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Abstract

We show in the smooth category that the heat trace asymptotics and the heat content asymptotics can
be made to grow arbitrarily rapidly. In the real analytic context, however, this is not true and we establish
universal bounds on their growth.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Heat trace asymptotics

Let (M,g) be a compact Riemannian manifold of dimension m with smooth (possibly empty)
boundary ∂M . Let dvolm and dvolm−1 be the Riemannian volume elements on M and on ∂M ,
respectively. Let �g be the scalar Laplacian. Let ν be the inward unit normal on the boundary; we
extend ν by parallel translation to a vector field defined on a collared neighborhood of the bound-
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ary so ∇νν = 0; this means that the integral curves of ν are unit speed geodesics perpendicular
to ∂M . Let

B−φ := φ|∂M and B+φ := νφ|∂M

be the Dirichlet and Neumann boundary operators, respectively. Impose boundary conditions
B = B− or B = B+. Let u : M × (0,∞) → R be the unique solution of

(∂t + �g)u(x, t) = 0 (heat equation),

lim
t→0

u(·, t) = φ1(·) in L2 (initial condition),

Bu(·, t) = 0 for t > 0 (boundary condition),

where φ1 is real-valued and smooth on M . Then u(x, t) represents the temperature at x ∈ M

at time t > 0 if M has initial temperature distribution φ1 where the boundary condition B is
imposed on u for t > 0. The solution is formally given by

u(x, t) := e−t�g,B φ1(x),

where �g,B is the associated realization of the Laplacian. The operator e−t�g,B is a smoothing
operator of trace class and, as t ↓ 0, there is a complete asymptotic series of the form [29,30,
43–47]

TrL2

{
e−t�g,B

} ∼ (4πt)−m/2
∞∑

n=0

an(M,g, B)tn/2.

If M is a closed manifold, the boundary condition plays no role and we shall denote these coef-
ficients by an(M,g). They vanish if n is odd in this instance.

The asymptotic coefficients {a1, a2, . . .} are locally computable invariants of M and of ∂M as
we shall see presently in Section 2. In mathematical physics, they occur for example in the calcu-
lation of Casimir forces [5,18,33] or in the study of the partition function of quantum mechanical
systems [7,6,33]. They are known in the category of manifolds with boundary for n � 5 [19,32],
and in the category of closed manifolds for n � 8 [1,4]. These coefficients play a crucial role in
the study of isospectral questions. Related invariants for more general operators of Laplace type
also play a crucial role in the local index theorem. See, for example, the discussion and references
in [2,3,20,21,23,26–28,37–39]. They have also been studied with nonlocal boundary conditions
[34]. We also refer to [24] where the heat trace itself is studied and not just the asymptotic co-
efficients. For the study of the asymptotic behaviour of the eigenvalues of �g,B we refer to [41]
and the references therein. The field is vast and it is only possible to cite a few references.

1.2. Planar domains

In the case of a planar domain Ω , the heat trace asymptotic coefficients (with Dirichlet bound-
ary conditions) have been computed for n � 13 by Berry and Howls [17]. Berry and Howls
computed an for n � 31 in the case of a disc [17], and were led to conjecture that for planar
domains Ω and for n → ∞,
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an(Ω) = αΓ (n − β + 1)Γ (n/2)−1�(Ω)2−n
(
1 + o(1)

)
, (1.a)

where α and β are dimensionless quantities and where �(Ω) is the length of the shortest accessi-
ble periodic geodesic in Ω . In particular, for a disk of radius R and shortest accessible periodic
geodesic 4R, they further conjectured that Eq. (1.a) holds with α = (8

√
2π)−1 and β = 3

2 . While
the latter conjecture remains open to date, it is instructive to see that Eq. (1.a) cannot hold in
general. The following counter examples were given in [8].

Example 1.1. Let 0 < ε < 1
5 , and let

P̃ε = {
(x1, x2) ∈ R

2: |x| � 1, |x2| � 1 − ε
}
,

Q̃ε = {
(x1, x2) ∈ R

2: |x| � 1, x1 � 1 − ε, x2 � 1 − ε
}
.

We smooth out the corners of ∂P̃ε at x2 = ±(1 − ε) and of ∂Q̃ε at x1 = 1 − ε, x2 = 1 − ε

isometrically to obtain two convex domains Pε and Qε with smooth boundary and with an(Pε) =
an(Qε) and �(Pε) = 4(1 − ε), �(Qε) = 2(2 − ε). This then contradicts Eq. (1.a).

Example 1.2. Let 0 < ε < 1, 0 < ρ < 1 − ε, and let

Ωε := {
(x1, x2) ∈ R

2: ε � |x| � 1
}
,

Ωρ
ε := {

(x1, x2) ∈ R
2: |x| � 1, |(x1 − ρ,x2)| � ε

}
.

We then have that an(Ωε) = an(Ω
�
ε ) and �(Ωε) = 2(1 − ε), �(Ω

ρ
ε ) = 2(1 − ε − ρ) which once

again contradicts Eq. (1.a).

It remains an open problem to construct a pair of iso – an real analytic simply connected
planar domains which have different shortest periodic geodesics. It has been conjectured that
Eq. (1.a) also holds for balls in R

m where β depends on m only [31].

1.3. The heat trace asymptotics in the real analytic category

The calculus of Seeley [43–47] and Greiner [29,30] shows that an is given by a local formula;
the following result will then follow from the analysis of Section 2:

Theorem 1.1. Let B be either Dirichlet or Neumann boundary conditions. There exist universal
constants κn,m so that if (M,g) is any compact real analytic manifold of dimension m, then there
exists a positive constant C = C(M,g) such that

∣∣an(M,g, B)
∣∣ � κn,mCn · volm(M,g) for any n.

We note some similarity between the formulae of Eq. (1.a) and Theorem 1.1. The geometric
data of (M,g) appear in Cn, whereas the prefactor is of a combinatorial nature and depends on
m and n only. We can choose the constant to rescale appropriately under homotheties, i.e. so that
C(M,c2g) = c−1C(M,g).
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We restrict momentarily to the context of closed manifolds, i.e. compact manifolds with empty
boundary. We adopt the Einstein convention and sum over repeated indices. We say that D is an
operator of Laplace type, if in any local system of coordinates we may express D in the form:

D = −(
gij ∂xi

∂xj
+ Ak∂xk

+ B
)
. (1.b)

Let an(x,D) be the local heat trace invariant of such an operator. We shall primarily interested
in the case n even so we shall set n = 2n̄ in what follows. If f is any smooth function on M , then

TrL2

(
f e−tD

) ∼ (4πt)−m/2
∞∑

n̄=0

t n̄
∫
M

a2n̄(x,D)f (x)dvolm . (1.c)

The following result shows that the factorial growth conjectured by Berry and Howls for pla-
nar domains pertains in this setting as well as regards the local heat trace invariants on closed
manifolds.

Theorem 1.2. Let (M,g) be a closed real analytic Riemannian manifold of dimension m � 2.

(1) Let D be a scalar real analytic operator of Laplace type on M . Then there exists a constant
C1 = C1(M,g,D) so that ∣∣a2n̄(x,D)

∣∣ � Cn̄
1 · n̄! for any n̄ � 1.

(2) Let P be a point of M . Suppose there exists a real analytic function f on M such that
df (P ) 
= 0. Then there exists a constant C2 = C2(P,M,g,f ) > 0 and there exists a real
analytic function h on M so that the conformally equivalent metric gh := e2hg satisfies∣∣a2n̄(P ,�gh

)
∣∣ � Cn̄

2 · n̄! for any n̄ � 3.

Remark 1.1. Assertion (1) can be integrated to yield an upper bound on the heat trace asymp-
totics a2n̄(D). However, assertion (2) is only valid at a single point of M . Since it in fact arises
from considering a divergence term in the local expansion, we do not obtain a corresponding
estimate for a2n̄(D).

1.4. The heat trace asymptotics in the smooth category

The situation in the smooth non-real analytic setting is very different. Fix a background refer-
ence Riemannian metric h and let ∇h be the associated Levi–Civita connection which we use to
covariantly differentiate tensors of all types. If T is a tensor field on M , we define the Ck norm
of T by setting:

‖T ‖k := max
P∈M

{
k∑

i=0

∣∣∇h,iT
∣∣(P )

}
.

Changing h replaces ‖T ‖k by an equivalent norm; we therefore suppress the dependence upon h.
But as we will be changing the metric when considering the heat trace asymptotics subsequently,
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it is useful to have fixed h once and for all so the associated Ck norms do not change. Theorem 1.1
fails in the smooth context as we have:

Theorem 1.3. Let k � 3 be given, let constants Cn̄ > 0 for n̄ � k be given, and let ε > 0 be given.
Let (M,g) be a smooth compact Riemannian manifold of dimension m � 2 without boundary and
let ge be the usual Euclidean metric on R

m+1.

(1) There exists a function f ∈ C∞(M) with ‖f ‖k−1 < ε so that if g1 := e2f g is the conformally
related metric, then

∣∣a2n̄(M,g1)
∣∣ � Cn̄ for any n̄ � k.

(2) Suppose that g = Θ∗ge where Θ is an immersion of M into R
m+1. There exists an immersion

Θ1 with ‖Θ − Θ1‖k−1 < ε so that if g1 := Θ∗
1 ge, then

∣∣a2n̄(M,g1)
∣∣ � Cn̄ for any n̄ � k.

1.5. Heat content asymptotics

There are analogous results for the heat content asymptotics. Let φ1 be the initial temperature
of the manifold and let φ2 be the specific heat of the manifold. We suppose throughout that φ1

and φ2 are smooth. The total heat energy content of the manifold is then given by:

β(φ1, φ2,�g, B)(t) :=
∫
M

u(x, t)φ2(x)dvolm .

As t ↓ 0, there is a complete asymptotic expansion of the form

β(φ1, φ2,�g, B)(t) ∼
∞∑

n=0

(−t)n

n!
∫
M

�n
gφ1 · φ2 dvolm +

∞∑
�=0

t (�+1)/2β∂M
� (φ1, φ2,�g, B).

The coefficients involving integrals over M arise from the heat redistribution on the interior of
the manifold and are well understood. The additional boundary terms β∂M

� are the focus of our
inquiry. They, like the heat trace asymptotics, are given by local formulae and have been studied
extensively (see, for example [11–15,22,35,36,40,42] and the references contained therein).

Inspired by the work of Howls and Berry [31], Travěnec and Šamaj [48] investigated the
asymptotic behaviour of the coefficients β� as � → ∞ in flat space in the special case that φ1 =
φ2 = 1 with Dirichlet boundary conditions. The interior invariants then play no role for n � 1
and one has, adopting the notational conventions of this paper, that

β
(
1,1,�g, B−)

(t) ∼ volm(M,g) +
∞∑

t (�+1)/2β∂M
�

(
1,1,�g, B−)

.

�=0
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After interpreting the results of [48] in our notation, they found that if M is a ball in R
m of radius

r with m even, then as � → ∞ one has:

β� = 4π(m−3)/2Γ (m/2)−1(� + 1)−1Γ (�/2)rm−�−1(1 + o(1)
)
. (1.d)

The structure of Eq. (1.d) is similar to that of Eq. (1.a). There is a combinatorial coefficient
in m and �, while the shortest periodic geodesic appears to a suitable power. However, for m

odd Travěnec and Šamaj obtained polynomial dependence rather than factorial dependence of
β∂M

� in � [48]. Furthermore the two examples in Section 1.2 above provide iso-β� pairs of
smooth planar domains with different shortest periodic geodesic lengths. Hence the structure
of the asymptotic behaviour of the β�’s in flat space remains unclear in general.

For � even, the boundary term involves a fractional power of t and there is no corresponding
interior term. This simplifies the control of these terms. Consequently, we shall usually set � = 2�̄

in what follows.

1.6. The heat content asymptotics in the real analytic setting

As noted above, results of [48] showed that the heat content asymptotics on the ball in R
m

for m even exhibit growth rates similar to that given in Theorem 1.2 for the local heat trace
asymptotics. We generalize Theorem 1.2(2) to this setting to derive an estimate using conformal
variations which shows that the metric on the boundary does not play a central role in the analysis:

Theorem 1.4. Let m � 2.

(1) Let (N,gN) be a closed Riemannian manifold of dimension m − 1. Let M := [0,2π] × N .
There exists a real analytic function h(x) on [0,2π], which depends on the choice of (N,gN),
so that the conformally adjusted metric gM := e2h{dx2 + gN } satisfies:∣∣β∂M

2�̄

(
1,1,�gM

, B−)∣∣ � �̄! · volm−1(N,gN) for any �̄ � 3.

(2) Let ge be the standard Euclidean metric on the unit disk Dm in R
m. There exists a radial real

analytic function h on Dm, which depends on m, so that the conformally adjusted product
metric gM := e2hge satisfies:∣∣β∂M

2�̄

(
1,1,�gM

, B−)∣∣ � �̄! · volm−1(N,gN) for any �̄ � 3.

We have estimates for the heat content asymptotics in this setting which are similar to those
given in Theorem 1.1:

Theorem 1.5. There exist universal constants κn,m and κ̃�,m such that if (M,g) is a compact real
analytic Riemannian manifold of dimension m and if (φ1, φ2) are real analytic, then there exists
a positive constant C = C(M,g,φ1, φ2, B) such that∣∣∣∣

∫
M

φ1 · �n
gφ2 dvolm

∣∣∣∣ � κn,mCn · volm(M,g),

∣∣β∂M
�

(
φ1, φ2,�g, B±)∣∣ � κ̃�,mC� · volm−1(∂M,g).
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Remark 1.2. Again, the constant C can be chosen so that

C
(
M,c2g

) = c−2C(M,g).

1.7. The heat content asymptotics in the smooth setting

Theorem 1.5 fails in the smooth setting as we have:

Theorem 1.6. Let k � 3 be given, let constants C�̄ > 0 for �̄ � k be given, and let ε > 0 be given.
Let B = B+ or B = B−. Let (M,g) be a smooth compact Riemannian manifold of dimension
m � 2 with non-trivial boundary. Let φ1 be a smooth initial temperature and let φ2 be a smooth
specific heat with Bφ2 
= 0. There exists Φ1 with ‖φ1 − Φ1‖2k−1 < ε such that:

β∂M

2�̄
(Φ1, φ2,�g, B) = C�̄ for any �̄ � k.

The heat content asymptotics were originally studied for Dirichlet boundary conditions and
for φ1 = φ2 = 1 [9,10,16]. We have the following theorem in this setting:

Theorem 1.7. Let k � 3 be given, let constants C�̄ > 0 for �̄ � k be given, and let ε > 0 be
given. Let (M,g) be a smooth compact manifold Riemannian manifold of dimension m � 2 with
non-trivial boundary. There exists a metric g1 so ‖g − g1‖2k−1 < ε such that

β∂M

2�̄

(
1,1,�g1, B−) = C�̄ for any �̄ � k.

1.8. Bochner formalism for operators of Laplace type

The results given above in Theorem 1.3, in Theorem 1.6, and in Theorem 1.7 rely upon a
leading term analysis of the heat trace asymptotics and of the heat content asymptotics. It is
one of the paradoxes of this subject that to apply the functorial method, one must work with
very general operators even if one is only interested in the scalar Laplacian, as is the case in
this paper. We only consider the context of scalar operators. There is a corresponding notion
for systems, i.e. operators which act on the space of smooth sections to some vector bundle. It
is possible to express an operator D of Laplace type as given in Eq. (1.b) invariantly using a
Bochner formalism [27]. There exists a unique connection ∇ and a unique smooth function E so
that

Dφ = −(
guvφ;uv + Eφ

)
,

where we use ‘;’ to denote the components of multiple covariant differentiation with respect to
∇ and with respect to the Levi–Civita connection. Let Γuv

w be the Christoffel symbols of the
Levi–Civita connection and let ω be the connection 1-form of ∇ . We then have

ωu = 1

2
guv

(
Av + gswΓsw

v Id
)
,

E = B − guv
(
∂xuωv + ωuωv − ωwΓuv

w
)
. (1.e)
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1.9. Leading term analysis

Theorem 1.8 below will play a central role in our analysis, and was established in [20,25,26].
We also refer to related work in the 2-dimensional setting [39]. It has been used by Brooks,
Perry, Yang [21] and by Chang and Yang [23] to show families of isospectral metrics within
a conformal class are compact modulo gauge equivalence in dimension 3. Let τ be the scalar
curvature of g, let ρ be the Ricci tensor of g, and let Ω be the curvature of the connection ∇
defined by an operator of Laplace type.

Theorem 1.8. Let D be an operator of Laplace type on a closed Riemannian manifold (M,g)

and let n̄ � 3.

(1) The local heat trace asymptotics satisfy:

a2n̄(P ,�g) = (−1)n̄n̄!
(2n̄ + 1)!

{−n̄�n̄−1τ − (4n + 2)�n̄−1E
}

+ lower order derivative terms.

(2) The global heat trace asymptotics satisfy:

a2n̄(D) = 1

2

(−1)n̄n̄!
(2n̄ + 1)!

∫
M

{(
n̄2 − n̄ − 1

)∣∣∇ n̄−2τ
∣∣2 + 2

∣∣∇ n̄−2ρ
∣∣2

+ 4(2n̄ + 1)(n̄ − 1)∇(n̄−2)τ · ∇(n̄−2)E + 2(2n̄ + 1)
∣∣∇(n̄−2)Ω

∣∣2

+ 4(2n̄ − 1)(2n̄ + 1)
∣∣∇ n̄−2E

∣∣2 + lower order terms
}

dvolm .

In this paper, we will establish a corresponding leading term analysis for the heat content
asymptotics. We shall always assume � is even; thus the lack of symmetry in the way we have
written the interior contributions plays no role. Let ∇ be the connection defined by D as discussed
in Section 1.8. Let D∗ be the formal adjoint of D; the associated connection ∇∗ defined by D∗
is then the connection dual to ∇ defined by the relation

∇φ1 · φ2 + φ1 · ∇∗φ2 = d(φ1 · φ2).

Let

φ
(�)
1 := ∇�

νφ1|∂M and φ
(�)
2 := (∇∗

ν

)�
φ2|∂M

be the normal covariant derivatives of order �. By using the inward geodesic flow, we can always
choose coordinates (y, r) near the boundary so that ∂r = ν; consequently

φ(�) = ∂�
r φ|∂M if D = �g.

Let S be a smooth function on the boundary. The Robin boundary operator in this more general
setting is defined by the identity:

B+φ := (
φ(1) + Sφ

)∣∣ .
S ∂M
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Let ρ
(�)
mm := Ramma;m...m be the �th covariant derivative of ρmm restricted to ∂M . Define Ξ�

recursively for � even by setting:

Ξ2 = −2π−1/2 2

3
and Ξ� = 2

� + 1
Ξ�−2 if � � 4.

Theorem 1.9. Let � � 6 be even. Modulo lower order terms we have:

(1)

β∂M
�

(
φ1, φ2,D, B−) =

∫
∂M

{
Ξ�

(
φ

(�)
1 φ2 + φ1φ

(�)
2

) + � · Ξ�φ1φ2E
(�−2)

+ 0 · (φ(�−1)
1 φ

(1)
2 + φ

(1)
1 φ

(�−1)
2

)
+ (� − 2)Ξ�

(
φ

(1)
1 φ2 + φ1φ

(1)
2

)
E(�−3)

+ 0 · φ(1)
1 φ

(1)
2 E(�−4) + 1

2
(� − 2)Ξ�φ1φ2ρ

(�−2)
mm + · · ·}dvolm−1 .

(2)

β∂M
�

(
φ1, φ2,D, B+

S

) =
∫

∂M

{
0
(
φ

(�)
1 φ2 + φ1φ

(�)
2

) + 0 · φ1φ2E
(�−2)

− Ξ�

(
φ

(�−1)
1 φ

(1)
2 + φ

(1)
1 φ

(�−1)
2

) − Ξ�

(
φ

(1)
1 φ2 + φ1φ

(1)
2

)
E(�−3)

+ (2 − �)Ξ�φ
(1)
1 φ

(1)
2 E(�−4) − Ξ�S

(
φ

(�−1)
1 φ2 + φ1φ

(�−1)
2

)
− Ξ�S

(
φ

(�−2)
1 φ

(1)
2 + φ

(1)
1 φ

(�−2)
2

) − 2 · Ξ�S
(
φ1φ

(1)
2 + φ

(1)
1 φ2

)
E(�−4)

+ 0 · φ1φ2ρ
(�−2)
mm + · · ·}dvolm−1 .

1.10. Outline of the paper

In Section 2 we will prove Theorem 1.1 and Theorem 1.5. In Section 3, we use Theorem 1.9
to establish Theorem 1.6 and Theorem 1.7. In Section 4, we use Theorem 1.8 to demonstrate
Theorem 1.3. Theorem 1.9 is new and is proved in Section 5 by extending functorial methods
employed in [11,12]. In Section 6, we establish Theorem 1.2. We conclude the paper in Section 7
by demonstrating Theorem 1.4.

2. Local invariants in the real analytic setting

Let α := (α1, . . . , αm) be a non-trivial multi-index. We define:

|α| := α1 + · · · + αm, ∂α
x := (∂x1)

α1 . . . (∂xm)αm, gij/α := ∂α
x gij for |α| > 0.

In any local system of coordinates, the Riemannian volume form on M is given by:

dvolm = g dx, where g :=
√

det(gij ).



2302 M. van den Berg et al. / Journal of Functional Analysis 261 (2011) 2293–2322
Let gij be the inverse matrix; this gives the components of the dual metric on the cotangent
bundle. Since the heat trace and heat content asymptotics are given by suitable local formulae,
Theorem 1.1 and Theorem 1.5 will follow from the following result:

Theorem 2.1. Let En be a local interior invariant which is homogeneous of degree n in the jets
of the metric and a finite (possibly empty) collection {φ1, . . .} of additional smooth functions.
Let Fn−1 be a local boundary invariant which is homogeneous of degree n − 1 in the jets of
the metric and a finite (possibly empty) collection {φ1, . . .} of additional smooth functions. Let
(M,g) be a compact real analytic manifold of dimension m with real analytic (possibly empty)
boundary ∂M so that the metric g is real analytic and so that the collection {φ1, . . .} is real
analytic. There exists a constant C = C(M,g,φ1, . . .) > 0 (which is independent of the choice
of En and of Fn) and there exist constants κ(En) > 0 and κ(Fn−1) > 0 (which are independent
of the choice of (M,g,φ1, . . .)) so that

∣∣∣∣
∫
M

En(x, g,φ1, . . .)dvolm

∣∣∣∣ � κ(En)C
n · volm(M,g),

∣∣∣∣
∫

∂M

Fn−1(y, g,φ1, . . .)dvolm−1

∣∣∣∣ � κ(Fn−1)C
n−1 · volm−1(∂M,g).

The constant C(M,g,φ1, . . .) may be chosen so that

C
(
M,c2g,φ1, . . .

) = c−nC(M,g,φ1, . . .).

Proof. Suppose first that the boundary of M is empty. For each point P of M , there exists
ε(P ) > 0 so the exponential map defines a real analytic geodesic coordinate ball of radius ε(P )

about P . Let K be a compact neighborhood of the identity in the space of all symmetric m × m

matrices. Since gij = δij at the center of such a geodesic coordinate ball, by shrinking ε(P ) if
necessary, we may assume that the matrix (gij ) belongs to K for any point of the coordinate ball
of radius ε(P ). Since we are working in the real analytic category and since {gij , φ1, . . .} are
real analytic near P there exists a C = C(P,M,g,φ1, . . .) so that again by shrinking ε(P ) if
necessary we have that

∣∣dα
x gij

∣∣ � C|α||α|! and
∣∣dα

x φμ

∣∣ � C|α||α|! on Bε(P )(P ) (2.a)

for any multi-index α. We cover M by a finite number of such coordinate balls about points
(P1, . . .) and set C(M,g,φ1, . . .) = maxν C(Pν,M,g,φ1, . . .). Since E is a local invariant, we
may expand:

E (x, g) =
∑

e�α, �β
(
gij (x)

)(
∂α1
x gi1j1

)
. . .

(
∂αa
x giaja

) · (dβ1
x φk1

)
. . .

(
dβb
x φkb

)
(2.b)

where in this sum we have the relations:

|α1| + · · · |αa| + |β1| + · · · + |βb| = n, 0 < |α1|, . . . , 0 < |αa|.
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Since e�α, �β is continuous on the compact neighborhood K of the identity δ, we may bound

∣∣e�α, �β
(
gij (x)

)∣∣ � E�α, �β uniformly on K.

Combining the estimates of Eq. (2.a) with the estimates given above and summing over (�α, �β)

in Eq. (2.b) yields an estimate of the desired form after integration. Since En is homogeneous of
degree n, it follows that

En

(
x, c2g,φ1, . . .

) = c−nEn(x, g,φ1, . . .).

The desired rescaling behaviour of the constant C(M,g,φ1, . . .) now follows.
If the boundary of M is non-empty, we must also choose suitable coordinate charts near

∂M . If Q ∈ ∂M , we consider the geodesic ball B∂M
ε (Q) of radius ε in ∂M about Q relative to

the restriction of the metric to the boundary and we shall let B̃ε,ι(Q) := [0, ι) × B∂M
ε(Q)(Q) for

some ι > 0 be defined using the inward geodesic flow so that the curves r → (r,Q) are unit
speed geodesics perpendicular to the boundary. Again, by shrinking ε and ι, we may achieve
the estimates of Eq. (2.a) uniformly on B̃ε,ι(Q). We cover M by a finite number of coordinate
charts Bε(P ) for P ∈ int(M) and B̃ι,ε(Q) for Q ∈ ∂M . The desired estimate for En now follows.
To study the invariant Fn−1, we cover ∂M by a finite number of coordinate charts B̃ι,ε(Q) for
Q ∈ ∂M and argue as above. �
3. Leading terms in the heat content asymptotics

We shall omit the proof of the following result as it is well known.

Lemma 3.1.

(1) Let k � 1 be given, let constants γ� > 0 for � � k be given, and let ε > 0 be given. Let
(M,g) be a smooth Riemannian manifold with non-empty boundary ∂M . There exists a
smooth function Φ on M so that ‖Φ‖k−1 < ε and so that

Φ(�) = ψ(y)γ� for � � k.

(2) Let k � 1 be given, let C > 0 be given, and let ε > 0 be given. There exists a smooth function
f on M := [0,1] with ‖f ‖k−1 < ε and

∫
M

|∂k
xf |2 dx � C.

Proof of Theorem 1.6 and of Theorem 1.7. Let k � 3 be given, let constants C�̄ > 0 for �̄ � k

be given, and let ε > 0 be given. Let (M,g) be a smooth compact Riemannian manifold of
dimension m � 2 with non-trivial boundary. We first take B = B− to consider Dirichlet boundary
conditions. Let φ1 be a smooth initial temperature and let φ2 be a smooth specific heat with
B−φ2 
= 0. Since φ2 does not vanish identically on the boundary, there exists a smooth function
ψ on ∂M so

∫
ψφ2 dvolm−1 = 1.
∂M
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Let {γ1, . . .} be a sequence of constants, to be determined presently. For ν � k, let

Φν(y, r) =
ν∑

j=k

r2j

(2j)!γjψ(y) near ∂M.

Since β2�̄ is given by a local formula of degree 2�̄, only the constants γ1, . . . , γ�̄ play a role in
the computation of β∂M

2�̄
, i.e.

β∂M

2�̄
(Φμ + φ1, φ2,�g, B) = β∂M

2�̄
(Φ�̄ + φ1, φ2,�g, B) if μ � �̄.

We take Φk−1 = 0. Since Ξ2�̄ 
= 0, we can recursively choose the constants γ�̄, and hence the
functions Φ�̄, for �̄ � k so

Ξ2�̄ · γ�̄ = C�̄ − β∂M

2�̄
(Φ�̄−1 + φ1, φ2,�g, B) for �̄ � k

and apply Theorem 1.9 to see:

β∂M

2�̄

(
Φ2�̄ + φ1, φ2,�g, B−) = C�̄.

We complete the proof of Theorem 1.6(1) by using Lemma 3.1 to choose Φ with ‖Φ‖2k−1 < ε

such that

Φ(j) =
{

0 if j < 2k or if j is odd

γ�̄ if j = 2�̄ for �̄ � k

}
.

To prove assertion (2) of Theorem 1.6, we use assertion (2) of Theorem 1.9 and examine

the term −Ξ2�̄φ
(2�̄−1)
1 φ

(1)
2 ; to prove Theorem 1.7, we apply assertion (1) of Theorem 1.9 and

examine the term 1
2 (2�̄ − 2)Ξ2�̄φ1φ2ρ

(2�̄−2)
mm . As apart from these minor changes the proof is

exactly the same as that given above, we shall omit details in the interests of brevity. �
4. Leading terms in the heat trace asymptotics

4.1. Proof of Theorem 1.3(1)

We set E = 0 and Ω = 0 in Theorem 1.8 to study the Laplacian and see thereby that there
exists a non-zero constant dn so:

a2n̄(�g) = dn̄

∫
M

{(
n̄2 − n̄ − 1

)∣∣∇ n̄−2τ
∣∣2 + 2

∣∣∇ n̄−2ρ
∣∣2

+ Qn̄,m

(
R,∇R, . . . ,∇ n̄−3R

)}
dvolm .

Let ε > 0 be given. We restrict to a single geodesic ball B of radius 3δ for some δ > 0 about a
point P . Let θ be a plateau function so that θ = 1 for |x| < δ and θ = 0 for |x| > 2δ. We shall
define the functions fk , fk+1, . . . recursively and consider the conformal deformation:

gμ := eθ(x)(2fk(x1)+···+2fμ(x1))g.
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Let k � 3. Choose 0 < δ1
μ for k � μ so that ‖fμ‖μ−1 � δ1

μ for k � μ implies:

Constraint 4.1.

(1) f∞ := limμ→∞{fk + · · · + fμ} converges in the C� topology for any �.

(2) g∞ := limμ→∞ gμ converges in the C� topology for any �.

(3) ‖f ‖k−1 < ε.

(4) ‖gμ − gμ+1‖μ < 2−με for any μ.

A priori, one must consider jets of degree 2n̄ in computing a2n̄(�g) (and in fact this is the case
when considering the local heat asymptotic coefficients of Eq. (1.c)). However, by Theorem 1.8,
only the jets of the metric to degree n̄ play a role in the computation of the integrated invariants,
a2n̄.

Constraint 4.2. Choose 0 < δ2
μ < δ1

μ for k � μ so ‖fμ‖μ−1 � δ2
μ for k � μ implies:

(1) |a2n̄(�gμ−1) − a2n̄(�gμ)| < 2−μ for 3 � k � n̄ < μ.

(2) |a2n̄(�gμ)| − 1 � |a2n̄(�g∞)| for 3 � k � n̄.

The polynomial Qn̄,m(·) involves lower order derivatives of the metric.

Constraint 4.3. Choose 0 < δ3
μ < δ2

μ for k � μ so that ‖fμ‖μ−1 � δ3
μ for k � μ implies there

are constants C1
μ = C1

μ(fk, . . . , fμ−1) depending only on the choices made previously so

∣∣a2μ(�gμ)
∣∣ � |dμ|

∫
M

{∣∣2∇μ−1τgμ

∣∣2 + (
μ2 − μ − 1

)|∇n−1ρ|2}dvolm −C1
μ

� |dμ|
∫
Bδ

{∣∣2∇μ−1τgμ

∣∣2}dvolm −C1
μ.

On Bδ , the plateau function θ is identically 1 and we have:

gμ = e2fμgμ−1.

From this it follows that

∇ n̄−2τ = (m − 1)∂n̄
x1

fμ + lower order terms.

Since gij is in a compact neighborhood of δij , we may estimate:

∥∥∇ n̄−2τgn

∥∥2
(P ) �

∣∣∂n̄−2
x1

τ
∣∣2 = ∣∣∂n̄

x1
fn̄

∣∣2 + lower order terms. (4.a)



2306 M. van den Berg et al. / Journal of Functional Analysis 261 (2011) 2293–2322
Constraint 4.4. Choose 0 < δ4
μ < δ3

μ for k � μ where δ4
μ = δ4

μ(fk, . . . , fμ−1) depends on the
choices made previously so that ‖fμ‖μ−1 � δ4

μ for k � μ implies there are constants C2
μ =

C2
μ(fk, . . . , fμ−1) depending only on the choices made previously so

∫
B

δ4
μ

∣∣∇n−2τgμ

∣∣2 dvolm �
∫

B
δ4
μ

∣∣∂μ
x1

fμ

∣∣2 dvolm −C2
μ.

Theorem 1.1(1) now follows from Lemma 3.1(2). We can choose recursively fμ subject to
the constraints given above so that ‖fμ‖μ−1 is arbitrarily small and so that

∫
B

δ4
μ

|∂μ
x1fμ|2 dvolm

is arbitrarily large.

4.2. The proof of Theorem 1.1(2)

Let (M,g) be a hypersurface in Rm+1. We fix P ∈ M . After applying a rigid body motion,
we may assume that P = 0 and that the normal to M at P is given by em+1 := (0, . . . ,0,1).
Thus we may write M as a graph over the ball B3δ in R

m in the form x → (x, f0(x)) where
f0(P ) = 0 and df0(P ) = 0. Let θ be a plateau function which is 1 for |x| � δ and 0 for |x| � δ.
We shall consider the perturbed hypersurface defined near P by x → (x, f0(x) + θ(x)(fk(x) +
· · ·)) where fμ(P ) = 0 and dfμ(P ) = 0. This hypersurface agrees with the original hypersurface
away from P . We shall need to establish an analogue of Eq. (4.a). The remainder of the analysis
will be similar to that performed in the proof of Theorem 1.1(1), and will therefore be omitted.

Suppose we have a hypersurface in the form Ψ (x) := (x,F (x)) where F(0) = 0 and
dF(0) = 0. Let Fi := ∂xi

F , Fij := ∂xi
∂xj

F , and so forth. We compute:

Ψ∗(∂xi
) = ei + Fiem+1,

gij = δij + FiFj ,

Γjkl = 1

2
{FjkFl + FjlFk + FjkFl + FklFj − FjlFk − FklFj } = FjkFl,

Γjk
l = glnFjkFn,

Rijk
l = gln{FjkFin − FikFjn} + lower order terms,

where the lower order terms are either 4th order in the 1-jets or linear in the 2-jets and quadratic
in the 1-jets. We suppose F = Fμ−1 + fμ where we set fμ = εμ cos(aμx1) cos(bμx2),

τ = 4εμa2
μb2

μ

{
cos2(aμx1) cos2(bμx1) − sin2(aμx1) sin2(bμx1)} + · · · ,∣∣∇μ−2τ

∣∣2 = 4εμa4
μbμ

μ

∣∣cos2(aμx1) cos2(bμx1) − sin2(aμx1) sin2(bμx1)∣∣2 + · · · ,

where we have omitted lower order terms either involving ε2 or not multiplied by the appropriate
power of a4

μb
μ
μ . To simplify matters, we suppose δ = π and that aμ and bμ are non-zero integers.

We use the fact that we are dealing with periodic functions to compute:
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π∫
x1=−π

π∫
x2=−π

∣∣cos2(aμx1) cos2(bμx2) − sin2(aμx1) sin2(bμx2)∣∣2
dx2 dx1

= a−1
μ b−1

μ

aμπ∫
x1=−aμπ

bμπ∫
x2=−bμπ

∣∣cos2(x1) cos2(x2) − sin2(x1) sin2(x2)∣∣2
dx2 dx1

= a−1
μ b−1

μ aμbμ

π∫
x1=−π

π∫
x2=−π

∣∣cos2(x1) cos2(x2) − sin2(x1) sin2(x2)∣∣2
dx2 dx1

= (2π)2.

We shall take bμ = a
μ
μ , take aμ large, and take εμ appropriately small to complete the proof.

5. Leading terms in the heat content asymptotics

This section is devoted to the proof of Theorem 1.9. Let D be an operator of Laplace type on a
compact smooth Riemannian manifold (M,g) with non-empty boundary. We adopt the notation
established in Section 1.8 and in Section 1.9. We shall always take S to be real in defining the
Robin boundary operator. One then has the symmetry

β(φ1, φ2,D, B)(t) = β
(
φ2, φ1,D

∗, B
)
(t). (5.a)

If � is even, the lack of symmetry in the way we expressed the interior terms plays no role and
thus Eq. (5.a) yields:

β∂M

2�̄
(φ1, φ2,D, B) = β∂M

2�̄

(
φ2, φ1,D

∗, B
)
. (5.b)

Let indices {a, b} range from 1 to m − 1 and index the tangential coordinates (y1, . . . , ym−1)

in an adapted coordinate system such that ∂r is the inward unit geodesic normal. We then have

ds2 = gab(y, r) dya ◦ dyb + dr ◦ dr.

We define the second fundamental form by setting:

Lab := g(∇∂ya
∂yb

, ∂r ) = −1

2
∂rgab.

Results of [11,12] yield the following formulae which will form the starting point for our analy-
sis:

Lemma 5.1. Adopt the notation established above. Then

(1) β∂M
0 (φ1, φ2,D, B−) = − 2√

π

∫
∂M

φ1φ2 dvolm−1.

(2) β∂M(φ1, φ2,D, B+) = 0.
0 S
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(3) β∂M
2

(
φ1, φ2,D, B−) = − 2√

π

∫
∂M

{
2

3

(
φ

(2)
1 φ2 + φ1φ

(2)
2

) + φ1φ2E − φ1;aφ2;a

− 2

3
Laa

(
φ

(1)
1 φ2 + φ1φ

(1)
2

)
+

(
1

12
LaaLbb − 1

6
LabLab − 1

6
ρmm

)
φ1φ2

}
dvolm−1 .

(4) β∂M
2

(
φ1, φ2,D, B+

S

) = 2√
π

∫
∂M

2

3

(
φ

(1)
1 + Sφ1

)(
φ

(2)
2 + Sφ2

)
dvolm−1 .

We begin the proof of Theorem 1.9 by expressing β∂M
� , modulo lower order terms, in terms

of certain invariants involving maximal derivatives with unknown but universal coefficients; the
symmetry of Eq. (5.b) plays a crucial role in our analysis. Standard arguments (see [11]) show
the coefficients in the following expressions are independent of the underlying dimension of the
manifold:

β∂M
�

(
φ1, φ2,D, B−)

=
∫

∂M

{
c−
�,1

(
φ

(�)
1 φ2 + φ1φ

(�)
2

) + c−
�,2

(
φ

(�−1)
1 φ

(1)
2 + φ

(1)
1 φ

(�−1)
2

)

+ e−
�,1φ1φ2E

(�−2) + e−
�,2

(
φ

(1)
1 φ2 + φ1φ

(1)
2

)
E(�−3) + e−

�,3φ
(1)
1 φ

(1)
2 E(�−4)

+ r−
� φ1φ2ρ

(�−2)
mm + · · ·}dvolm−1,

β∂M
�

(
φ1, φ2,D, B+

S

)
=

∫
∂M

{
c+
�,1(φ

(�)
1 φ2 + φ1φ

(�)
2 ) + c+

�,2(φ
(�−1)
1 φ

(1)
2 + φ

(1)
1 φ

(�−1)
2 )

+ e+
�,1φ1φ2E

(�−2) + e+
�,2

(
φ

(1)
1 φ2 + φ1φ

(1)
2

)
E(�−3) + e+

�,3φ
(1)
1 φ

(1)
2 E(�−4)

+ d+
�,1S

(
φ

(�−1)
1 φ2 + φ1φ

(�−1)
2

) + d+
�,2S

(
φ

(�−2)
1 φ

(1)
2 + φ

(1)
1 φ

(�−2)
2

)
+ d+

�,3S
(
φ1φ

(1)
2 + φ

(1)
1 φ2

)
E(�−4) + d+

�,5Sφ1φ2E
(�−3) + r+

� φ1φ2ρ
(�−2)
mm

+ · · ·}dvolm−1 .

We will determine all the coefficients except d+
�,5 in what follows. Recall that

Ξ2 = −2π−1/2 2

3
and Ξ� = 2

� + 1
Ξ�−2.

Lemma 5.2. Let � � 4 be even. Let B = B− or B = B+
S .

(1) Let D be self-adjoint with respect to the boundary conditions defined by B. If Bφ1 = 0, then
β∂M(φ1, φ2,D, B) = 2 β�−2(φ

(2) + E,φ2,D, B).
� �+1 1
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(2) c−
�,1 = Ξ�, c−

�,2 = 0, c+
�,1 = 0, and c+

�,2 = −Ξ�.

(3) e−
�,2 = (� − 2)Ξ�, e−

�,3 = 0, e+
�,1 = 0, e+

�,2 = −Ξ�, and r+
� = 0.

(4) d+
�,1 = d+

�,2 = −Ξ�.

Proof. We follow [11] to derive assertion (1) as follows. Let {λμ,φμ} be a complete spectral
resolution of DB . Here {φμ} is a complete orthonormal basis for L2(M) of smooth functions
with Dφμ = λμφμ and Bφμ = 0. Let

γ D
μ (f ) :=

∫
M

f φμ dvolm

be the associated Fourier coefficients. Then

β(φ1, φ2,D, B)(t) =
∞∑

μ=1

e−tλμγ D
μ (φ1)γ

D
μ (φ2).

If Bφ1 = 0, then

γ D
μ (Dφ1) =

∫
M

Dφ1 · φμ dvolm =
∫
M

φ1 · Dφμ dvolm = λμγ D
μ (φ1).

Consequently we have that:

β(Dφ1, φ2,D, B)(t)

∼
∞∑

n=0

(−t)n

n!
∫
M

Dn+1φ1 · φ2 dvolm +
∞∑

k=0

t (k+1)/2β∂M
k (Dφ1, φ2,D, B)

=
∞∑

μ=1

e−tλμγ D
μ (Dφ1)γ

D
μ (φ2) =

∞∑
μ=1

λμe−tλμγ D
μ (φ1)γ

D
μ (φ2)

= − ∂

∂t

∞∑
μ=1

e−tλμγ D
μ (φ1)γ

D
μ (φ2) = − ∂

∂t
β(φ1, φ2,D, B)(t)

∼
∞∑

j=1

(−t)j−1

(j − 1)!
∫
M

Djφ1 · φ2 dvolm −
∞∑

�=0

� + 1

2
t (�−1)/2β∂M

� (φ1, φ2,D, B).

The asymptotics defined by the interior integrals are the same. We note that −Dφ1 = φ
(2)
1 +Eφ1.

We set k = � − 2 and equate the asymptotics defined by the boundary integrals to establish
assertion (1).

If � = 2, then the relations of assertion (2) would follow from Lemma 5.1 modulo the caveat
that we have but a single term c±

�,2φ
(1)
1 φ

(1)
2 rather than 2 distinct terms in that setting. This will

let us apply the recursion relation of Assertion (1) even if � = 4. Let φ1|∂M = φ
(1)
1 |∂M = 0. We

set E = 0 and consider c± φ
(�)

φ2 and c± φ
(�−1)

φ
(1). These terms arise in β�−2(φ

(2)
, φ2,D, B)
�,1 1 �,2 1 2 1
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only from the corresponding terms c±
�−1,1(φ

(2)
1 )(�−2)φ2 and c±

�−1,2(φ
(2)
1 )(�−3)φ

(1)
2 . Assertion (2)

now follows from the recursion relation

c±
�,1 = 2

� + 1
c±
�−2,1 and c±

�,2 = 2

� + 1
c±
�−2,2.

To prove assertion (3), we first take Dirichlet boundary conditions. Let � � 4. Let φ
(k)
1 |∂M = 0

for k 
= 1. No information is garnered concerning e−
�,1 or r−

� . The term e−
�,2φ

(1)
1 φ2E

(�−3) arises

in β�−2(φ
(2)
1 + Eφ1, φ2,D, B) only from the monomial c−

�,1(φ
(2)
1 + Eφ1)

(�−2)φ2. It now follows
that

e−
�,2 = (� − 2)

2

� + 1
c−
�−2,1 = (� − 2)Ξ�.

Since the coefficient c−
�−2,2 = 0, the term φ

(1)
1 φ

(1)
2 E(�−4) does not arise in the invariant

2
�+1β�−2(φ

(2)
1 + Eφ1, φ2,D, B−

S ) and thus

e−
�,3 = 0.

Next we examine Neumann boundary conditions. We take S = 0 and suppose φ
(k)
1 |∂M = 0 for

k � 1. No information is garnered concerning e+
�,3. Since c+

�,1 = 0, the term e+
�,1φ1φ2E

(�−2) and

the term e+
�,2φ1φ

(1)
2 E(�−3) can arise in the invariant β�−2(φ

(2)
1 + Eφ1, φ2,D, B) only from the

term c+
�,2(φ

(2)
1 + Eφ1)

(�−3)φ
(1)
2 . We conclude

e+
�,1 = 0 and e+

�,2 = 2

� + 1
c+
�,2 = −Ξ�.

The argument that r+
� = 0 is similar and is therefore omitted. This establishes assertion (3).

To examine assertion (4), we assume φ1|∂M = φ
(1)
1 |∂M = 0. Again, we set E = 0. We study

the terms d+
�,1Sφ

(�−1)
1 φ2 and d+

�,2Sφ
(�−2)
1 φ

(1)
2 . The case � = 4 is a bit exceptional as these terms

arise in β2(φ
(2)
1 , φ2,D, B) only from 2π−1/2 2

3S(φ
(2)
1 )(1)φ2 and from 2π−1/2 2

3S(φ
(2)
1 )φ

(1)
2 . This

shows that

d+
4,1 = d+

4,2 = 2

5
· 2

3
· 2π−1/2 = −Ξ4.

For � � 6, these terms decouple and the recursion relation proceeds without complication to
show

d+
�,1 = 2

� + 1
d+
�−2,1 = −Ξ� and d+

�,2 = 2

� + 1
d+
�−2,2 = −Ξ�. �

We can relate Neumann and Dirichlet boundary conditions. Let M := [0,1] and let b ∈
C∞(M). Let ε∂r be the inward unit normal; ε(0) = 1 and ε(1) = −1. Define:
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A := ∂r + b, A∗ := −∂r + b, D1 := A∗A, D∗
2 := AA∗,

S := εb, B+
S := εA, E1 := b′ − b2, E2 := −b′ − b2. (5.c)

Then B+
S φ = 0 simply means Aφ|∂M = 0. Furthermore Ei is the endomorphism defined by Di .

Lemma 5.3. Adopt the notation established above. Let � � 6 be even.

(1) β∂M
� (φ1, φ2,D1, B+

S ) = − 2
�+1β�−2(Aφ1,Aφ2,D2, B−).

(2) e−
�,1 = � · Ξ�, e+

�,3 = (2 − �)Ξ�, d+
�,3 = −2 · Ξ�.

Proof. Again, we follow [11] to prove the first assertion. Let {λμ,φμ} be a complete spectral
resolution of (D1)B+

S
. We obtain as above that

−∂tβ
(
φ1, φ2,D1, B+

S

)
(t) =

∑
μ

λμe−tλμγ D1
μ (φ1)γ

D1
μ (φ2).

We restrict henceforth to λμ > 0 since the contribution of zero eigenvalues to the above sum is
zero. Let

ψμ := Aφμ√
λμ

.

Then {λμ,ψμ} is a spectral resolution of D2 on Range(A) = ker(D2)
⊥ with Dirichlet boundary

conditions. Since Aφμ|∂M = 0, the boundary terms vanish and we may express:

γ D2
μ (Af ) =

∫
M

〈Af,ψμ〉dvolm = 1√
λμ

∫
M

〈Af,Aφμ〉dvolm

= 1√
λμ

∫
M

〈
f,A∗Aφμ

〉
dvolm = √

λμγ D1
μ (f ).

This then permits us to express

β
(
Aφ1,Aφ1,D2, B−)

(t) =
∑
μ

λμe−tλμγ D1
μ (φ1)γ

D1
μ (φ2)

which yields the identity

−∂tβ
(
φ1, φ2,D1, B+

S

)
(t) = β

(
Aφ1,Aφ2,D2, B−)

(t).

Assertion (1) now follows by equating terms in the asymptotic expansion in exactly the same
fashion as was used to establish assertion (1) of Lemma 5.2 (the extra negative sign cannot be
absorbed into D).

We apply the relations of Eq. (5.c) and use the fact that e+
�,1 = c−

�−2,2 = 0 to examine

{
φ

(1)
φ2b

(�−2), φ
(1)

φ2bb(�−3), φ
(1)

φ
(1)

b(�−3), φ
(1)

φ
(1)(

b2)(�−4)}
.
1 1 1 2 1 2
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The assumption that � � 6 is employed to ensure that S2(φ
(�−3)
1 φ

(1)
2 + φ

(1)
1 φ

(�−3)
2 ) does not

produce such a term. We compute at the boundary component x = 0:

e+
�,2φ

(1)
1 φ2E

(�−3)
1 = −Ξ�φ

(1)
1 φ2b

(�−2) + 2 · Ξ�φ
(1)
1 φ2bb(�−3) + · · · ,

e+
�,3φ

(1)
1 φ

(1)
2 E

(�−4)
1 = e+

�,3φ
(1)
1 φ

(1)
2 b(�−3) − e+

�,3φ
(1)
1 φ

(1)
2

(
b2)(�−4) + · · · ,

d+
�,3Sφ

(1)
1 φ2E

(�−4)
1 = d+

�,3φ
(1)
1 φ2bb(�−3) + · · · ,

− 2

� + 1
c−
�−2,1

{(
φ

(1)
1 + bφ1

)(�−2)(
φ

(1)
2 + bφ2

) + (
φ

(1)
1 + bφ1

)(
φ

(1)
2 + bφ2

)(�−2)}
= −Ξ�φ

(1)
1 φ2b

(�−2) − Ξ�(� − 2)φ
(1)
1 φ2bb(�−3) − 2(� − 2)Ξ�φ

(1)
1 φ

(1)
2 b(�−3) + · · · ,

− 2

� + 1
e−
�−2,1

(
φ

(1)
1 + bφ1

)(
φ

(1)
2 + bφ2

)
E

(�−4)
2

= − 2

� + 1
e−
�−2,1

{−φ
(1)
1 φ2bb(�−3) − φ

(1)
1 φ

(1)
2 b(�−3) − φ

(1)
1 φ

(1)
2 (b2)(�−4)

} + · · · .

This gives us the following relations:

(a) φ
(1)
1 φ2b

(�−2): −Ξ� = −Ξ�,

(b) φ
(1)
1 φ2bb(�−3): 2 · Ξ� + d+

�,3 = −Ξ�(� − 2) + 2
�+1e−

�−2,1,

(c) φ
(1)
1 φ

(1)
2 b(�−3): e+

�,3 = −2(� − 2)Ξ� + 2
�+1e−

�−2,1,

(d) φ
(1)
1 φ

(1)
2 (b2)(�−4): −e+

�,3 = 2
�+1e−

�−2,1.

This then yields the following 3 relations:

(1) (c) + (d): 0 = −2(� − 2)Ξ� + 2 · 2
�+1e−

�−2,1 so e−
�−2,1 = (� − 2) �+1

2 · Ξ� = (� − 2)Ξ�−2.

(2) (d) − (c): −2e+
�,3 = 2(� − 2)Ξ� so e+

�,3 = (2 − �)Ξ�.

(3) (c) − (b): −d+
�,3 + e+

�,3 − 2 · Ξ� = −(� − 2)Ξ� so d+
�,3 = e+

�,3 + (� − 4)Ξ� = −2 · Ξ�. �
We now work in dimension m � 2 to examine

β∂M
�

(
φ1, φ2,D, B−)

=
∫

∂M

{
c−
�,1φ

(�)
1 φ2 + e−

�,1φ1φ2E
(�−2) + r−

�,1φ1φ2ρ
(�−2)
mm + · · ·}dvolm−1 .

Let M1 := [0,1] and α ∈ C∞(M1) satisfy α|∂M1 = 0. Let

D1 := −∂2
r , M2 := M1 × S1, D2 := D1 − e−2α(r)∂2

θ .

Lemma 5.4.

(1) If � � 2, then 0 = β∂M
� (1, eα(r),−∂2

r , B−).
(2) r− = 1 (� − 2)Ξ�.
� 2
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Proof. We follow the treatment in [11] to prove assertion (1). We consider the function u(r, t) =
e−tD1,B− 1. This solves the equations

(∂t + D1)u = 0, lim
t→0

u(·, t) = 1 in L2(M1), B−u = 0.

Since u also solves the equations

(∂t + D2)u = 0, lim
t→0

u(·, t) = 1 in L2(M2), B−u = 0,

we also have that u(·, t) = e−tD2,B 1 as well. Since dvolM2 = eα dr dθ ,

βM2

(
1, e−α,D2, B−)

(t) =
1∫

r=0

2π∫
θ=0

u(r, t)e−α(r)eα(r) dθ dr

= 2π

1∫
r=0

u(r, t) dr = 2πβM1

(
1,1,D1, B−)

(t).

Since the structures are flat on M1, β
∂M1
� (1,1,D1, B−) = 0 for � > 0 and �k

M1
1 = 0. We equate

terms in the asymptotic expansion to see β
∂M2
� (1, e−α(r),D2, B−) = 0 for � > 0 as well.

We apply assertion (1). We use the formalism of Eq. (1.e). We have ds2
M2

= dr2 + e2α(r) dθ2

where α(0) = 0 and α(r) = 0 near α = 1. We compute:

Γ122 = Γ212 = −Γ221 = e2αα(1), ω1 = 1

2
e−2αΓ221 = −1

2
α(1),

ω2 = 0, E(�−2) = 1

2
α(�) + · · · ,

φ
(�)
1 = 0 + · · · , φ

(�)
2 = −α(�) + · · · ,

ρ(�−2)
mm = −α(�) + · · · .

We examine the coefficient of α(�) in β� for � even:

c−
�,1φ1φ

(�)
2 = −Ξ�α

(�) + · · · ,

e−
�,1φ1φ2E

(�−2) = 1

2
� · Ξ�α

(�) + · · · ,

r−
� φ1φ2ρ

(�−2)
mm = −r−

� α(�) + · · · .

It now follows from assertion (1) that r−
� = 1

2 (� − 2)Ξ�. This completes the proof of Lemma 5.4
and thereby completes the proof of Theorem 1.9 as well. �
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6. Estimating the heat trace asymptotics on a closed manifold

In this section, we shall prove Theorem 1.2. We shall proceed purely formally and shall use
the discussion in Sections 1.7-1.8 of [27] (which is based on the Seeley calculus [44,45]) to
justify our formal procedures. As in Eq. (1.b), let

D = −gij ∂xi
∂xj

− Ak∂xk
− B

be an operator of Laplace type. Throughout this section, C = C(M,g,D) will denote a generic
constant which depends only on (M,g,D) (and hence also implicitly on m) but not on n; c(m)

will denote a generic constant which only depends on m. If we take D = �g , then C = C(M,g).
We introduce coordinates ξ = (ξ1, . . . , ξm) on the cotangent bundle to express a covector in

the form ξ = ξidxi . The symbol of D is p2(x, ξ) + p1(x, ξ) + p0(x) where:

p2(x, ξ) := gij (x)ξiξj , p1(x, ξ) := Ak(x)ξk, and p0 = B.

There are suitable normalizing constants involving factors of
√−1 which we ignore in the in-

terests of simplicity henceforth since they play no role in the estimates we shall be deriving. Let
C := C − [0,∞) be the slit complex plane and let λ ∈ C . Following the discussion in Lemma
1.7.2 of [27], one defines inductively:

r0(x, ξ, λ) := (|ξ |2 − λ
)−1

,

rn(x, ξ, λ) := −r0(x, ξ, λ) ·
∑

|α|+j+2−k=n,j<n

dα
ξ pk(x, ξ) · dα

x rj (x, ξ, λ)/α!. (6.a)

In this sum k = 0,1,2 and |α| � 2 − k. The symbol of e−tD is given by:

e0(x, ξ, t) + · · · + en(x, ξ, t) + · · ·
where, following Eq. (1.8.4) of [27], one sets:

en(x, ξ, t) := 1

2π
√−1

∫
γ

e−tλrn(x, ξ, λ) dλ;

here γ is a suitable contour about the positive real axis in the complex plane. Then, following
Eq. (1.8.3) of [27], one may obtain the local heat trace invariants of Eq. (1.c) by setting:

an(x,D) = (√
det(gij )

)−1
∫

Rm

en(x, ξ,1) dξ. (6.b)

To measure the degree of an expression in the derivatives of the symbol, we set:

degree
(
dα
x gij

) = |α|, degree
(
dα
x Ak

) = |α| + 1, degree
(
dα
x B

) = |α| + 2.

Note that if D is the scalar Laplacian, then B = 0 and Ak = g−1∂xi
gij g has degree 1 in the

derivatives of the metric so this present definition is consistent with our previous definition in
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this special case. It is immediate from the definition that r0 is of total degree 0 in the jets of the
symbol of D. Furthermore, since

degree
(
dα
ξ pk

) = 2 − k and degree
(
dα
x rj

) = |α| + degree(rj ),

we have by induction that

degree(rn) = n. (6.c)

There is a similar grading on the variables (ξ, λ). One defines:

weight(ξi) = 1 and weight(λ) = 2.

It is then immediate that r0 has weight −2 in (ξ, λ). Clearly

weight
(
dα
ξ pk

) = k − |α| and weight
(
dα
x rj

) = weight(rj ).

Thus it then also follows by induction from Eq. (6.a) that

weight(rn) = −2 − n. (6.d)

Let n be odd. Since the weight of rn(x, ξ, λ) is −n − 2 in (ξ, λ), it follows that en(x, ξ,1) is
an odd function of ξ and hence the integral in Eq. (6.b) vanishes in this instance. This yields
an(x,D) = 0 for n odd. Let [·] be the greatest integer function.

Lemma 6.1.

(1) We may expand rn in the form:

rn(x, ξ, λ) =
2n+1∑

j=[ 1
2 n]+1

∑
|β|=2j−n−2

qn,m,j,β(x, g)ξβr
j

0 (x, ξ, λ).

(2) There exists a constant C(M,g) so that if n = 2n̄ > 0 and if |β| = 2j − n − 2, then

∣∣∣∣
∫

Rm

∫
γ

e−λr
j

0 (x, ξ, λ)ξβ dλdξ

∣∣∣∣ � C(M,g)

n̄!
n

.

Proof. We apply the recursive scheme of Eq. (6.a) to obtain an expression for rn of the form
given in assertion (1). By Eq. (6.c), rn has degree n in the derivatives of the symbol of D. Thus
there are at most n x-derivatives of r0 which are involved in the process. Each x-derivative of r0
adds one power of r0 (other variables can be differentiated as well of course so we are obtaining
an upper bound not a sharp estimate). Each step in the induction process adds 1 power of r0. Thus
j � 2n+1. By Eq. (6.d), rn is homogeneous of weight −n−2 in (ξ, λ). Since |β|−2j = −n−2
and |β| � 0, we may conclude that j � 1 + 1n � [ 1n] + 1. Assertion (1) now follows.
2 2
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We use the Cauchy integral formula to estimate:

∣∣∣∣
∫

Rm

∫
γ

e−λ
(|ξ |2 − λ

)−j
ξβ dλdξ

∣∣∣∣ � 1

(j − 1)!
∣∣∣∣
∫

Rm

e−|ξ |2ξβ dξ

∣∣∣∣.

The quadratic form gij is positive definite. Thus we may estimate |ξ |2 � ε|ξ |2e for some ε =
ε(M,g) > 0 where |ξ |2e = ξ2

1 + · · · + ξ2
m is the usual Euclidean length. Note that |ξβ | � |ξ ||β|

e .

Since e−|ξ |2 � e−ε|ξ |2e , we may use spherical coordinates to estimate:

∣∣∣∣
∫

Rm

∫
γ

e−λ
(|ξ |2 − λ

)−j
ξβ dλdξ

∣∣∣∣ � 1

(j − 1)!
∞∫

r=0

e−εr2
r |β|+m dr volm−1

(
Sm−1, gSm−1

)
.

Since |β| � 2j � 4n + 4 is uniformly and linearly bounded in n, we may rescale to remove ε

in e−εr2
at the cost of introducing a suitable multiplicative constant. We may then evaluate the

integral to estimate:

∣∣∣∣
∫

Rm

∫
γ

e−λ
(|ξ |2 − λ

)−j
ξβ dλdξ

∣∣∣∣ � C(M,g)n
(
|β|+m

2 )!
(j − 1)! .

Since j −1− 1
2 |β| = n̄ the desired estimate follows; the shift by m can be absorbed into C(M,g)n

since we have restricted to n > 0. �
Let DC

ε ⊂ C
m be the complex polydisk of radius ε of real dimension 2m about the origin in

C
m given by setting:

DC
ε := {�z = (z1, . . . , zm) ∈ C

m: |zi | � ε for 1 � i � m
}
.

We let DR
ε = DC

ε ∩ R
m be the corresponding real polydisk. We also consider the submanifold Sε

of real dimension m in C
m (which is not the boundary either of the complex polydisk DC

ε or of
the real polydisk DR

ε ) given by:

Sε := {�z ∈ C
m: |zi | = ε for 1 � i � m

}
.

We consider the holomorphic m-form

dw = (2π
√−1 )−m dw1 . . . dwm.

Let f be a holomorphic function on the interior of DC
ε which extends continuously to all of DC

ε

and let α is a multi-index. If z belongs to the interior of the polydisk DC
ε , then we shall define:

Iα(f )(z) :=
∫

f (w)(w1 − z1)
−1−α1 . . . (wm − zm)−1−αm dw.
w∈Sε
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We may then use the Cauchy integral formula to represent:

∂α
z f (z) = α!Iα(f ) for z ∈ int

(
DC

ε

)
.

Let β = β(i,α) be the multi-index (α1, . . . , αi−1, αi + 1, αi+1, . . . , αm). We then have:

∂xi
Iα(f )(x) = (αi + 1) · Iβ(f )(x). (6.e)

We introduce variables {fν} for the {gij ,Ak,B} variables; we have a total of 1
2m(m − 1) +

m + 1 such variables. Since we are in the real analytic setting, we can choose real analytic coor-
dinates about each point P of M which are real analytically equivalent to the polydisk DR

2 (P ) of
radius 2 in such a way that the variables {fν} extend continuously to DC

2 (P ) with fν holomorphic
on the interior of DC

2 (P ). The functions |fν | are uniformly bounded on DC

2 (P ). If z ∈ DR

1 (P )

and |w| ∈ SC

2 (P ), then |zi − wi | � 1 and thus we have uniform estimates

∣∣Iα(fν)(z)
∣∣ � C(M,D) for any ν,α. (6.f)

We decompose rn in terms of monomials of the form

r
j

0 ξβ · gi1j1 · . . . · giaja · Iα1(fν1) · . . . · Iαb
(fνb

). (6.g)

Here we assume degree{∂x
αfνi

} > 0 since we have made explicit the dependence on the variables
of degree 0. Thus b � n since, by Eq. (6.c), rn is homogeneous of degree n in the jets of the
symbol. There are no gij variables in r0. Each multiplication by ∂α

ξ p2 can add at most one gij

variable; each multiplication by ∂α
ξi
p1 or p0 adds no gij variable. Each application of ∂α

x to

rj does not add a gij variable (and can in fact reduce the number of gij variables if they are
differentiated). Thus the number of gij variables is at most n. Thus in considering monomials of
the form given in Eq. (6.g), we may assume a � n. We summarize these constraints:

j � 2n + 1, −n − 2 = |β| − 2j, a � n, and b � n. (6.h)

Lemma 6.2. Let c(m) := 50m2. We can decompose rn as the sum of at most c(m)nn! monomials
of the form given in Eq. (6.g) satisfying the constraints of Eq. (6.h) where the coefficient of each
monomial has absolute value at most 1.

Proof. Since r0 can be written as a single monomial with coefficient 1, we proceed by induction.

(1) Consider −r0∂ξk
p2 · ∂xk

rn−1. Each k generates m terms so there are m2 terms generated

in this way. Differentiating r
j

0 generates at most 3n terms since j � 3n by Eq. (6.h). Dif-
ferentiating the gij variables generates at most n terms since a � n. Differentiating the I
variables generates at most b + ∑ |αi | � 2n terms by Eq. (6.e). Thus we generate at most
m2(3n + n + 2n) = 6m2n terms from each monomial of rn−1. This can be written in terms
of at most

6m2n · c(m)m−1(n − 1)! = 6m2c(m)m−1n! monomials.
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(2) Consider −r0∂ξk1
∂ξk2

p2 · ∂xk1
∂xk2

rn−2. A similar argument shows this generates at most

m2(6n)(6(n − 1)) new terms from each monomial of rn−2. This can be written in terms
of at most

36m2n(n − 1) · c(m)n−2(n − 2)! � 36m2 · c(m)n−1n! monomials.

(3) Consider −r0A
kξkrn−1. This can be written in terms of at most

m · c(m)m−1(n − 1)! � m2c(m)m−1n! monomials.

(4) Consider −r0A
k∂xk

rn−2. This can be written in terms of at most

6mn · c(m)n−2(n − 2)! � 6m2c(m)n−1n! monomials.

(5) Consider −r0Brn−2. This can be written in terms of at most

c(m)n−2(n − 2)! � m2c(m)n−1n! terms.

The above argument shows that rn can be decomposed as the sum of at most of 50m2 ·
c(m)n−1n! = c(m)n · n! monomials each of which has a coefficient of absolute value at
most 1. �
Proof of Theorem 1.2(1). We consider monomials where the coefficient has absolute value at
most 1. We have shown that there exists a constant c(m) so that rn can be written in terms of
at most c(m)nn! such monomials. We may then use the constraints of Eq. (6.h), the estimates of
Eq. (6.f), and the estimate of Lemma 6.1 to construct a new constant C̃(M,g) and complete the
proof of Theorem 1.2(1) by bounding:

∣∣an(x,D)
∣∣ � c(m)nn! · C(M,g,D)2n · C(M,g)n

1

n̄! � C̃(M,g,D)nn̄!. �
Proof of Theorem 1.2(2). Let P be a point of a closed real analytic Riemannian manifold
(M,g). Let f be a real analytic function on M so that df (P ) 
= 0. Since f is continuous and M

is compact, |f | is bounded. By rescaling and shifting f , we may suppose without loss of gener-
ality that f (P ) = 0 and that |f (x)| � 1 for all points x of M . We make a real analytic change of
coordinates to assume that gij (P ) = δij and that f (x) = cf ·x1 near P . We shall choose εk = ±1
recursively and define:

h(x) =
∞∑

k=3

εk2−kf (x)2k.

This series converges uniformly in the real analytic topology so h is real analytic. Let En̄(·) be a
generic invariant which only depends on the parameters indicated. Let gh = e2hg. Let n̄ � 3. We
use Theorem 1.8 to see that:
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(
∂2n̄
x1

h
)
(P ) = εn̄2−n̄c2n̄

f (2n̄)! + E 1
n̄ (ε1, . . . , εn̄−1),

τgh
(P ) = cm

(
∂2
x1

h
)
(P ) + lower order terms for some |cm| � 1,

(−1)n̄−1�n̄−1
gh

τgn(P ) = εn̄cm2−n̄c2n̄
f (2n̄)! + E 2

n̄ (ε1, . . . , εn̄−1, g),

a2n̄(P ,�g) = (−1)n̄−1 n̄ · n̄!
(2n̄ + 1)!�

n̄−1τ + lower order terms

= cm

n̄ · n̄!
(2n̄ + 1)!c

2n̄
f εn̄2−n̄(2n̄)! + E 3

n̄ (ε1, . . . , εn̄−1, g).

We set

εn̄ :=
{ +1 if cmE 3

n̄ (ε1, . . . , εn̄−1, g) � 0

−1 if cmE 3
n̄ (ε1, . . . , εn̄−1, g) < 0

}
.

With this choice of εn̄, there is no cancellation. As 1
2

n̄
2n̄+1 � 3

14 for n̄ � 3, we obtain the desired
estimate:

∣∣a2n̄(P ,�g)
∣∣ � cm

n̄ · n̄!
(2n̄ + 1)!c

2n̄
f 2−n̄(2n̄)! � n̄

2n̄ + 1
c2n̄
f 2−n̄ · n̄! �

(
3

14
c2
f

)n̄

n̄!. �
7. Growth of heat content asymptotics

This section is devoted to the proof of Theorem 1.4. We first examine a product manifold
[0,1] × N . Let {ε�̄} be a sequence of signs to be chosen recursively. We replace the function
f (x) of the previous section by sin(x) and define:

h(x) :=
∞∑

ν=1

εν2−ν sin(x)2ν .

This series converges in the real analytic topology to a real analytic function h which is periodic
with period 2π and which satisfies h(0) = h(2π) = 0. We set

gM := e2h
(
dx2 + gN

)
.

The inward unit normal is given at 0 by ν(0) = ∂x and at 2π by ν(2π) = −∂x . If j is odd, then
{∂j

x h}(0) = {∂j
x h}(2π) = 0 since h is an even function. And clearly we have that {(∂j

x )h}(0) =
{(−∂x)

jh}(2π) if j is even. Consequently

h(j)(0) = h(j)(2π) for any j.

This ensures that the behaviour of h is the same on the boundary components and gives rise to
the factor of 2 volm−1(N,gN) in Eq. (7.a) below. We have:

h(2�̄)(0) = ε ¯ · 2−�̄(2�̄)! + E 4(ε1, . . . , ε ¯ ).
� �̄ �−1
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Since m � 2, there is a non-zero constant cm with |cm| � 1 which only depends on m and not on
�̄ so that:

ρ(2�̄−2)
mm (0) = ε�̄ · cm2−�̄(2�̄)! + E 5

�̄
(ε1, . . . , ε�̄−1, gN).

We may then apply Theorem 1.9 to express:

β∂M

2�̄

(
1,1,�M,gM

, B−) = ε�

{
1

2
(2�̄ − 2)Ξ2�̄cm2−�̄(2�̄)! · 2 volm−1(N,gN)

}

+ E 6
2�̄

(ε1, . . . , ε�̄−1, gN). (7.a)

Set

ε�̄ :=
{ +1 if E 6

2�̄
(ε1, . . . , ε�̄−1, gN) > 0

−1 if E 6
2�̄

(ε1, . . . , ε�̄−1, gN) � 0

}
.

Since there is no cancellation in Eq. (7.a), we may estimate:

∣∣β∂M

2�̄

(
1,1,�M,gM

, B−)∣∣ � 1

2
(2�̄ − 2)Ξ2�̄cm(2�̄)!ε�̄2−�̄ · 2 volm−1(N,gN).

The desired estimate in assertion (1) of Theorem 1.4 now follows since:

∣∣∣∣1

2
(2�̄ − 2)Ξ2�̄cm(2�̄)!ε�̄2−�̄

∣∣∣∣ � (2�̄ − 2)
2

2�̄ + 1
. . .

2

3

2√
π

2−�̄1 · 2 · 3 . . . · 2�̄

= 2�̄ − 2

2�̄ + 1
2 · 4 · · · · · 2�̄ � 4

14
2�̄�̄! � �̄! for �̄ � 3.

We now turn to the case of the ball and apply a similar analysis to establish assertion (2)
of Theorem 1.4. The functions sin(x) is now replaced by the function (x2

1 + · · · + x2
m − 1)2ν ,

the operator ∂x is replaced by the radial derivative ∂r , and the boundary components x = 0 and
x = 2π are replaced by the single boundary component r = 1. The remainder of the argument is
the same and is therefore omitted. �
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