X BX)=PX X BX;

(d) X =PX.

Proof. Since PX € P and X € P, we have (a) = (b) and (a) = (c). We
show next that (b) = (d) and (¢) = (d). Indeed, if (d) fails there is

pEPX\XCBX\X,

and since X is topologically complete “nere is (by Leinma 3.2) a cor-
tinuous function f: XX BX - [0, 1] s.ich that

FIXX {p}] ={0},
fe,x)=1 forallxe X.
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It is clear that f has no continuous exte:1sion to the point ¢, p) €
PX X BX (so that (c) fui's), and that £1X X PX has no continuous ex-
tension to the’point (¢, py€ PXX PX (so that (b) fails).

That (d) = (a) follows from the uniqueness of (X X Y) as described
in the introduction. O

3.4. Remarks. The requirement in Corollary 3.3 that X be topologicaily
complete is not artificial and cannot be omitted. The failure of the
equivalence of (aj, (b), (¢) and (d) for spaces X that are not topological-
ly complete for suitable choices of the class P is given in Table 1, where
T denotes the class of topologically conmiplete spaces and C the class of
compact Hausdorff spaces (so that CY =: § ¥ for all Y € Tych). The entry
Y in this table means “Yes, the statement ‘n question (a), (b), (c) or (d)
of Corollary 3.3) does hold”; the entry I ineans “No, it does not”; tha
single entry (*) is discussed below.

The reader will easily verify the Y-N en :ies by using the following
facis.

(DIf X €T, thereis ¥ € T such that 7.7 X Y)# TXX TY. This is
shown by Isiwata [ 13, Theorem 3.2], follewing McArthur’s [15] use
of a construction of Hager and Mrowka (see {9, Theorem 3.2]).

Q)X X Y)=BXx Y if and only if L or Y is finite or XX Y is
pseudocomgact. This result is due to Glicksberg [8]; see also [7].

(3)If Y& Tand Y is locahv compact ther. (XX Y)=TXXTY
for ail X € Tych. This is shown by Pupier [17, Théoreme 4.3} and
Morita {16, Theorem 5.1], see [2, Corollary 2.2! for the appropriate
analogous result concerring realcompact spaces.

(4) If X is pseudocownpact and Y is ccmpact, then X X Y is pseudo-
compact. This familizr result is proved (f'or examplz) in [8].

(5) Every pseudocompact, topolozica iy complete space is com-
pact (and hence TX = BX for every pseudocompact space X). This
familiar result is stated (for examplej in [1, Theorem 8].

As to the entry (x) we show that the 1elation T(X X TX) = TAXX TX
holds for certain spaces X that are not topologically complete and not
pseudocompact, and fails for certain other such spaces X. If X is local-
ly compact and topologically complete eand X is pseudocomypact but
not compact, then T'(X; X X)) = (X)) X Xy by (4) and (5), and the
“disjoint union” X = X, + X, satisiies TX = X, + X, and T(XX TX)
= TX X TX. (Essentially this is remarked by McArthur [ 15, Example
5.8].) On the ocher hand, if X, is any space that is not topologically
complete and X € T is chosen so that 7(Xy X X ;) # TX,, then
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Tabl2 1
Behavior of spaces X such that X& T

(a) (b) © (d)
X pseudocompact P=C Y Y Y N
X pseudocompac’ P=T N Y Y N
X not pseudocompact P=C N N N N
X not pseudocompact P=T N *) Y N
hJ

with X = X + X we have TX = TX, + X; and hence T(X X TX)
#TX X TX.

We conclude with a corollary to 2.2 and 3.2. Again, we denote by T
the class of topologically complete spaces.

3.5. Corollary. Let P be an epireflective subcategory of Tych such that
[0,1] € Pand let X € Tych. Then:

@IfPC Tand P(XX Y)=PXX PY forall Y € Tych, then X € P.
M IfTC P Xislocally compact and X € T, then P(X X Y) =
PX X PY forall Y € Tych.

Proof. (a) It follows from Theorem 2.2 that T(X X ) = «.. X TY for all
Y € Tych, so that X € T by 3.4(1); hence X € P by Corollary 3.3(a).
(b) This follows from (3) above and Theorem 2.2.00

References

{#] R.W. Bagiey, E.H. Connell and J.D. McKnight, Jr., On properties characterizing pscudo-
compact spaces, Proc. Am. Math. Soc. 9 (1958) 500--506.

[2] W.W. Comfort, On the Hewitt realcompactification cf a produc space, Trans. Am. Math.
Soc. 131 (1968) 107-118.

[3] W.W. Comfort and 8. Negrepontis, Extending continuous functions on X X Y to subsets of
BX X Y, Fundamenta Math. 59 (1966) 1—-12.

{4} W.W. Comfort and S. Negrepontis, Continuous pseudometrics, |.ecture Notes in Pure
and Applizd Maih. (Marcel Dekker, New York, 1975).

{5} S.P. Franklin, On epi-reflective hulls, Gen. Topology Appl. 1 (1971) 29-31.

[6] P. Freyd, Abelian Categories (Harper and Row, New York §96¢).

I7] Z. Frolik, The topologicai product cf two pseudecompact spaces, Czech. Math. J. 10 (1960)
339-349,

{81 1. Glicksberz, Stone<Lech compactifications of products, Trans. Am. Math. Soc. 94 (1959)
369-382.



W.W. Comfori, H. Kerrlich | The -elations P(X X Y) = PX X PY 43

19] A.W. Hager, Projections of zero-sets (aad the fine uniformity on a product), Trans. Am,
~ Math. Soc. 140 (1969) 37-94.
{10} H. Herrlich, € -kompakte Riumc, Matk. Z. 96 (1967) 228-255.
{11] H. Herrlich, Categorical topolcgy, Gen. Topclogy Appl. 1 (1971) 1-15.
{12} H. Herrlich and J. van der Slo?, Properties wlich are closely related to compactness, Indag.

Math. 29 (1967) §24--529.

[13} T. Isiwata, Topological ~ompleticns and realc ompactifications, Proc. Japan Acad. 47
(1971) 941 -940.

{14] J.F. Kennison, Reflective functors in general topology and elsewhere, Trans. Am. Math.
Soc. 118 (1945) 303-315.

[15] W.G. McArthur, Hewitt realcompactification: of products, Can. J. Math. 22 (1970) ¢45~
657.

[16] K. Morita, Topological completions and M-sp ices, Sci. Rept. Tokyo Kyoiku Daigaku 10
(1970) 271-28¢.

[17] René Pupier, Qu:lques propriétés de la complétion universelle d’un espace complétement
régulier, C.R. Acad. Sci. Paris 269 (1969} 18¢-189.

[18] ¥ van der Slct, Universal topological propertis, Rept. No. ZW1966-011, Math. Centrum,
Amsterdam (1966).

[19] H. Tamano, On compactifications, J. M» ch. Kyoto Univ. 1-2 (1962) 162—-193.



