The simulation of CPV model on net-work products at the simultaneous time

Wen Zhenga,b, Xia Jinc, Shi Zhengc, Hu Huanga,b a*

aManagement Science Department, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P.R.China;
bSchool of Business Administration, Northeastern University, Shen Yang,110819, P.R China;
cSchool of Economics & Management, Dalian Minority University, Dalian, 116600, P. R. China

Abstract

Simulated the state of market competition by using simulation software with considering the influence of the product’s compatibility and product’s CPV, providing reasonable suggestions for manufacturers.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011]
Open access under CC BY-NC-ND license.

Keywords: network products; Customer-perceived-Value; compatibility; simultaneously

1. Introduction

The rapid development of information technology has accelerated the promotion and application of e-commerce, bringing precious opportunities to the pricing of network products. It’s been a new challenge for researchers to find a more rational price that can better reflect the needs of customers.

* Corresponding author. Tel.: 0086-335-8563921; fax: 0086-3358051795.
E-mail address: researcherzw@126.com
2. Literature Review

Prabakar Kothandaraman, David t. Wilson ¹ had constructed a concept model for Value Net, considering that providing superior Customer Value is very important for network enterprises to create profits, which can be achieved by providing satisfactory products at reasonable price. We should evaluate the product value at the point of customer’s perspective². Customer Perceptive Value is a customer’s perceived preference for and evaluation of those product attributes, attribute performances, and consequences arising from use that facilitate (or block) achieving the customer’s goals and purposes in use situations³. The identification and evaluation of the driving factors for Customer-Perceived-Value helps us to find the crucial attributes which impact on customer purchase decisions⁴. And Conjoint Analysis can also be used in measuring product’s CPV which indicates the satisfaction degree of each product⁵.

In the research on pricing of network products, Anette ⁶ has constructed a pricing model for network products with considering network externality, drawing that network product’s value contains the intrinsic value and network value. Network product’s quality, profit and its price might be influenced by its network externality⁷. And a multi-episodic pricing model has been built and simulated by using the simulation software. Through simulating the state of market competition, it concluded that product compatibility, switching costs and network externality are critical factors for manufactures to make competitive strategies⁸.

The figure number and caption should be typed below the illustration in 9pt and left justified. For more guidelines and information to help you submit high quality artwork please visit: http://www.elsevier.com/wps/find/authorsview.authors/authorartworkinstructions. Artwork has no text along the side of it in the main body of the text. However, if two images fit next to each other, these may be placed next to each other to save space, see Fig 1. They must be numbered consecutively, all figures, and all tables respectively.

3. Pricing Model of Network Products

All authors must sign the Transfer of Copyright agreement before the article can be published. This transfer agreement enables Elsevier to protect the copyrighted material for the authors, but does not relinquish the authors’ proprietary rights. The copyright transfer covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microfilm or any other reproductions of similar nature and translations. Authors are responsible for obtaining from the copyright holder permission to reproduce any figures for which copyright exists.

3.1 Solution of the pricing model at the same time to enter the market

We can calculate the equilibrium price and output.

\[
\begin{align*}
P_{2A}^* &= \frac{3 + (a_1 + 2a_2)(k-1) + \Delta CPV + s(Q_{1A} - Q_{1B})}{3} \\
Q_{2A}^* &= \frac{3 + (a_1 + 2a_2)(k-1) + \Delta CPV + s(Q_{1A} - Q_{1B})}{3[2 + (a_1 + a_2)(k-1)]} \\
P_{2B}^* &= \frac{3 + (2a_1 + a_2)(k-1) - [\Delta CPV + s(Q_{1A} - Q_{1B})]}{3} \\
Q_{2B}^* &= \frac{3 + (2a_1 + a_2)(k-1) - [\Delta CPV + s(Q_{1A} - Q_{1B})]}{3[2 + (a_1 + a_2)(k-1)]}
\end{align*}
\] (1)
3.2 The pricing model of network products by entering the market successively

We can calculate the equilibrium price and output.

\[
\begin{align*}
P_A^* &= \frac{3 + (k - 1)(2a_2 + a_1) + s + \Delta \text{CPV}}{3} \\
P_B^* &= \frac{3 + (k - 1)(2a_1 + a_2) - s - \Delta \text{CPV}}{3} \\
Q_A^* &= \frac{3 + (k - 1)(a_1 + 2a_2) + s + \Delta \text{CPV}}{3[2 + (k - 1)(a_1 + a_2)]} \\
Q_B^* &= \frac{3 + (k - 1)(2a_1 + a_2) - s - \Delta \text{CPV}}{3[2 + (k - 1)(a_1 + a_2)]}
\end{align*}
\] (2)

4. Simulation Analysis of the Pricing Model of Network Products at the same time to enter the market

4.1. Compatibility at 0.75

Fig.1 The graph of the three-dimension at the point of \(k=0.75, a_1=0.1, a_2=0.3, \Delta \text{CPV}=0\)

4.2 Compatibility at 0.5

Fig. 2 The graph of the three-dimension at the point of \(k=0.5, a_1=0.1, a_2=0.3, \Delta \text{CPV}=0\)
4.3 Compatibility at 0.25

From above, we can learn that manufacturers' equilibrium profits are increasing by product compatibility. Because network clients can get more value from the network externality as product compatibility.

Deduction: If a product has the network externality, manufacturers can boost product compatibility to increase the value of their products. then it will earn more profit from attracting more people to buy it.

4.4 $\Delta CPV=-0.4$

4.5 $\Delta CPV=0$

Fig. 3 The graph of the three-dimension at the point of $k=0.25$, $a_1=0.1$, $a_2=0.3$, $\Delta CPV=0$

Fig. 4 The graph of the three-dimension at the point of $\Delta CPV=-0.4$ $k=0.5$, $a_1=0.1$, $a_2=0.3$

Fig. 5 The graph of the three-dimension at the point of $\Delta CPV=0$, $k=0.5$, $a_1=0.1$, $a_2=0.3$
4.6 $\Delta CPV = 0.4$

From above pictures and the table, we can learn that manufacture A equilibrium profits are increasing by product’s ΔCPV. But manufacture B equilibrium profits are decreasing by products’ ΔCPV. Network clients tend to purchase high-value products.

Deduction: Manufacturers may win the market by providing more good quality products than competitors through increasing its products perceived value. And take the advantages of network externality to lock more customers. So that it can win long-term competitiveness.

References

[4] Lin Bai. The Method Study on the Distinguishing and Judgments of Driving force on Custom Perceptive Value---As the Example of Mobile[D], Nanjing University of Aeronautics and Astronautics, 2007

