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1. INTRODUCTION 

In 1967 Guittet [l] solved Laplace’s equation numerically by using 

generalized (extrapolated) alternating direction implicit (ADI) methods. The 
problem was completely solved in the p-dimensional supercube R where a 
uniform mesh of the same size h in each coordinate direction was imposed 
on R, and Laplace’s equation was approximated by a2p + l-point difference 
formula. Moreover, explicit forms of the optimum values of the different 

parameters involved were given in the cases p = 2, 3, and 4. 
In this paper we generalize the basic idea by Guittet in the 2-dimensional 

case by considering (i) that the region under consideration R is a rectangle, 
instead of being a square, where the mesh sizes in the two coordinate direc- 

tions are different in general, and (ii) that two different types of difference 
formulas are used to approximate Laplace’s equation. It is effectively shown 
that the optimum results which are obtained in the general case considered 
here are quite different from those obtained by Guittet. 

2. OPTIMUM EXTRAPOLATED AD1 SCHEMES 

We start with Laplace’s equation (1) which is considered over the rectangle 

R = {(x,y) I 0 < x < 1, , 0 <y < l,}, (1) 

where u = u(x, y) is prescribed on the boundary aR of R and impose a 
uniform mesh of mesh sizes h, and h, in the x- and y-directions, respectively, 
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on R U 8R. Thus, the number of mesh subdivisions in each coordinate 
direction is defined by 

At each mesh point 

(i,j)I 1 <i<N,- 1, l<j<N,--1, 

Laplace’s equation is approximated by the following difference formula 

(Si + us,” + e(1 + u) 8;s;) ?+ = 0, (2) 

where 6, and 6, are the central difference operators in the x- and y-directions, 
respectively, a is the ratio @hi , uij is the approximate solution of (1) at 
the node (i, j) and 0 takes the values 0 and l/12. 19 = 0 gives the well-known 
5-point difference formula, while 13 = l/l2 gives the more accurate q-point 
formula. Difference equation (2) yields the following extrapolated AD1 
scheme. 

(I - d3:) z&+*) = [(I - ~3:) + +3Z, + us,2 + e(i + u) s;s”,)-j $), 

(1 - Y&) u$+i) = zlij (m+t) _ p&$p ?I 23 ) (3) 

where r is a positive acceleration parameter, w the extrapolation parameter, 
~17) the mth iteration approximation to uii (UC) arbitrary), and u$~+~]‘~) can 
be regarded as an intermediate approximation to UC”). Eliminating u$~+~]‘~) 
from (3), the following iterative scheme is produced. 

= [(i - d:) (1 - rus;) + wy(s: + us; + e(i + u) s”,s;)] k$, 

where, as can readily be seen, its amplification factor is given by 

(4) 

with 
p(r, w) = 1 - wf, (5) 

f-“e,a,,a,) = r(al + u~2 - e(i + 4 ~,a,) 
(1 + q) (1 + Y%> ’ 

and 

ui = 4 sin2 
Kp- 
2Ni , Ki = 1, 2,..., Ni-- 1, and i= 1,2. 

Starting with the relationships 

0 < (1 + u) uius = uiua + uu,u, < 4u, + 4uu, = 4(u, + uu2), 



LAPLACE’S EQUATION IN A RECTANGLE 355 

which are always valid, we can easily obtain that 

G<f <d, (6) 

where 

$ = Ye, a1 , a,) = 
+1 + ua2) 

(1 + 4 (1 + raa2) ’ 
(7) 

and K = 1 or 213 corresponding to 6’ = 0 and l/12. Then let fm and fM denote 
the minimum and the maximum values of the function f defined previously 
in terms of r when a, and a2 vary so that 

4 sin2 & < ai < 4 cos2 
a 

&Ii= 1,2. 
2 

It is known (see [1, 2, and 31) that optimum results, indicated from now on 
with a subscript opt, are obtained for that Y = rapt for which the ratio f,/f, 
or equivalently because of (6) the ratio &,& is a maximum where $,,, and 
+M have obvious meanings. Therefore, if rapt can be determined, optimum 
values for the other parameters involved can be obtained by means of the 
relationships 

2 4 
Wept = popt = 

Mopt - Khnopt 
4Mopt + Khnopt ’ +&fopt + %Llopt ’ 

(8) 

where $mogt , &,opt , wont , and popt stand for the optimum values of $m , 

+ MI W, and p(r, w), respectively, and K = 1 or 213 depending on whether 
a 5-point or a 9-point difference formula is used. By putting 

pl = 4 sin2 =$ < a E a, < 4 co9 -IT- z v 
2N, l’ 

b ES aa, ,( 4a cos2 

we can define a new function $ as follows 

4 = #(I, a, b) = $(r, a, > a,), (10) 

and therefore, the problem of determining rapt reduces to that of finding the 
extreme values &( = &J and #M( = +M) of the function 4 in terms of r and 
then maximizing the ratio F(r) E &&M with respect to r. By forming the 
expressions for a#/& and at,h/ab it can be readily seen that neither of them 
changes sign as a varies in l& , VJ and b varies in [EL2 , vs], respectively. This 
simply means that the extreme values of I/J take place at 
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Therefore, if we consider the expressions 

Y(CLl + P2) 
A = (1 + WI> (1 + v2) ’ 

+Jl + CL21 
c = (1 + q> (1 + yp2) ’ 

yh + v2> 

(11) 

and 
D = (1 +YV,)(l -tYV,) ’ 

then for a fixed Y we shall have that 

fGlm = min(A, B, C, D) and &,,, = max(A, B, C, D). w 

Using (11) and the function sign (x) which is defined as follows 

I 

=+l if x>o 
sign(x) = = 0 if x=0 

E-Z- 1 if x <o, 

it can easily be obtained that 

sign@ - B) = sign(rp, - l), 

sign(d - C) = sign(rpa - l), 

sign(B - D) = sign(ru, - l), 

sign(C - D) = sign@, - 1). 

(13) 

The order of A, B, C, and D, which will allow us to determine #, and &, 
through (12), mainly depends on the order of Y, 1 /pi , 1 /et1 , 1 /pa , and 1 /us . 
We then distinguish the following three basic cases which will be examined 
separately. 

Case I. Pl <I-% (02 (4 8 

Case II. CL1 <P2 < 01 <v2 I 

Case III. pl < vi < p2 < w2 . 
Here it should be pointed out that besides the three basic cases just 

mentioned there exist three more cases which can be obtained by inter- 
changing the indices 1 and 2 in the relationships above. The additional cases, 
however, can be treated in exactly the same way, so in the subsequent analysis 
we are not dealing with them at all. Moreover, it should be stressed that each 
of the above basic cases can be generalized in such a way that some strict 
inequalities can be replaced by nonstrict ones (e.g. a generalization of Case I 
may well be h < p2 < v2 < vr). To avoid unnecessary complications, we 
do not consider generalized cases in this sense. We simply note that such a 
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generalized case can be regarded as a limiting case of one of the basic cases 
considered and therefore the corresponding results can be obtained as the 
limits of the results of the basic case. 

In each basic case, the analysis follows the same general pattern. First, the 
whole interval (0, 00) is split into five subintervals which are defined by 
using the order of p1 , zrl , pz , and v2 . Then by using (13), &,, and I,!J~ are 
determined for r taking values in each of the five subintervals. Second, the 
ratio ?P = Y(r) = &Jz/~ is formed, the function sign W/ar is studied in 
each of the subintervals and a table indicating the increasing or decreasing 
character of Y in specified subintervals is constructed. Third, by studying 
the behavior of the function Y in the whole interval (0, co), rapt can be 
determined. 

Case I. Pl -c FL:! < *!2 < Vl 

The interval (0, co) is split into the following subintervals: (0, l/vi], 

WV1 9 v4 WV2 3 1IcL21, wcL2 9 1IPIl~ and [l/pi , co). Five subcases are then 
considered. 

Subcase I, . 0 < I < l/v, . Using (13), it can be found that 

A < min(B, C) < max(B, C) < D. 

Therefore, I,L~ = A and Z/J,,, = D so that Y = A/D. This gives that a??‘/& > 0 
which implies that Y is increasing in (0, l/v,]. 

Subcase Ib . l/v, < I < l/v, . This time we have A <B ,( D <C. 
Therefore, #m = A, I+G~ = C, and Y = A/C. Again alvjar > 0, implying 
that Y is increasing in [l/v, , l/02]. 

Subcase I, . l/v, < r d l/p2 * It is readily obtained from (13) that 
A, D < B, C. Therefore, to decide which one of A and D is the smallest, 
as well as which one of B and C is the largest, we form and study the following 
two functions. 

sign(A - D) 

= +m1 - CL11 P2V2 + (v2 - P2) PI4 r2 - [(Vl - PI) + (VZ - P211h 

sign(B - C) 
(14) 

= SiPwh - Pl) P2V2 - (v2 - P2) w,l r2 - [@I - PI) - (VZ - P2)lh 

(15) 
Because of the inequalities 

(Vl - Pl) PzV2 + (v2 - P2) PC,% > 0 and (vi - Pl) + (‘u2 - P2) > 0 



358 HADJIDIMOS AND IORDANIDIS 

which are valid in this present case, the quadratic on the r.h.s. of (14) has 
two real roots rl and r2 satisfying rl < 0 < r2 . It can be verified that r2 = r,, 
where 

yAD = ( 
(fh - Pl) + b-J2 - PA 

(01 - Pl) Pz% + @2 - P2)Wl 1 

112 
(16) 

belongs to the interval [l/w2 , l/p,]. Therefore, by using (14), it can be found 
that for Y E [I/o, , yAD], A < D, implying that & = A, while for 
Y E [yAD , l/ps], D < A implying that & = D. Now using the relationship 

v+a > vzpl which holds in this case, we obtain 

which in turn gives that (wl - pi) p2vu2 - (~a - ps) pia, > 0. On the other 
hand we have that (or - pl) - (Q - pa) > 0. Therefore, the quadratic on 

the r.h.s. of (15) has two real roots rl and r2 such that rl < 0 < r2 . I f  we 
put r2 = rBC where 

( 
(01 - Pl) - e2 - P2) 

1 
112 

yBc = h -i-4 P2V2 - b2 - P2)wh ' 
(17) 

it can be verified that rBC E [l/v, , l/&j. Therefore, for Y E [l/v, , rBc] 
B < C giving that #M = C, while for Y E [ygc , l/p21 C < B giving that 
zJrM = B. 

It can be proved that 

skn(y.4, - y~d = sign(p2~2 - wl). 

Therefore, two cases must be distinguished according to whether plvl < paa, 
or not. 

Subcuse ICI. pr~r < ps~a. The interval [l/o, , I/&j is split into the 
subintervals [l/o, YJ, [rBC , rAD], and [yAD, l/pa]. In each subinterval & 
and $,,, can readily be determined from the analysis above, and the corre- 
sponding results are obtained straightforward (see Table I). 

Subcase I c,. p2v2 < plwl . This time the three subintervals are 

w2 3 y&J, PA o , rBc], and [yBc , l/p2], and the analysis is exactly the same 
as in the previous subcase ICI. The corresponding results are given in Table I. 

Subcase 10. l/P2 < y  < l/t%. It can be seen from (13) that 
D < C < A < B. Therefore, $m = D, I,& = B, which give that W/& < 0. 
Thus, Y is decreasing in [l/p2 , l/&j. 
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TABLE I 

Subcase 

Ia O<r<l/v, A D >o increasing 

Ib 

TAD < r Q l/p2 D ” cc0 decreasing 
Ic 

l/v, G r < TAD A C >0 increasing 

L2 : PlV, > /wz rAD < t’ < TBC D ” <o decreasing 
q~c<r<l/p~ ” B ” >, 

Id l/pLz < r Q 1 /pl ” ” ” I, 

It? 

o VBC is given by (17). 
’ TAD is given by (16). 

Subcase I,. l/p1 < Y < co. This time we have that 

D < min(B, C) < max(B, C) < A, 

which imply that 4, = D and $M = A, and from these we can find out that 

Y is decreasing in [l/p1 , co). 
Having studied the five basic subcases, we have constructed Table I 

which gives a summary of the results obtained so far. 

Case II. p1 < pa < vr < v2 

By splitting the interval (0, co) into subintervals (0, l/v& [l/v,, l/v,], 

P/v, t UP& [UP2 3 Qll, and [I/p1 , co), five subcases are distinguished. 
The four subcases II, , IIb , IId , and II,, which arise when T takes values 
from the first two and the last two subintervals defined above, are easily 
studied as in the previous Case I; the results obtained are given in Table II. 
The analysis in subcase II, , however, is different from the corresponding 
one made in subcase I, , mainly because the inequalities v+s > vs~r and 

*1 - CL1 > 372 - p2 used there do not always hold. Therefore, in what follows 
only subcase II, is studied. 
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TABLE II 

Case II: p1 < p2 < 0, < vz 

Subcase 

11, 

r *nl 434 a!?/& !P 

0 < r Q l/w, A D >o increasing 

IIb l/o, Q I < l/V, ” B ” ,, 

IL 
l/V, < r Q rADa ” ” 

YAD < r < l/k? D ” 

” 

<o 

I> 

decreasing 

IId 

IL l/pi < r < co ” A ” ,a 

’ TAD is given by (16). 

Subcase II,. l/v, < r < 11~s . It can readily be obtained, from (13), 
that A, D < B, C. To tid out which one of A and D is the smallest, we 
consider again the function sign(A - D) given by (14). The results obtained 
are the same as in subcase Ic , the only exception being that the lower bound 
l/v, considered there is replaced by l/v, . To find the largest of B and C, the 
function sign(B - C) given by (15) is formed. We put 

where 

g(r) ZE a12 + j (18) 

and 

01 = (Vl - PJP2V2 - (VZ - P2)PlVl, 

i = -kl - Pl) - (02 - Yd (19) 

and distinguish three subcases. 

Subcase I$. [(q - &/(vs - us)] > 1 > t.~&~~v, . In this case 01 > q 
and j < 0, which implies that g(r) has two real roots Y, and y2 such that 
I1 < 0 < Y2 . It can easily be found out that 

sign (g(0) * g (+-)) = sign( j(v2 - vr)) = - 1 or 0. 

Therefore, 0 Q z2 < I/v, . This implies that sign(g(r)) = sign(a) = + 1 for 
all Y E [ 1 /vi , 1 /p.J and by virtue of (15), (18), and (19) we obtain that B > C. 
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Subcase II,%. 1 > [(our - pl)/(wB - ps)] >, ~lwl//++ . This time we have 
that (Y 2 0 and j > 0, implying that g(r) > 0 for all Y E [l/v, , l/ps] and 
therefore B > C. 

Subcase IIeB. 1 > plwl/ps~s > [(ul - pJ(va - &I. We have now that 
e < 0 and j > 0, so the two roots Y, and y2 of,o(r) are such that rl < 0 < y2 . 
Because of 

sign (g ($) *g(a)) = Gida(i.L2 - k)) - -1, 
we obtain that l/pa < r2 , and consequently 

sign(B - C) = sign(g(r)) = -sign(a) = + 1 

for all r E [l /nl , 1ip.J implying that B > C. As has been seen in all three 
s&cases examined above, we always have B > C, namely &, = B. Forming 
now the expression aY/ar for Y E [l/v,, rAD] and Y E [rAD, l/p,& we can 
easily find out how the function Y behaves. The corresponding results are 
given in Table II. Table II has been constructed in the same way as Table I 
and gives a summary of the results which hold in this present Case II. 

Care III. p1 < ni < ~a < va 

The five subintervals into which the interval (0, co) is split are: (0, l/us], 

Cl/~* > ~//-%!I* [l/CL2 r l/4, w, 9 l/pi], and [l/p,, 00). Subcases III,, I&, 
IrId, and III,, arising when r lies in the first two and the last two sub- 
intervals above, are easily studied as before. The corresponding results are 
presented in Table III. Subcase III, , however, presents a certain amount of 
difkultp, and this is therefore the case which is studied in detail in what 
follows. 

Subcase III,. l/p* < y < l/q * In view of (13) we obtain that 

C < min(A, D) < max(A, 0) < B. 

These inequalities imply that &,, = C, lcIM = B and so Y = C/B. Therefore, 

8-P sign - ( ) ar = signMy)), (201 

where 

g(y) = 0112 + 2Br + j, (21) 

and 

a = k2 - P2) Pl"1 - h - Pl) P*W*, P = PlV2 - P2VlT 



362 HADJIDIMOS AND IORDANIDIS 

V 
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and 

(22) 

If we observe that 

~ign(W/p2) - Wl~l)) = -+G% (23) 

then the subsequent analysis can be simplified by distinguishing three basic 
cases. 

Subcase III,l. /3 = 0. p = 0 implies that p,o, = par+, which in turn 
gives that ~a~,/~~~r > (us - pa)/(~~ - pi) = pz/pl > 1. Because of these 
relationships and in view of (22), we have that 01 < 0 and j > 0. Hence, the 
two roots ri and r2 of g(r) are such that rl < 0 < y2 . By virtue of 
V/P.,) = W/Q h h w ic comes from (23), it can be proved that 

Therefore W/ar > 0 for Y E [l/pa , r,] and Y is increasing in [l/pa , ra], 
while for r E [~a , 1 lo,], aY/ar < 0 and Y is decreasing in [y2 , l/~r]. 

Subcase III,%. fl < 0. In this case, we have that prva < paa, , which 
implies that (~a - &/(e)i - pl) < pa/p1 < ~~TAJ~~v~ , therefore (y. < 0. 
If (r~a - +J/(D~ - pi) > 1, then j > 0 which together with 01 < 0 implies 
that the two roots rr and r1 of g(r) are such that r1 < 0 < rz . The root r2 

can not be greater than l/v, , for if it were, then for all I E [l/pa , l/v,], we 
would have sign(g(r)) = -sign(a) = +l, which would imply that Y is 
increasing in [l/p, , l/vJ. Therefore, Y(l/pa) < Y(l/~i). The latter contra- 
dicts (23). Consequently, we have that either l/p2 < ~a f l/v, , and 
therefore Y is increasing in [l/p., , ra] and decreasing in [r2 , l/v,] or 
~a < l/pa , which implies that Y is decreasing in [l/pr , l/~i]. If, on the other 
hand (~a - ~a)/(“~ - pl) < 1, then j < 0 implying that g(r) < 0 for all 
r E [l/pa , l/v,]. Therefore, Y is decreasing in this interval. 

Subcuse IIIcB. /3 > 0. This time piwa > pa~i , g iving that 

‘v2 - P2 >c”2>1 
' %- 111 Pl 

which implies that j > 0. If 

02 - P2 -----a 
%- CL1 

$ >e, 
( 1 
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then 01 > 0 and g(r) > 0 for all r E [l/pa , l/q]. Therefore !P is increasing 
in this interval. However, if ~s~,/~~vr > (v, - p.a)/(vr - pr), then a: < 0, 
and because of j > 0, g(r) has two real roots satisfying r, < 0 < r2 . A 
reasoning similar to the one made previously in subcase III,% leads to the 
conclusion that if l/v, < r2 , Y is increasing in [l/pa, l/vi] while if 
r,~[l/p,, l/q], then Y is increasing in [l/p,, r,] and decreasing in [r,, l/q]. A 
summary of the results obtained in this present Case III is given in Table III. 

Having constructed Tables I, II, and III, it is easy to follow the behavior 
of the function Y as Y increases from zero to infinity, and therefore the value 
of Y = r,,,t at which Y attains its maximum value can readily be determined. 
To summarize the optimum results a further table, Table IV, has also been 
constructed. Table IV gives the values for rapt as well as $mopt and q&,pt 
in each case. We note that in order to obtain the optimum values of the other 
two parameters, uopt and Popt , in any of the three basic cases studied in this 
paper Table IV together with Eqs. (8) must be used. 

TABLE IV 

Optimum Parameters 

Case rapt (6 mopt IG Mopt 

I 1 : PlVl < RF, rAD ’ Aopt = Dopt Bopt 
I 

I 2 : twl 2 wh 
*, ,> Gpt 

II 9, ,> Bopt 

III 

III, : /Qv, = psv, r2 C C ,, 
opt 

NPe) > 0" r2 
,? I, 

II& : PI% < Pafh 
dl/PJ < 0 l/PI2 

,, ,> 

EW,) 2 0 1 iv1 
,f P, 

III, : Pl”2 > PLaVl 
g(l/vJ < 0 r2 

,, >> 

a g(r) is given by (21). 
b TAD is given by (16). 
c rz is the positive root of g(r). 

3. FINAL REMARKS 

The analysis made so far shows that the values for rapt and w,,pt (=2) 
obtained by Guittet [l] do not hold in the general case. We note that if 
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h, # ha (i.e., 0 # 1) the values of rent and consequently of wont depend mainly 
on the order of p1 , vr ,ps , and vs (see Table IV). In the special case h, = h, 

( i.e., (J = l), the formulas giving the optimum values of the various param- 
eters involved can be simplified. For example if Ni = N, , we have that 
t.~i = ps and vi = v2 , so this case can be regarded as a limiting case of either 
Case I or II, and therefore for the Spoint formula we have 

wept = 2, and 
B 4 opt - i opt 

‘Opt = Bopt + Aopt ’ (24) 

(these results were obtained by Guittet [l]) while for the g-point formula we 
have 

2 
Uopt = 

Bopt + +Yo,t ’ 
and (25) 

Bopt - @opt 
‘Opt = Bopt + QAopt ’ 

(these results were obtained by Hadjidimos [3]). On the other hand, if 
N1 # N, (iVi > N,), we have that p1 < ~1s < v2 < or, so this case is 
Case I. Therefore, rapt = rAD and the optimum results here are quite dif- 
ferent from those given by (24) and (25) above. 

Perhaps the most interesting remark is the following. In the case of a 
5-point formula the optimum extrapolation parameter wept is such that 
1 < wept < 2 (equality holds if and only if prvr = psv,) while in the case of a 
g-point formula wopt(>l) can be either less than or greater than 2, as many 
numerical examples we have run on a computer have shown it. 

Before we close this paper we state and prove a theorem concerning the 
values of wept . 

THEOREM. In the case of a 5-p&t d@erence formula, WOpt satis$es 
l< wept < 2 with equality on the right holding ;f and only if plvl = p.pu2 . 

Proof. We know that 

4 mopt = min(Aopt , Bopt , Gpt , Dopt), 

d Mopt = max{Aopt , Bopt , Copt , Dopt}. 

On the other hand, from (11) we have that A, B, C, D < 1 for any r > 0. 
Therefore, hopt + hOpt -=c 2 and wpt = 2/(+mopt + bopt) > 1. To prove 
that uopt < 2, we distinguish three cases. 
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Case 1. (It consists of Cases I, and II) 

Starting with plvl < t.+v, , we obtain 

1 
-G 

(Vl - Pl) 4 (v2 - P.2) 
hV2 6% - P-l) p2v2 + @2 - CL21 CL1v1= IZpt * 

This gives 

or 

(1 - ~optlll) (1 - ToptP2) (1 - ro,Wl) (1 - yoptv2) 

(1 + ~optk) (1 + ropt/L2) + (1 + Yop~/L1) (1 + yoptv2) G O 

or 

(4 - AoPt) + (4 - B0Pt) d 0 or wOpt = Aopt : Bopt < 2, 

where the equality holds if and only if trove = ,LL~v,. 

Case 2. (It is identical with Case 12) 

The proof follows the same steps as in the previous Case 1. The only 
exceptions are that we start with p2v2 < plvl and that Copt is used instead 
of Bopt * 

Case 3. (It is identical with Case III) 

Because of rapt E [l/p2 , l/v& we have that 

or 

(1 - yoptE”1) (1 - yoptv2) (1 - YOPq2) (1 - YOP&) 

(1 + foptpl) (1 + YOPW2) + (1 + yopw,) (1 + YOP&) < O 

(4 - B,,t) + (B - Copt) < 0 or w0Pt = Bopt : Copt < 2. 
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